2020年中考数学冲刺卷 【1】
- 格式:docx
- 大小:105.22 KB
- 文档页数:6
浙江省中考数学黄金冲刺试卷温馨提示:1.本卷满分120分,考试时间120分钟.2.本次考试为开卷考试且不能使用计算器.3.请仔细审题,细心答题,相信你一定有出色的表现.一、选择题(本大题有10小题,每小题3分,共30分)1.给出四个数0,-2,31,27-,其中为无理数的是( ▲ ) A .0 B .-1 C .31D .27-2.下列各式计算正确的是( ▲ ) A .(a +1)2=a 2+1 B .a 2+a 3=a 5 C .a 8÷a 2=a 6D .3a 2-2a 2=13.如图所示的几何体的左视图是( ▲ )4.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( ▲ ) A .2 B .4 C .12 D .165.如图,点D 、E 分别在AB 、AC 上,且∠B =∠AED .若DE =4, AE =5,BC =8;则AB 的长为( ▲ )A .16B .8C .10D .56.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ▲ )A .10B .9C .8D .77.河堤横断面如图,堤高BC =5米,迎水坡AB 的坡比是1∶ 3 (坡比是坡面的铅直高BC 与水平宽度AC 之比),则AC 的长是( ▲ ) A .53米 B .10米 C .15米 D .103米8.已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C ',若两条抛物线C和C '关于直线1x =对称,则下列平移方法中,正确的是( ▲ ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位正面 A . B . C . D .(第5题图)AB CDE9.如图,A 、C 分别是x 轴、y 轴上的点,双曲线2y x=(x >0)与 矩形OA BC 的边BC 、AB 分别交于E 、F ,若AF ︰BF =1︰2,则 △OEF 的面积为( ▲ )A .2B .83C .3D .10310.如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A ,B两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,作 C F ⊥AE 于点F .当点E 从点B 出发,逆时针运动到点C 时, 点F 所经过的路径长为( ▲ )A .34π B .33π C .32π D .233π二、填空题(本大题有6小题,每小题4分,共24分)11. 已知a 2﹣b 2=6,a ﹣b =2,则a +b = ▲ .12.一组数1、2、3、x 、5的众数是1,则这组数的中位数是 ▲ .13.已知关于x 的方程321x nx ++=2的解是负数,则n 的取值范围为 ▲ . 14.如图,在8×7的点阵中,任意两个竖直或水平相邻的点都相距1个单位长度.已知正方形ABCD 被线段EF 分割成两部分,则 阴影部分的面积为 ▲ .15.如果一个三角形的一边长等于另一边长的两倍,我们把这样的三角形成为 “倍边三角形”.如果一个直角三角形是倍边三角形,那么这个直角三角形的较小的锐角的正切值为 ▲ . 16.如图,直线122y x =+交y 轴于点A ,与直线12y x =- 交于点B ,把△AOB 沿y 轴翻折,得到△AOC ,(1)点C的坐标是 ▲ ;(2)若抛物线y =(x ﹣m )2+k 的顶点在直 线12y x =-上移动,当抛物线与△AOC 的边OC ,AC 都 有公共点时,则m 的取值围是 ▲ .三、解答题(本大题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:︒--+--60cos )21(28018.(本题6分)先化简,再求值:)1)(1()2(2a a a +--+,其中43-=a (第14题图) C DB AFEyxDBFCAGE(第10题图)(第9题图)精品资料19.(本题6分)如图,把直角坐标系xoy放置在边长为1的正方形网格中,O是坐标原点,点A、O、B均在格点上,将△OAB绕O点按顺时针方向旋转90°后,得到△BAO''.(1)画出△BAO'',点A的对应点A'的坐标是▲;(2)若点P是在y轴上的一个动点,当P A+AP'的值最小时,点P的坐标是▲.20.(满分8分)某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:(1)该校随机抽查了▲名学生;(2)将图1补充完整;在图2中,“视情况而定”部分所占的圆心角是▲度;(3)估计该校2600名学生中采取“马上救助”的方式约有多少人?21.(本题8分)如图,AB是半圆O的直径,过半圆O上一点D作DE⊥AB,垂足为E,作半圆O的切线DC,交AB的延长线于点C,连结OD、BD.(1)求证:BD平分∠CDE;(2)过点B作BF∥CD交DE于点F,若BE=4,sin∠BOD=45,求线段BC的长.22.(本题10分)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如下表:项目品种单价(元/棵)成活率A80 92%B100 98%若购买(1)求y与x之间的函数关系式;(2)若购树的总费用82000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?AB O xy23.(本题10分)(1)将矩形OABC 放在平面直角坐标系中,顶点O 为原点,顶点C 、A分别在x 轴和y 轴上,OA =8,OC =10,点E 为OA 边上一点,连结CE ,将△EOC 沿CE 折叠. ①如图1,当点O 落在AB 边上的点D 处时,求点E 的坐标;②如图2,当点O 落在矩形OABC 内部的点D 处时,过点E 作EG ∥x 轴交CD 于点H ,交BC 于点G ,设H (m ,n ),求m 与n 之间的关系式;(2)如图3,将矩形OABC 变为边长为10的正方形,点E 为y 轴上一动点,将△EOC 沿CE 折叠.点O 落在点D 处,延长CD 交直线AB 于点T ,若12AE AO =,求AT 的长.24.(本题12分)如图,已知抛物线223y x x =--经过x 轴上的A ,B 两点,与y 轴交于点C ,线段BC 与抛物线的对称轴相交于点D ,点E 为y 轴上的一个动点. (1)求直线BC 的函数解析式,并求出点D 的坐标;(2)设点E 的纵坐标为为m ,在点E 的运动过程中,当△BDE 中为钝角三角形时,求m的取值范围; (3)如图2,连结DE ,将射线DE 绕点D 顺时针方向旋转90°,与抛物线交点为G ,连结EG ,DG 得到R t △GED .在点E 的运动过程中,是否存在这样的R t △GED ,使得两直角边之比为2:1,如果存在,求出此时点G 的坐标;如果不存在,请说明理由.图1图2图3y xDA BC OE y xHG DABC OExy TDEC BAO参考答案及评分意见题号 1 2 3 4 5 6 7 8 9 10 答案DCCBCAACBD二、填空题(本大题有6小题,每小题4分,共24分) 11. 3 12. 2 13. n <2且n ≠32 14. 4315. 312或 16. (1)(2,1);(2)116-≤m ≤933- 或133+≤m ≤933+ (每小题各2分)三、解答题(本大题有8小题,共66分)17.(本题6分)原式=122212-(4分) =212+(2分) 18.(本题6分)原式=4a +5 (4分)=2 (2分)19.(本题6分)(1)画出△B A O ''(2分),A '的坐标是(2,﹣1)(2分) (2)P 的坐标(0,1)(2分) 20.(本题8分) (1)200(2分)(2)将图1补充完整(2分),圆心角是 72 度(2分) (3)大约1560人(2分) (1)略(4分).(2)BC =203(4分) 22.(本题10分)(1)80100(900)y x x =+-2090000x =-+ (3分)精品资料(2)209000082000x -+≤ 解得x ≥400即购A 种树不少于400棵 (3分)(3)92%98%(900)94%900x x +-⨯≥ 解得x ≤600 (2分)2090000y x =-+Q 随x 的增大而减小当600x =时,购树费用最低为206009000078000y =-⨯+=(元) 当600x =时,900300x -= (2分) 此时应购A 种树600棵,B 种树300棵. 23.(本题10分) (1)E (0,5)(3分)(2)21520m n =+(3分) (3)解:52AT =或856(4分)24.(本题12分)(1)3y x =-,点D 的坐标是(1,﹣2) (4分) (2)m >3 (2分) 或m <﹣1且m ≠﹣3 (2分)(3)①当点G 在对称轴右侧的抛物线上时,G 1(3,0)、 G 23(1)22+-②当点G 在对称轴左侧的抛物线上时,G 3(1,0)-、 G 43(1)22-- (4分)。
2020年中考数学冲刺卷(武汉专版)(一)姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.实数2019的相反数是()A.2019 B.﹣2019 C.D.2.二次根式在实数范围内有意义,则x应满足的条件是()A.x≥5B.x≤5C.x>5 D.x<53.下列选项中的事件,属于随机事件的是()A.在一个只装有黑球的袋中,摸出红球B.两个正数相加,和是正数C.翻开数学书,恰好翻到第16页D.水涨船高4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,掷一次骰子,设两枚骰子向上一面的点数之和为S,则下列事件属于随机事件的是()A.S=6 B.S>13 C.S=1 D.S>15.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.6.如图,该几何体的左视图是()A.B.C.D.7.甲、乙两同学掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数,则满足关于x 的方程x2+px+q=0有两个相等实数解的概率是()A.B.C.D.8.如图是二次函数,反比例函数在同一直角坐标系的图象,若y1与y2交于点A(4,y A),则下列命题中,假命题是()A.当x>4时,y1>y2B.当x<﹣1时,y1>y2C.当y1<y2时,0<x<4 D.当y1>y2时,x<09.如图,⊙O中的弦BC等于⊙O的半径,延长BC到D,使BC=CD,点A为优弧BC上的一个动点,连接AD,AB,AC,过点D作DE⊥AB,交直线AB于点E,当点A在优弧BC上从点C运动到点B时,则DE+AC的值的变化情况是()A.不变B.先变大再变小C.先变小再变大D.无法确定10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a第Ⅱ卷(非选择题)二.填空题11.已知1<x<3,化简:+|x﹣1|=.12.当前,新冠状性肺炎疫情已波及全世界200多个国家和地区.截止2020年5月12日14:00,全球确诊人数累计已达4175216人.如表是各大洲的确诊人数,则这组数据的中位数是.地区亚洲欧洲非洲大洋洲北美洲南美洲其他现有确诊(人)279660 823853 40950 1300 1101631 190967 48 13.计算:+的值为.14.如图,在▱ABCD中,点O是对角线AC,BD的交点,AC⊥BC,且AB=5,AD=3,则OB=.15.抛物线y=a(x﹣h)2+k经过(﹣1,0)、(5,0)两点,则关于的一元二次方程a(x+h+2)2+k=0的解是.16.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为.三.解答题17.(1)计算:;(2)已知3×9m×27m=321,求m的值.18.如图,AE平分∠CAD,AE∥BC,O为△ABC内一点,∠OBC=∠OCB.求证:∠ABO =∠ACO.19.某校为了调查学生预防“新型冠状病毒”知识的情况,在全校随机抽取了一部分学生进行民意调查,调查结果分为A,B,C三个等级,其中“A:非常了解”、“B:了解”“C:不了解”,并根据调查结果绘制了如图两个不完整的统计图,请根据统计图,解答下列问题:(1)这次抽查的学生为人;(2)求等级A在扇形统计图中所占圆心角的度数;(3)若该校有学生2200人,请根据抽样调查的结果、估计该校约有多少学生对预防“新型冠状病毒”知识已经了解.20.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,求∠ABC的度数:解:(根据图形填射线BF的画法),因为CD∥AE,所以∥∥().(余下的说理过程请写在下方)21.如图,在⊙O中,AB是直径且AB=2,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求扇形OBC的面积(结果保留π).22.2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道根据市场调查,在文旦上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足函数(其中x为正整数);销售量n(公斤)与第x天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量n与第x天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x的值.23.如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.24.已知抛物线y=x2+bx+c,经过点B(﹣4,0)和点A(1,0),与y轴交于点C.(1)确定抛物线的表达式,并求出C点坐标;(2)如图1,抛物线上存在一点E,使△ACE是以AC为直角边的直角三角形,求出所有满足条件的点E坐标;(3)如图2,M,N是抛物线上的两动点(点M在点的N左侧),分别过点M,N作PM∥x轴,PN∥y轴,PM,PN交于点P.点M,N运动时,始终保持MN=不变,当△MNP的两条直角边长成二倍关系时,请直接写出直线MN的表达式.参考答案一.选择题1.解:实数2019的相反数是:﹣2019.故选:B.2.解:二次根式在实数范围内有意义,则x﹣5≥0,解得:x≥5.故选:A.3.解:A、在一个只装有黑球的袋中,摸出红球是不可能事件,故本选项错误;B、两个正数相加,和是正数是必然事件,故本选项错误;C、翻开数学书,恰好翻到第16页是随机事件,故本选项正确;D、水涨船高是必然事件,故本选项错误.故选:C.4.解:A、两枚骰子向上一面的点数之和S等于6是随机事件,符合题意;B、两枚骰子向上一面的点数之和S大于13是不可能事件,不合题意;C、两枚骰子向上一面的点数之和S等于1是不可能事件,不合题意;D、两枚骰子向上一面的点数之和S大于1是必然事件,不合题意;故选:A.5.解:A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误;故选:C.6.解:从左边看是三个相连接的同长不同宽的矩形,其中上下两个矩形的宽相同且比较小,故选项B符合题意.故选:B.7.解:画树状图为:共有36种等可能的结果数,使方程有相等实数解共有2种情况:p=4,q=4;p=2,q =1;故其概率为=,故选:D.8.解:由函数图象可知,当x>4时,y1>y2,A是真命题;当x<﹣1时,y1>y2,C是真命题;当y1<y2时,0<x<4,C是真命题;y1>y2时,x<0或x>4,D是假命题;故选:D.9.解:如图,连接OA,OC,OB,EC,作OF⊥AC于F.∵DE⊥AB,∴∠DEB=90°,∵DC=BC,∴EC=CD=CB,∵BC=OC=OB=OA,CD=BC,∴OA=OC=CD=CE=CB,∵OF⊥AC,∠CBE=∠CEB∴∠AOF=∠COF,∵∠AOC=2∠ABC,∠DCE=∠CEB+∠CBE=2∠CBE,∴∠AOC=∠DCE,∴△AOC≌△DCE(SAS),∴AC=DE,∴AC+DE=2AC,观察图象可知AC的值先变大再变小,故AC+DE的值先变大再变小,故选:B.10.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.二.填空题(共6小题)11.解:∵1<x<3,∴x﹣3<0、x﹣1>0,则原式=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2,故答案为:2.12.解:将这组数据重新排列为48、1300、40950、190967、279660、823853、1101631,则这组数据的中位数为190967,故答案为:190967.13.解:===,故答案为.14.解:∵四边形ABCD是平行四边形,∴BC=AD=3,OB=OD,OA=OC,∵AC⊥BC,∴AC===4,∴OC=AC=2,∴OB===;故答案为:.15.解:∵抛物线y=a(x﹣h)2+k与x轴的交点的坐标为(﹣1,0),(5,0),∴抛物线y=a(x+h)2+k与x轴的交点的坐标为(1,0),(﹣5,0),把抛物线抛物线y=a(x+h)2+k向左平移两个单位得到y=a(x+h+2)2+k,∴抛物线y=a(x+h+2)2+k与x轴的交点的坐标为(﹣1,0),(﹣7,0),∴关于的一元二次方程a(x+h+2)2+k=0的解为x1=﹣1,x2=﹣7.故答案为:x1=﹣1,x2=﹣7.16.解:如图,连接MC,M'C,∵AC=4,BC=2,∴AB===2,∵M是AB的中点,∴CM=AB=,∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,∴∠A′CM′=∠ACM,∵∠ACM+∠MCB=90°,∴∠MCB+∠BCM′=90°,又∵CM=C′M′,∴△CMM′是等腰直角三角形,∴MM′=CM=,故答案为:.三.解答题(共8小题)17.解:(1)===1×2.5=2.5(2)3×9m×27m=3×32m×33m=35m+1∴5m+1=21 解得m=4.故m的值为4.18.证明:∵AE∥BC(已知),∴∠DAE=∠ABC(两直线平行,同位角相等),∠EAC=∠ACB(两直线平行,内错角相等).∵AE平分∠CAD,∴∠DAE=∠CAE(角平分线的意义),∴∠ABC=∠ACB(等量代换).∵∠OBC=∠OCB(已知),∴∠ABO=∠ACO(等式的性质).19.解:(1)280÷56%=500(人),答:抽查的学生为500人,故答案为:500;(2)360°×=118.8°,答:等级A在扇形统计图中所占圆心角的度数为118.8°;(3)2200×=1958(人),答:该校约有1958名学生对预防“新型冠状病毒”知识已经了解.20.解:如图,过点B作BF∥CD,因为CD∥AE(已知),所以BF∥CD∥AE(平行于同一条直线的两条直线平行),所以∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,(两条直线平行,同旁内角互补),因为∠BCD=150°,∠BAE=90°,所以∠CBF=30°,∠FBA=90°,所以∠ABC=∠CBF+∠FBA=120°.答:∠ABC的度数为120°.故答案为:过点B作BF∥CD,BF,CD,AE,平行于同一条直线的两条直线平行.21.(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴CB平分∠PCE.(2)证明:如图1,连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE(AAS),∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∵,∴,∴S=.扇形OBC22.解:(1)当1≤x≤10时,设n=kx+b,由图知可知,解得,∴n=20x+100,同理得,当10<x≤30时,n=﹣14x+440∴销售量n与第x天之间的函数关系式:n=;(2)∵y=mn﹣100∴y=;整理得,y=;(3)当1≤x≤10时,∵y=4x2+60x+100的对称轴x=﹣=﹣=﹣,∴此时,在对称轴的右侧y随x的增大而增大∴x=10时,y取最大值,则y10=1100,当10<x<15时∵y=﹣x2+60x+780的对称轴是x=﹣=﹣=∴x在x=11时,y取得最大值,此时y=1101.2,当15≤x≤30时∵y=x2﹣x+2540的对称轴为x=﹣=,∴此时,在对称轴的左侧y随x的增大而减小∴x=15时,y取最大值,y的最大值是y15=1050,综上,文旦销售第11天时,日销售利润y最大,最大值是1102.2元.23.解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴=,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH=OC=1,CH=,∴=,整理得:2a2﹣a﹣4=0,解得a=或(舍弃).经检验a=是分式方程的解.∴a=.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a+x)2,整理得:x2+ax﹣5a2=0,解得x=(﹣1)a或(﹣﹣1)a(舍弃),∴OC=(﹣1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴=,∴=,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴=,∴===24.解:(1)∵点B(﹣4,0)和点A(1,0)在抛物线上,∴,解得,∴y=x2+3x﹣4,∴C(0,﹣4);(2)当CE⊥AC时,设CE的解析式为y=kx﹣4,联立kx﹣4=x2+3x﹣4,∴x=0(舍)或x=k﹣3,∴E(k﹣3,k2﹣3k﹣4),∴AC2=17,EA2=(k﹣4)2+(k2﹣3k﹣4)2,EC2=(k﹣3)2+(k2﹣3k)2,∵AC2+EC2=EA2,∴17+(k﹣3)2+(k2﹣3k)2=(k﹣4)2+(k2﹣3k﹣4)2,解得k=﹣,∴E(﹣,﹣);当AE⊥AC时,设AE的解析式为y=mx﹣m,联立mx﹣m=x2+3x﹣4,∴x=1(舍去)或x=m﹣4,∴E(m﹣4,m2﹣4m﹣4),∴AC2=17,EA2=(m﹣5)2+(m2﹣4m+4)2,EC2=(m﹣4)2+(m2﹣4m)2,∵AC2+EA2=EC2,∴17+(m﹣5)2+(m2﹣4m+4)2=(m﹣4)2+(m2﹣4m)2,解得m=﹣,∴E(﹣,);(3)设P(s,t),当NP=2MP时,∵MN=,∴MP=1,NP=2,此时M、N有两种情况:①M(s﹣1,t),N(s,t+2),∵M、N在抛物线上,∴(s﹣1)2+3(s﹣1)﹣4=t,s2+3s﹣4=t+2,∴s=0,∴t=﹣6,∴M(﹣1,﹣6),N(0,﹣4),∴MN的直线解析式为y=2x﹣4;②M(s﹣1,t),N(s,t﹣2),∵M、N在抛物线上,∴(s﹣1)2+3(s﹣1)﹣4=t,s2+3s﹣4=t﹣2,∴s=﹣,∴t=﹣,∴M(﹣,﹣),N(﹣,﹣),∴MN的直线解析式为y=﹣2x﹣;当MP=2NP时,∵MN=,∴MP=2,NP=1,此时M、N有两种情况:①M(s﹣2,t),N(s,t+1),∵M、N在抛物线上,∴(s﹣2)2+3(s﹣2)﹣4=t,s2+3s﹣4=t+1,∴s=﹣,∴t=﹣,∴M(﹣,﹣),N(﹣,﹣),∴MN的解析式为y=x﹣;①M(s﹣2,t),N(s,t﹣1),∵M、N在抛物线上,∴(s﹣2)2+3(s﹣2)﹣4=t,s2+3s﹣4=t﹣1,∴s=﹣,∴t=﹣,∴M(﹣,﹣),N(﹣,﹣),∴MN的解析式为y=﹣x﹣;综上所述:MN的解析式为y=2x﹣4或y=x﹣或y=﹣2x﹣或y=﹣x﹣.。
2020中考数学冲刺模拟试题含答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--A .B .C .D .2020年中考数学模拟试题(二)一、选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分) 1.2-的相反数是A. 2B. -1C. 12D. 12-2.下列计算正确的是A .a 2·a 3=a 6B .(x 3)2=x 6C .3m +2n =5mnD .y 3·y 3=y 3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内含5.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③把aa --21)2(根号外的因式移到根号内后,其结果是a --2;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有 个 个 个 个A 16.如图,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为A.―2― 3 B.―1―3C.―2+ 3 D.1+37.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是8.在△ABC中,∠C=90º,BC=4cm,AC=3cm.把△ABC绕点A顺时针旋转90º后,得到△AB1C1(如图所示),则点B所走过的路径长为A.52cm B. 5π4cmC. 5π2cm D.5πcmC A O BB CDAt容器9.如图,有一矩形纸片ABCD ,AB =6,AD =8,将纸片折叠使AB 落在AD 边上,折痕为AE ,再将△ABE 以BE 为折痕向右折叠,AE 与CD 交于点F ,则 CFCD的值是A .1B .1 2 C . 1 3 D . 1 410.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是AB .4 C4 D .411.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A . 1 2B . 1 3C . 1 6D . 1 812.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的 正方形图案,已知大正方形面积为49,小正方形面积为4,若用 x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=. 其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④A A AB B BCD CE D E CFD yxAEBCD F H·· · 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解...是_______________。
2020 年河南省中考原创押题数学试卷(一)一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.下面的数中,与﹣ 2 的和为 0 的是( )A .B .﹣C .2D .﹣ 22.下列计算正确的是( )A .2 +4 =6B .=4 C . ÷ =3 D .=﹣33.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )4.股票每天的涨、 跌幅均不能超过 10%,即当涨了原价的 10%后,便不能再涨, 叫做涨停;当跌了原价的 10% 后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又6.小明是我校手工社团的一员, 他在做折纸手工, 如图所示在矩形 ABCD 中,AB=6 ,BC=8 ,点 E 是 BC 的中点,点 F 是边 CD 上的任意一点, △ AEF 的周长最小时, 则 DF 的长为( )7.如果一组数据 a 1,a 2,⋯,a n 的方差是 2,那么一组新数据 2a 1+1,2a 2+1,⋯,2a n +1 的方差是( )8.如图,矩形 ABCD 中, AB=3 ,BC=4,动点 P 从 A 点出发,按 A →B →C 的方向在 AB 和 BC 上移动,记PA=x ,点D 到直线 PA 的距离为 y ,则 y 关于 x 的函数图象大致是 ( )则 x 满足的方程是(2B .(1+x )2=C . 1+2x=D1+2x=5.正比例函数 y=6x 的图象与反比例函数 A .第一象限 B .第二象限 C .第三象限 D .第一、三象限A . 2B . 3C . 4D .8C .涨回到原价.若这两天此股票股价的平均增长率为 x , y= 的图象的交点位于(2 A .(1+x )2二、填空题:每小题 3 分,共 21 分9.若实数 a 、b 满足| 3a ﹣1|+ b 2=0,则 a b 的值为 _____11.不等式组 的非负整数解是 ______12.点动成线,线动成面,面动成体,在 Rt △ABC 中,∠ C=90°,AC=3 ,BC=4 ,将△ ABC 饶边 AC 所在的直线旋转一周得到圆锥,则该圆锥的表面积是 _______ .213.反比例函数 的图象经过点 P ( a ,b ),其中 a 、b 是一元二次方程 x 2+kx +4=0 的两根,那么点 P 的坐标是 _____ .214.如图,把抛物线 y= x 2平移得到抛物线 m ,抛物线 m 经过点 A (﹣ 6,0)和原点 O (0, 20),它的顶点为 P ,它的对称轴与抛物线 y= x 2交于点 Q ,则图中阴影部分的面积为 _____ .15.如图 1,两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿AC 方向向右平移到△ 的位置,得到图 2,则阴影部分的周长为 .三、解答题:本大题共 8 小题,共 75分17.如图,在正方形 ABCD 内有一点 P 满足 AP=AB , PB=PC ,连接 AC 、 PD . 求证:(1)△APB ≌△DPC ;(2)∠ BAP=2 ∠ PAC .10.请写出一个二元一次方程组A ′B ′D 16.化简求值:A.,其中 a=18.如图所示,小明在自家楼顶上的点 A 处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部 B 处的仰角为 45 °,底部 C 处的俯角为 26°,已知小明家楼房的 高度 AD=15 米,求电梯楼的高度 BC (结果精确到 0.1 米)(参考数据: sin26°≈0.44,cos26°≈0.90, tan26°≈ 0.49)19.最近两年雾霾对我国北方大部分地区影响较严重, 其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市 PM2.5 的源解析已经通过专家论证,各 种调查显示,机动车为PM2.5的最大来源,一辆车每行驶 20 千米平均向大气里排放 0.035 千克污染物, 校环保志愿小分队从环保局了解到我市 100 天的空气质量等级情况, 并制成统 计图和表:空气质量等级 优 良轻度污染中度污染重度污染 严重污染天数(天) 10 a12825 b(1)表中 a=______ ,b=_,图中严重污染部分对应的圆心角n= _____ ;(2)请你根据 “2020 年我市 100天空气质量等级天数统计表 ”计算 100 天内重度污染和严重 污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每 天平均出行 25 千米,已知我市 2020 年机动车保有量已突破 200 万辆,请你通过计算, 估计 2020 年我市一天中出行的机动车至少要向大气里排放多少千克污染物?20.如图,已知, A (0,4),B (﹣ 3,0), C (2,0),D 为 B 点关于 AC 的对称点,反比 例函数 y= 的图象经过 D 点. (1)证明四边形 ABCD 为菱形; (2)求此反比例函数的解析式;3)已知在y= 的图象(x>0)上一点N,y 轴正半轴上一点M ,且四边形ABMN 是平克)是销售单价x(元)的一次函数,且当x=60 时,y=80;x=50 时,y=100 .在销售过程中,每天还要支付其他费用450 元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.2)求该公司销售该原料日获利w(元)与销售单价x (元)之间的函数关系式.3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图 1 所示,在四边形延长线于点F,求ABCD 中,AD∥BC,E为CD 边的中点,连接AE 并延长交BC的S四边形ABCD= S△ADE ;变式猜想】如图 2 所示,在已知锐角∠ AOB 内有一定点P,过点P 任意作一条直线MN ,分别交射线OA,OB 于点M,N,小明在将直线MN 绕着点P 旋转的过程中发现,△ MON 的面积存在最小值,试问当MN 在什么位置时,△ MON 的面积最小【拓展应用】如图3所示,一块四边形土地OABC ,其中OA 边长60米,AB 边长30 米,C点到OA 边的距离为45 米,使用测角器测得∠ AOC=45 °,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC )的一组对边相交),则其中以点O 为顶点的四边形地块的最大面积为_________ .23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B 两点,与y轴交于C点,已知 B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△ MBC 的面积的最大值,并求出此时M 点的坐标.30 元.物价部门规定其销售单价不高于每千克60元,不低于每千克30 元.经市场调查发现:日销售量y (千2020 年河南省中考原创押题数学试卷(一)参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.下面的数中,与﹣ 2 的和为0 的是()A.B.﹣C.2 D.﹣2..﹣..﹣【考点】相反数.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x ,由题意得:x+(﹣2)=0 ,x﹣2=0,x=2,故选:C.2.下列计算正确的是()A.2 +4 =6 B.=4 C.÷ =3 D .=﹣3【考点】实数的运算.【分析】 A 、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、2 +4 不是同类项不能合并,故 A 选项错误;B、=2 ,故 B 选项错误;C、÷ =3,故 C 选项正确;D、=3,故 D 选项错误.故选:C.3.发展工业是强国之梦的重要举措,如图所示零件的左视图是(【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成 2 个,故选:C.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10% 后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x 满足的方程是()22A .(1+x )=B.(1+x)2=C.1+2x=D1+2x=【考点】由实际问题抽象出一元二次方程.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:设平均每天涨x .则90%(1+x)2=1,即(1+x)2= ,,故选 B .5.正比例函数y=6x 的图象与反比例函数y= 的图象的交点位于()A .第一象限B .第二象限C .第三象限D .第一、三象限考点】反比例函数与一次函数的交点问题.分析】根据反比例函数与一次函数的交点问题解方程组标,然后根据交点坐标进行判断.所以正比例函数y=6x 的图象与反比例函数y= 的图象的交点坐标为(故选: D .6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD 中,AB=6 ,BC=8 ,点 E 是BC 的中点,点F 是边CD 上的任意一点,△ AEF 的周长最小时,则DF的长为()3 D. 4轴对称-最短路线问题.如图作点E关于直线CD的对称点E′,连接AE ′与直线CD交于点F.此时△AEF 的周长最小.由CF∥ AB ,推出CF:AB=CE ′:BE′=1:3,求出CF即可解决问题.【解答】解:如图作点E关于直线CD的对称点E′,连接AE ′与直线CD交于点F.此时△解答】解:考点】分析】1,6),(﹣1,﹣6).即可得到两函数的交点坐解方程组AEF 的周长最小.∴CF :AB=CE ′:BE ′=1: 3, ∴CF=2,∴DF=CD ﹣ CF=4. 故选 D .7.如果一组数据 a 1,a 2,⋯,a n 的方差是 2,那么一组新数据 2a 1+1,2a 2+1,⋯,2a n +1 的方差是( )A .2B .3C .4D . 8【考点】 方差.【分析】 设已知数据的平均数为 ,根据数据的方差列出关系式, 进而求出新数据的平均数, 得出方差即可.【解答】 解:∵一组数据 a 1,a 2,⋯,a n 的方差是 2,平均数为 , ∴S 2= [ ( a 1﹣ ) 2+(a 2﹣ )2+⋯+(a n ﹣ )2]=2, ∵2a 1+1,2a 2+1,⋯,2a n +1 的平均数为 2 +1,∴S ′2= [ ( 2a 1+1﹣ 2 ﹣1)2+(2a 2+1﹣2 ﹣1)2+⋯+(2a n +1﹣2 ﹣1)2]=2×22=8, 故选: D8.如图,矩形 ABCD 中, AB=3 ,BC=4,动点 P 从 A 点出发,按 A →B →C 的方向在 AB 和 BC 上移动,记PA=x ,点D 到直线 PA 的距离为 y ,则 y 关于 x 的函数图象大致是 ( )【考点】 动点问题的函数图象.【分析】 ① 点 P 在 AB 上时,点 D 到AP 的距离为 AD 的长度, ② 点 P 在 BC 上时,根据 同角的余角相等求出∠ APB= ∠PAD ,再利用相似三角形的列出比例式整理得到 y 与 x 的关 系式,从而得解.【解答】 解:① 点 P 在 AB 上时, 0≤ x ≤ 3,点 D 到 AP 的距离为 AD 的长度,是定值4; ② 点P 在 BC 上时, 3<x ≤5,∵∠ APB +∠BAP=90 °, ∠PAD+∠BAP=90 °,CF ∥ AB ,∴∠ APB= ∠PAD,又∵∠ B=∠ DEA=90 °,∴△ ABP ∽△ DEA ,=,纵观各选项,只有 B 选项图形符合.故选:B.二、填空题:每小题 3 分,共21 分9.若实数a、b 满足| 3a﹣1|+ b2=0,则a b的值为 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式,根据任何非0 数的0次幂等于 1 进行计算即可得解.【解答】解:根据题意得,3a﹣1=0,b=0,解得a= ,b=0,b0a = ()=1.故答案为:1.10.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是【考点】二元一次方程组的解.【分析】根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y= ﹣ 1 列一组算式,然后用x,y 代换即可列不同的方程组.答案不唯一,符合题意即可.【解答】解:此题答案不唯一,如:,① +② 得:2x=4 ,解得:x=2 ,将x=2 代入① 得:y=﹣1,∴一个二元一次方程组的解为:故答案为:此题答案不唯一,如:11.不等式组的非负整数解是0【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4< x< 1,则不等式组的非负整数解是0.故答案为:0.12.点动成线,线动成面,面动成体,在Rt△ABC 中,∠ C=90°,AC=3 ,BC=4 ,将△ ABC 饶边AC 所在的直线旋转一周得到圆锥,则该圆锥的表面积是36πcm2.【考点】圆锥的计算.【分析】先利用勾股定理计算出AB=5 ,由于以AC 所在直线为轴,把△ ABC 旋转 1 周所得的圆锥的底面圆的半径为4,母线长为5,则可利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算圆锥的侧面积,然后加上底面积即可得到圆锥面积.【解答】解:∵∠ C=90°,AC=3 ,BC=4 ,∴AB==5,以AC 所在直线为轴,把△ ABC 旋转 1 周所得的圆锥的底面圆的半径为 4 ,母线长为5,所以圆锥的全面积=π?42+ ?2π?4?5=36π(cm2).故答案为36πcm2.213.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0 的两根,那么点P的坐标是(﹣2,﹣2).【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】先根据点P(a,b)是反比例函数的图象上的点,把点P 的坐标代入解析式,得到关于a、b、k 的等式ab=k;又因为a、b 是一元二次方程x2 +kx+4=0 的两根,得到a+b= ﹣k,ab=4,根据以上关系式求出a、 b 的值即可.【解答】 解:把点 P ( a , b )代入 y= 得, ab=k , 因为 a 、 b 是一元二次方程 x 2+kx+4=0 的两根,根据根与系数的关系得:14.如图,把抛物线 y= x 2平移得到抛物线 m ,抛物线 m 经过点 A (﹣ 6,0)和原点 O (0,故答案为:|=| =∴S=| ﹣3| ×| a+b= ﹣k , ab=4 ,,解得2,﹣ 2).0),它的顶点为 P ,它的对称轴与抛物线 y= x 2 交于点 Q ,则图中阴影部分的面积为【考点】 二次函数图象与几何变换.【分析】 根据点 O 与点 A 的坐标求出平移后的抛物线的对称轴,然后求出点 点 P 作 PM ⊥ y 轴于点 M ,根据抛物线的对称性可知阴影部分的面积等于矩形 然后求解即可.【解答】 解:过点 P 作 PM ⊥y 轴于点 M ,∵抛物线平移后经过原点 O 和点 A (﹣ 6, 0), ∴平移后的抛物线对称轴为 x= ﹣ 3,得出二次函数解析式为: y= ( x+3)2+h , 将(﹣ 6, 0)代入得出:0= (﹣ 6+3)2+h ,解得: h= ﹣ ,P 的坐标,过 NPMO 的面积,∴点 P 的坐标是(﹣ 3,﹣ ),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,于是有:点 P 的坐标是(﹣15.如图 1,两个等边△ ABD ,△CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到△ A ′B ′D 的位置,得到图 2,则阴影部分的周长为 2 .分析】 根据两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到△A 'B 'D '的位置,得出线段之间的相等关系,进而得出OM+MN +NR +GR+EG+OE=A ′D ′+CD=1 +1=2,即可得出答案.【解答】 解:∵两个等边△ ABD ,△ CBD 的边长均为 1,将△ ABD 沿 AC 方向向右平移到 △A ′B ′D ′的位置,∴A ′M=A ′N=MN ,MO=DM=DO ,OD ′=D ′E=OE ,EG=EC=GC ,B ′G=RG=RB ′, ∴OM+MN +NR +GR+EG+OE=A ′D ′+CD=1+1=2;故答案为: 2.三、解答题:本大题共 8 小题,共 75分【考点】 分式的化简求值.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形, 约分得到最简结果,将 a 与 b 的值代入计算即可求出值.16.化简求值:17.如图,在正方形 ABCD 内有一点 P 满足 AP=AB , PB=PC ,连接 AC 、PD . 求证:(1)△APB ≌△DPC ;(2)∠ BAP=2 ∠ PAC .【考点】 正方形的性质;全等三角形的判定与性质.【分析】(1)AP=AB ,PB=PC ,∴∠ ABC ﹣∠ PBC=∠ DCB ﹣∠ PCB ,即∠ ABP= ∠DCP , 因此可证得两三角形全等.(2)有( 1)∠ CAD=45 °,△ PAD 为等边三角形,可求得∠ BAP=30 °∠PAC=∠PAD ﹣∠CAD=15 °,因此可证的结论.【解答】( 1)解:∵四边形 ABCD 是正方形,∴∠ ABC= ∠DCB=90 °. ∵PB=PC ,∴∠ PBC= ∠PCB .∴∠ ABC ﹣∠ PBC= ∠DCB ﹣∠ PCB ,即∠ ABP= ∠ DCP . 又∵ AB=DC , PB=PC , ∴△ APB ≌△ DPC .(2)证明:∵四边形 ABCD 是正方形, ∴∠ BAC= ∠ DAC=45 °. ∵△ APB ≌△ DPC ,∴ AP=DP . 又∵ AP=AB=AD ,∴ DP=AP=AD . ∴△ APD 是等边三角形. ∴∠ DAP=60 °.∴∠ PAC=∠ DAP ﹣∠ DAC=15 °. ∴∠ BAP= ∠ BAC ﹣∠ PAC=30 °. ∴∠ BAP=2 ∠PAC .18.如图所示,小明在自家楼顶上的点 A 处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部 B 处的仰角为 45 °,底部 C 处的俯角为 26°,已知小明家楼房的 高度 AD=15 米,求电梯楼的高度 BC (结果精确到 0.1 米)(参考数据: sin26°≈0.44,cos26°≈0.90, tan26°≈ 0.49)考点】 解直角三角形的应用 - 仰角俯角问题.a=时,原式 =b==﹣6.【分析】首先过点 A 作AE ⊥BC 于E,可得四边形ADCE 是矩形,即可得CE=AD=15 米,然后分别在Rt△ ACE 中,AE= 与在Rt△ABE 中,BE=AE ?tan45°,即可求得BE 的长,继而求得电梯楼的高度.【解答】解:过点 A 作AE ⊥BC 于E,∵AD ⊥CD ,BC⊥CD,∴四边形ADCE 是矩形,∴CE=AD=15 米,在Rt△ACE 中,AE= = ≈30.6(米),在Rt△ABE 中,BE=AE ?tan45°=30.6(米),∴BC=CE+BE=15+30.6=45.6(米).答:电梯楼的高度BC 为45.6 米.19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5 的源解析已经通过专家论证,各种调查显示,机动车为PM2.5 的最大来源,一辆车每行驶20 千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100 天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a=25 ,b=20,图中严重污染部分对应的圆心角n= 72° ;(2)请你根据“2020 年我市100天空气质量等级天数统计表”计算100 天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25 千米,已知我市2020 年机动车保有量已突破200 万辆,请你通过计算,估计2020 年我市一天中出行的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;概率公式.【分析】(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案; (3)根据题意和用样本估计总体的方法,列出算式,求解即可.【解答】 解:( 1)根据题意,得: a=100× 25%=25(天), 严重污染所占的百分比是: 1﹣10%﹣25%﹣12%﹣8%﹣25%=20% , b=100×20%=20(天),n=360°× 20%=72 °,故答案为: 25, 20,72°;(2)100 天内重度污染和严重污染出现的频率为 × 100%=45% ;(3)根据题意,得: 200×10000× 0.035× =87500(千克),答:估计 2020 年我市一天中出行的机动车至少要向大气里排放 87500 千克污染物.20.如图,已知, A (0,4),B (﹣ 3,0), C (2,0),D 为 B 点关于 AC 的对称点,反比 例函数 y= 的图象经过 D 点. (1)证明四边形 ABCD 为菱形; (2)求此反比例函数的解析式;(3)已知在 y= 的图象( x >0)上一点 N ,y 轴正半轴上一点 M ,且四边形 ABMN 是平由 D 为 B 点关于 AC 的对称点,可得 AB=AD , BC=DC ,即可证得 AB=AD=CD=CB ,继而 证得四边形 ABCD 为菱形;(2)由四边形 ABCD 为菱形,可求得点 D 的坐标, 然后利用待定系数法,即可求得此反比 例函数的解析式;(3)由四边形 ABMN 是平行四边形,根据平移的性质,可求得点 N 的横坐标,代入反比 例函数解析式,即可求得点 N 的坐标,继而求得 M 点的坐标. 【解答】 解:(1)∵A (0,4),B (﹣ 3,0),C (2,0), ∴OA=4 ,OB=3 ,OC=2 , ∴AB==5,BC=5 , ∴AB=BC ,0), C ( 2, 0),利用勾股定理可求得 AB=5=BC ,又∵D 为 B 点关于 AC 的对称点, ∴AB=AD , CB=CD , ∴AB=AD=CD=CB , ∴四边形ABCD 为菱形;2)∵四边形 ABCD 为菱形,(3)∵四边形 ABMN 是平行四边形, ∴AN ∥BM ,AN=BM , ∴AN 是 BM 经过平移得到的,∴首先 BM 向右平移了 3 个单位长度, ∴N 点的横坐标为 3, 代入 y= 得 y=21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克 30 元.物价部门规定其销售单价不高于每千克 60元,不低于每千克 30 元.经市场调查发现: 日销售量 y (千 克)是销售单价 x (元)的一次函数,且当 x=60 时, y=80; x=50 时, y=100 .在销售过程 中,每天还要支付其他费用 450 元.( 1)求出 y 与 x 的函数关系式,并写出自变量 x 的取值范围. (2)求该公司销售该原料日获利 w (元)与销售单价 x (元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 【考点】 二次函数的应用.【分析】(1)根据 y 与 x 成一次函数解析式,设为 y=kx +b ,把 x 与y 的两对值代入求出 k 与b 的值,即可确定出 y 与 x 的解析式,并求出 x 的范围即可;(2)根据利润 =单价×销售量列出 W 关于 x 的二次函数解析式即可; (3)利用二次函数的性质求出 W 的最大值,以及此时 x 的值即可. 【解答】 解:( 1)设 y=kx +b ,根据题意得 ,解得: k=﹣2, b=200, ∴y= ﹣2x+200(30≤x ≤60);(2)W=(x ﹣30)(﹣2x+200)﹣ 450=﹣2x 2+260x ﹣6450=﹣2(x ﹣65)2+2000; (3)W= ﹣2(x ﹣ 65)2+2000, ∵30≤x ≤60,∴x=60 时,w 有最大值为 1950 元,∴当销售单价为 60元时,该公司日获利最大,为 1950 元.﹣ 4=∴ M 点的纵坐标为:∴D 点的坐标为( 5, 4),反比例函数 y= 的图象经过 D 点,∴k=20 ,∴反比例函数的解析式为:∴ M 点的坐标为:22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD 中,AD∥BC,E为CD边的中点,连接AE 并延长交BC的延长线于点F,求证:S 四边形ABCD= S△ADE ;【变式猜想】如图 2 所示,在已知锐角∠ AOB 内有一定点P,过点P 任意作一条直线MN ,分别交射线OA,OB 于点M,N,小明在将直线MN 绕着点P 旋转的过程中发现,△ MON 的面积存在最小值,试问当MN 在什么位置时,△ MON 的面积最小【拓展应用】如图3所示,一块四边形土地OABC ,其中OA 边长60米,AB 边长30米,C点到OA 边的距离为45 米,使用测角器测得∠ AOC=45 °,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC )的一组对边相交),则其中以点O 为顶点的四边形地块的最大面积为1000m2.【考点】几何变换综合题.【分析】【原题初探】:根据可以求得△ ADE ≌△ FCE ,就可以得出S△ADE=S△FCE就可以得出结论;【变式猜想】:根据问题情境的结论可以得出当直线旋转到点P是MN 的中点时S△MON最小,过点M 作MG∥OB 交EF于G.由全等三角形的性质可以得出结论;【拓展应用】:当过点P的直线l与四边形OABC 的另一组对边CB、OA分别交M、N,延长CB 交x轴于T,由B、C的坐标可得直线BC 的解析式,就可以求出T的坐标,从而求出△OCT 的面积,再由问题迁移的结论可以求出最大值,通过比较就可以求出结论.【解答】解:【原题初探】证明:∵ AD ∥BC,∴∠ ADE= ∠ FCE,在△ ADE 与△ FCE 中,,∴△ ADE≌△ FCE,∴S△ADE =S△ FCE,∴S四边形ABCD =S四边形ABCE+S△ADE =S四边形ABCE +S△ FCE=S△ABF;【变式猜想】当直线旋转到点P是MN 的中点时S△MON最小,如图( 1),过点 P 的另一条直线 EF 交 OA 、OB 于点 E 、F ,设 PF <PE ,过点 M 作 MG ∥OB 交 EF 于 G ,由方法探究可以得出当 P 是 MN 的中点时 S 四边形 MOFG =S △MON .∵S 四边形 MOFG <S △EOF , ∴S △MON <S △EOF ,∴当点 P 是 MN 的中点时 S △MON 最小; 【拓展应用】 ① 如图 3 ,当过点 P 的直线 l 与四边形 OABC 的一组对边 OC 、AB 分别交于点 M 、N ,延长 OC 、AB 交于点 D ,∵OA 边长 60 米,使用测角器测得∠ AOC=45 °, OA ⊥AB , ∴△ OAD 是等腰直角三角形, ∴S △ AOD = AO 2= × 602=1800由变式猜想的结论可知,当 PN=PM 时,△ MND 的面积最小, ∴四边形 ANMO 的面积最大. 作 PP 1⊥ OA ,MM 1⊥OA ,垂足分别为 P 1,M 1, ∴M 1P 1=P 1A=20 , ∴OM 1=M 1M=20 , ∴MN ∥OA ,当过点 P 的直线 l 与四边形 OABC 的另一组对边 CB 、OA 分别交 M 、N ,延长 CB 交 x 轴 于T ,过点 C 作 CH ⊥OA , ∴CH=45 . ∵∠ COA=45 °,∴△ CHA 为等腰直角三角形, ∴OC=45 , ∵OC ⊥BC ,∴△OCT 是等腰直角三角形,2∴S △OCT = OC 2=2025, OT=90由问题迁移的结论可知,当 PM=PN 时,△ MNT 的面积最小, ∴四边形 CMNO 的面积最大. ∴NP 1=M 1P 1,MM 1=2PP 1=40,∴S 四边形 OANM=S △OMM1+S 四边形 ANMM1 × 20× 20+20× 40=1000② 如图 4 ,∴ TM 1=40∴OM 1=OT ﹣TM 1=50.∵AT=AB=30 ,∴AM 1=TM 1﹣AT=40 ﹣30=10,∵AP 1=20 ,∴P1N=P1M1=AP1=AM 1=20﹣10=10,∴NT=P 1N+AP1+AT=10+20+30=60∴S△MNT = ×40×60=1200,∴S四边形OCMN =2025 ﹣1200=725< 1000.∴综上所述:截得四边形面积的最大值为1000(m2),故答案为1000m2.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B 两点,与y轴交于C点,已知 B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△ MBC 的面积的最大值,并求出此时M(1)该函数解析式只有一个待定系数,只需将 B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定 A 点坐标,然后通过证明△ ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△ MBC 的面积可由 S △MBC = BC ×h 表示,若要它的面积最大,需要使 h 取最大值, 即点 M 到直线 BC 的距离最大,若设一条平行于 BC 的直线,那么当该直线与抛物线有且 只有一个交点时,该交点就是点M .方法二:(1)略. (2)通过求出 A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出 AC ⊥ BC ,从 而求出圆心坐标.(3)利用三角形面积公式, 过 M 点作 x 轴垂线, 水平底与铅垂高乘积的一半, 得出△ MBC 的面积函数,从而求出 M 点.【解答】 方法一:解:(1)将 B ( 4,0)代入抛物线的解析式中,得:0=16a ﹣ × 4﹣ 2,即: a= ;(2)由( 1)的函数解析式可求得: A (﹣ 1,0)、C (0,﹣ 2);∴OA=1 ,OC=2,OB=4 ,即: OC 2=OA ?OB ,又: OC ⊥AB ,∴△ OAC ∽△ OCB ,得:∠ OCA= ∠OBC ;∴∠ ACB= ∠OCA+∠OCB=∠OBC+∠OCB=90 °,∴△ ABC 为直角三角形, AB 为△ABC 外接圆的直径;所以该外接圆的圆心为 AB 的中点,且坐标为: ( , 0). 3)已求得: B (4, 0)、C ( 0,﹣ 2),可得直线 BC 的解析式为: y= x ﹣设直线 l ∥BC ,则该直线的解析式可表示为: y= x+b ,当直线 l 与抛物线只有一个交点时, 可列方程:2 x +b= x y= x ﹣ 4. x ﹣2,即: x 2﹣2x ﹣2﹣ b=0,且△ =0;∴4﹣4×﹣ 2﹣b ) =0,即 b= ﹣ 4;∴直线 l :∴抛物线的解析式为:所以点M 即直线l 和抛物线的唯一交点,有:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC =S梯形OCMN+S△MNB ﹣S△OCB= ×2×(2+3)+ ×2×3﹣× 2× 4=4.方法二:∴K AC×K BC=﹣1,∴ AC⊥BC,∴△ ABC 是以AB 为斜边的直角三角形,△外接圆的圆心坐标为(,0).(3)过点M 作x 轴的垂线交BC ′于H,∵B(4,0),C(0,﹣2),∴l BC:y= x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),22 ∴S△ MBC = ×(H Y﹣M Y)(B X﹣C X)= ×(t﹣2﹣t2+ t+2)(4﹣0)=﹣t2+4t,∴当t=2 时,S有最大值4,∴M(2,﹣3).1)略.∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC= =﹣2,K BC= = ,ABC 的外接圆的圆心是AB 的中点,△ ABC 的2020 年9 月20 日。
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
河北省中考数学黄金冲刺试卷(考试时间:120分钟 满分:150分)第一部分 选择题(共18分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共18分) 1.21-的相反数是 A .21 B .2 C .2- D .21-2.下列计算错误..的为 A .224)2(a a =- B .523)(a a = C .120= D .8123=- 3.方程0862=+-x x 的两根是三角形的边,则三角形的第三条边长可以是 A .2 B .6 C .4 D .8 4.下列图案中,属于轴对称图形的是A .B .C .D . 5.一个几何体的三视图如右图所示,则这个几何体可能是A .B .C .D . 6.已知下列命题:①若22b a =,则b a =; ②对角线互相垂直平分的四边形是菱形; ③过一点有且只有一条直线与已知直线平行; ④在反比例函数xy 2=中,如果函数值y < 1时,那么自变量x > 2. 其中真命题的个数是A .4个B .3个C .2个D .1个第二部分 非选择题(132分)二、填空题(每小题3分,共30分)7.若2a ﹣b =5,则6a ﹣3b 的值是 . 8.一组数据2、-2、4、1、0的中位数是 . 9.已知∠α的补角是130°,则∠α= 度. 10.因式分解: =+2ab ab _____________.11.PM2.5是大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为 .12.命题“平行四边形的对角线互相平分”的逆命题是______命题.(填“真”或“假”)13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的度数是__________ .14.已知⊙O 1的半径r 1=2,⊙O 2的半径r 2是方程3(x -1)=2x 的根,⊙O 1与⊙O 2的圆心距为1,那么两圆的位置关系为_________.15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ .16.如图,在△ABC 中,AB =AC =7,BC =2,点Q 是BC 的延长线上一点,且AQ =BQ +CQ ,求tanQ= .三、解答题(本大题共10题,共102分)17.(本小题满分12分) (1)计算:02201430cos 2312+︒+--- (2)先化简22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,再从-2,0,2,4中选择一个合适的数代入,求出 这个代数式的值.18.(本题8分)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩,并写出不等式组的整数解.19.(本小题满分8分)我市某中学九年级学生对市民“创建国家卫生城市“知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果 划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、 “从未听说”五个等级,统计后的数据整理如下表: 等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数4060483616频率 0.2 m 0.24 0.18 0.08(1)本次问卷调查抽取的样本容量为________,表中m 的值为_______;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数; 20.(本小题满分8分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的过程:甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程各需几天?21.(本题满分10分)一个不透明的口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形OM A DA第13题 第15题 第16题状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是35. (1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,请用画树状图或列表的方法求第二次取出小球标号大于第一次取出小球标号的概率.22.(本题满分10分)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处 的俯角为60°,已知该山坡的坡度i (即tan ∠ABC)为1∶3, 点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条 直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC)的度数等于 度;(2)求A 、B 两点间的距离.(结果精确到0.1米,参考数据:3≈1.73).23.(本小题满分10分)如图,在平面直角坐标系中,反比例函数y =xk(x >0)的图象和矩形ABCD 在第一象限,AD 平行于x 轴,且AB =2,AD =4, 点A 的坐标为(2,6). (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点A 、C 恰好同时落在反 比例函数的图象上,请求矩形的平移距离和反比例函数的解析式.24.(本小题满分10分)如图,在△ABC 中,BE 是它的角平分线, ∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E , 交BC 于点F .(1)求证:AC 是⊙O 的切线; (2)已知sinA =21,⊙O 的半径为4,求图中阴影部分的面积.25.(本小题满分12分)如图,正方形ABCD 的边AB =8厘米,对角线AC 、BD 交于点O ,点P 沿射线AB 从点A 开始以2厘米/秒的速度运动;点E 沿DB 边从点D 开始向点B 以2厘米/秒的速度运动.如果P 、E 同时出发,用t 秒表示运动的时间(0< t <8).(1)如图1,当0< t <4时 ①求证:△APC ∽△DEC ; ②判断△PEC 的形状并说明理由;(2)若以P 、C 、E 、B 为顶点的四边形的面积为25,求运动时间t 的值.AA26.(本小题满分14分)如图1,抛物线234(0)y ax ax a a =--<交x 轴于点A 、B(A 左B 右),交y 轴正半轴于点C . (1)求A 、B 两点的坐标;(2)点D 在抛物线在第一象限的部分上一动点,当∠ACB =90°时 ①求抛物线的解析式;②当四边形OCDB 的面积最大时,求点D 的坐标;③如图2,若E 为的中点,DE 的延长线交线段AB 于点F ,当△BEF 为钝角三角形时,请直接 写出点D 的纵坐标y 的范围.参考答案15.20 16.324.(1)略 (2)63-π3825.(1)①略 ②等腰直角三角形,理由略 (2)t=3, t=425 26.(1)A(-1,0) B(4,0)(2)①y=-223212++x x ②D(2,3) ③913<y ≤825。
浙江省2020年中考冲刺测试卷数学一、选择题〔此题共10个小题,每题3分,总分值30分.每题只有一个正确答案〕 1.2-的倒数为〔 〕 A .2-B .2C .12D .12-2.以下讲法正确的选项是〔 〕A .9的平方根是3. B.将点(23)--,向右平移5个单位长度到点(22)-, C .38是无理数D .点(23)--,关于x 轴的对称点是(23)-,3、〝神舟七号〞宇航员翟志刚把足迹留在了茫茫太空,令国人深感自豪,他身穿的舱外航天服造价3000万元,用科学记数法表示3000万元为〔 〕元A 、3×103B 、0.3×108C 、3×107D 、3×1084抛物线2)8(2+--=x y 的顶点坐标是〔 〕A 、〔2,8〕B 、〔8,2〕C 、〔—8,2〕D 、〔—8,—2〕5、如图1是由六个边长为1个单位的小正方体搭成的几何体。
小立方体A 沿着它所在的水平线上以每秒1个单位移动,在它的移动过程中,不改变几何体的〔 〕A 、主视图B 、俯视图C 、左视图D 、三种视图6、如图2直角三角形纸片ABC 的两直角边BC =6,AC =8,沿DE 折叠使点A 与B 重合,那么tan ∠CBE 的值是〔 〕 A 、247 B 、 73 C 、724 D 、137、如图3,扇形OAB 是圆锥的侧面展开图,假设小正方形方格的边长均为1厘米,那么那个圆锥的底面半径为〔 〕厘米. A .21B .22 C .2 D .228.某函数的图象关于直线x=1对称,其中一部分图象如图,点A(x 1,y 1),B(x 2,y 2)在函数图象上,且-2<x 1<x 2<-1,那么y 1与y 2的大小关系为( ) A. y 1>y 2 B. y 1<y 2 C.y 1=y 2 D. 无法确定9. 甲、乙两名同学在一次用频率去估量概率的实验中统计了某一结果显现的频率,绘出的统计图如下图,那么符合这一结果的实验可能是〔 〕A .掷一枚正六面体的骰子,显现4点的概率B .从一个装有4个白球和2个红球的袋子中任取一球,取到红球C .抛一枚硬币,显现反面的概率D .任意写一个整数,它能被2整除的概率 10、二次函数c bx ax y ++=2 的图象大致如图,在b a bc +2,,30%40% 20% 10% 频率图1A图2图3y222222)(,,)(c b a a b b c a -+--+中,值为正数的有( )A.1B.2C.3D.4 二、填空题〔此题共6个小题,每题4分,总分值24分〕. 11、要使2a 为有理数,请写出一个符合条件的实数a :___________12、在函数15-=x y 中,自变量x 的取值范畴是_____________________ 13、依据图中信息,可得出x ﹤14x的解是 .14、校园内有一个半径为4米的圆形草坪,一些学生为走〝捷径〞,在草坪内走出了一条小路AB ,如下图∠AOB =120°,这些学生踩坏了花草,而仅仅为了少走___________步〔假设2步为1米,结果保留整数〕. 15、如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,假如E 是BC 的中点,那么△BEF 与平行四边形ABCD 的面积之比是16、如图,将半径为1、圆心角为︒60的扇形纸片AOB ,在x 轴正半轴上向右作无滑动的连续滚动,点A 依次落在A 1,A 2,A 3,…的位置,那么A 2018的横坐标为__________三、解答题〔此题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题10分,第24题12分,共66分〕17.〔此题6分〕 (1)22)12(45sin 301-+-+︒-- 〔2〕解不等式组⎪⎩⎪⎨⎧+≥+<+4134)2(3x x x x 18.(此题6分)如图过正方形ABCD 的顶点D 作直线a ,过A 、C 分不作a 的垂线,垂足分不为BA︒60第16题图第13题第14题A 2B 1B 3O 3A 3OE第15题AFB(O 2) A 1 O 1xyBAO4 120DFG EPO AB C点E 、F .①求证:△AED ≌△DFC②假设AE =2,CF =1,正方形ABCD 的周长是 .19(此题6分)在元旦联欢会上,有一个开盒有奖的游戏,取三只外观一样的盒子,一只内有奖品,另两只空盒子,游戏规那么为:每次游戏时混合后拿出这三只盒子,参加游戏的同学随机打开其中一只,假设有奖品,就获得该奖品,假设是空盒子,就表演一个节目.〔1〕一个人参加游戏,获奖的概率是______,〔2〕两个人参加游戏,两个人都表演节目的概率是多少?并用树状图或列表验证你的结果.20、(此题8分)如图,方格纸中的每个小方格差不多上边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为〔1,0 ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?假设成轴对称图形,画出所有的对称轴;21.〔8分〕为了降低能源消耗,减少环境污染,国务院办公厅下发了〝关于限制生产销售使用塑料购物袋的通知〞〔简称〝限塑令〞〕,并从2008年6月1日起正式实施.小宇同学为了了解〝限塑令〞后使用购物袋的情形,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图〔假设每人每次只使用一个购物袋〕,请你依照图中的信息,回答以下咨询题:〔1〕这次调查的购物者总人数是 ▲ ;〔2〕请补全条形统计图,并讲明扇形统计图中0.2元部分所对应的圆心角是 ▲ 度.0.3元部分所对应的圆心角是 ▲ 度;〔3〕假设6月8日到该市场购物的人数有3000人次〔假设每人每次只使用一个购物袋〕,请估量该市场销售塑料购物袋的个数及金额.22 〔此题总分值10分〕〝假日旅乐园〞中一种新型水上滑梯如图,其中线段PA 表示距离水面〔x 轴〕高度为5m 的平台〔点P 在y 轴上〕。
中考冲刺检测(一)(时间:120分钟 分数:120分)一、选择题(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )2.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是( )3.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( )A .3B .5C .8D .104.已知点A(1,-3)关于x 轴的对称点A′在反比例函数y =kx的图象上,则实数k 的值为( )A .3B .13C .-3D .-135.一元二次方程x 2-2x -3=0的解是( )A .x 1=-1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=-3D .x 1=1,x 2=36.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/平方米,通过连续两次降价a%后,售价变为2000元/平方米,下列方程中正确的是( )A .2400(1-a%2)=2000B .2000(1-a%2)=2400C .2400(1-a%)2=2000D .2400(1+a%)2=20007.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC′B′,则tan B ′的值为( )A .13B .12C .14D .24(第7题图)(第8题图)(第9题图)(第10题图)8.如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则( )A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 329.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD⊥AB 交AB 于点D ,已知cos ∠ACD =35,BC =4,则AC 的长为( )A .1B .203C .3D .16310.如图,在等腰三角形ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .2611.)如图,在Rt △ABC 中,∠ABC =90°,AB =2 3 ,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .534 -π2B .534 +π2C .2 3 -π D.4 3 -π2(第11题图)(第12题图) (第16题图)(第17题图)(第18题图)12.如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点(-3,0),其对称轴为直线x =-12 ,结合图象分析下列结论:①abc >0;②3a +c >0;③当x <0时,y 随x 的增大而增大;④一元二次方程cx 2+bx +a =0的两根分别为x 1=-13 ,x 2=12 ;⑤b 2-4ac 4a<0;⑥若m ,n(m <n)为方程a(x +3)(x -2)+3=0的两个根,则m <-3且n >2.其中正确的结论有( )A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)13.若关于x 的一元二次方程x 2-3x +k =0有两个不相等的实数根,则k 的取值范围是________.14.在Rt △ABC 中,∠C =90°,如果AC =9,cos A =13,那么AB =________.15.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是________.16.如图,直线MN 与⊙O 相切于点M ,ME =EF 且EF∥MN,则cos E =________.17.如图,在四边形ABCD 中,AD ∥BC ,CM 是∠BCD 的平分线,且CM⊥AB,M 为垂足,AM =13 AB ,若四边形ABCD 的面积为157,则四边形AMCD 的面积为________.18.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =2,BD =1,EF =3,则k 1-k 2的值是________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(6分)计算:(-3)0×6-16 +|π-2|.20.(6分)解方程.(1)x 2+3x -4=0(用配方法); (2)(2x -1)2-x 2=0(用因式分解法).21.(8分)如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x (k≠0)的图象与AD 边交于E(-4,12),F(m ,2)两点.(1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.22.(8分)桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,再将它们背面朝上洗匀.(1)随机翻开一张卡片,正面所标数字大于2的概率为________;(2)随机翻开一张卡片,从余下的三张卡片中再翻开一张,求翻开的两张卡片正面所标数字之和是偶数的概率;23.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶ 3 ,AB=10米,AE=15米.(i=1∶ 3 是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度(测角器的高度忽略不计,结果精确到0.1米,参考数据: 2 ≈1.414, 3 ≈1.732)24.(10分)在△ABC中,∠A=∠B=30°,∠MCN=60°,∠MCN的两边交AB边于E,F 两点,若∠MCN绕C点旋转.(1)画出△BCF绕点C顺时针旋转120°后的△ACK;(2)在(1)中,若AE2+EF2=BF2,试求证:BF= 2 CF;(3)在(2)的条件下,若AC= 3 +1,求EF的长.25.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,⊙O 的切线BP与AC的延长线交于点P,连接DE,BE.(1)求证:BD=DE;(2)求证:∠AED=∠BCP;(3)已知sin ∠BAD=55,AB=10,求BP的长.26.(10分)如图,抛物线y =14x 2+bx +c 与x 轴交于A(5,0),B(-1,0)两点,过点A 作直线AC⊥x 轴,交直线y =2x 于点C.(1)求该抛物线的解析式;(2)求点A 关于直线y =2x 的对称点A′的坐标,判断点A′是否在抛物线上,并说明理由.(3)点P 是抛物线上一动点,过点P 作y 轴的平行线,交线段CA′于点M ,是否存在这样的点P ,使四边形PACM 是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案(A)2.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是(C)3.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为(C)A .3B .5C .8D .104.已知点A(1,-3)关于x 轴的对称点A′在反比例函数y =kx的图象上,则实数k 的值为(A)A .3B .13C .-3D .-135.一元二次方程x 2-2x -3=0的解是(A)A .x 1=-1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=-3D .x 1=1,x 2=36.由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/平方米,通过连续两次降价a%后,售价变为2000元/平方米,下列方程中正确的是(C)A .2400(1-a%2)=2000B .2000(1-a%2)=2400C .2400(1-a%)2=2000D .2400(1+a%)2=20007.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC′B′,则tan B ′的值为(A)A .13B .12C .14D .24(第7题图)(第8题图)(第9题图)(第10题图)8.如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 329.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD⊥AB 交AB 于点D ,已知cos ∠ACD =35,BC =4,则AC 的长为(D)A .1B .203C .3D .16310.如图,在等腰三角形ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是(D)A .20B .22C .24D .2611.)如图,在Rt △ABC 中,∠ABC =90°,AB =2 3 ,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为(A)A .534 -π2B .534 +π2C .2 3 -π D.4 3 -π2(第11题图)(第12题图) (第16题图)(第17题图)(第18题图)12.如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点(-3,0),其对称轴为直线x =-12 ,结合图象分析下列结论:①abc >0;②3a +c >0;③当x <0时,y 随x 的增大而增大;④一元二次方程cx 2+bx +a =0的两根分别为x 1=-13 ,x 2=12 ;⑤b 2-4ac 4a<0;⑥若m ,n(m <n)为方程a(x +3)(x -2)+3=0的两个根,则m <-3且n >2.其中正确的结论有(C)A .3个B .4个C .5个D .6个三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:(-3)0×6-16 +|π-2|. 解:原式=1×6-4+π-2=π.20.(6分)解方程.(1)x 2+3x -4=0(用配方法); (2)(2x -1)2-x 2=0(用因式分解法).解:x 1=-4,x 2=1; 解:x 1=1,x 2=13.21.(8分))如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x (k≠0)的图象与AD 边交于E(-4,12),F(m ,2)两点.(1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.解:(1)∵点E(-4,12 )在y =k x 图象上,∴k =-4×12=-2.∴反比例函数的解析式为y =-2x .∵点F(m ,2)在y =-2x的图象上,∴m =-1.(2)函数y =kx 图象在菱形ABCD 内x 的取值范围是-4<x <-1或1<x <4.22.(8分)桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,再将它们背面朝上洗匀.(1)随机翻开一张卡片,正面所标数字大于2的概率为________;(2)随机翻开一张卡片,从余下的三张卡片中再翻开一张,求翻开的两张卡片正面所标数字之和是偶数的概率;解:(1)12;(2)画树状图:由树状图可知共有12种等可能的结果,符合条件的有4种情况,翻开的两张卡片正面所标数字之和是偶数的概率是P =412 =13 .23.(8分)如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i =1∶ 3 ,AB =10米,AE =15米.(i =1∶ 3 是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度(测角器的高度忽略不计,结果精确到0.1米,参考数据: 2 ≈1.414, 3 ≈1.732)解:(1)在Rt△ABH中,i=tan ∠BAH=13=33.∴∠BAH=30°.∴BH=12AB=5.答:点B距水平面AE的高度BH为5米.∴CD=CG+GE-DE=5 3 +15+5-15 3 =20-10 3 ≈2.7(米).答:广告牌CD高约2.7米.。
中考数学押题试卷题号一二三总分得分一、选择题(本大题共16小题,共42.0分)1.下列图形中,对称轴的条数为2的倍数的是()A. B. C. D.2.如图,若|a|=|b|,则该数轴的原点可能为()A. A点B. B点C. C点D. D点3.计算20+21+22+23+24=()A. 24B. 28C. 31D. 324.如图,下面是雨潭的试卷,则它的得分为()A. 20分B. 80分C. 0分D. 40分5.函数y=的自变量x的取值范围是()A. x≥B. x>且x≠±2C. x≥且x≠2D. x≥且x≠26.不等式的解集为()A. B.C. D.7.如图在⊙O中,AB为直径,C为圆上一点,连接CO并延长CO交⊙O于点D.则四边形ABCD为()A. 正方形B. 菱形C. 矩形D. 梯形8.如图,反比例函数y1=(k1>0)和y2=(k2<0)中,作直线x=10,分别交x轴,y1=(k1>0)和y2=(k2<0)于点P,点A,点B,若=3,则=()A. B. 3 C. -3 D.9.若=1,a与b互为倒数,ab>0,a+b>0,则代数式(a+b)2-ab=()A. 1B. -1C. 0D. 210.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=1,∠BOD=60°将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为()A. B. -1 C. - D. 111.如表为昱乾初二学年的年级排名.若添加数据9后,该组数据的平均数增加了,则昱乾的八下三调考试级名为()考试八下一调八下二调八下三调八下期末年级排名66?4A. 26B. 19C. 1D. 3812.如图所示,在平面直角坐标系中,直线y1=2x+4分别与x轴,y轴交于A,B两点,以线段OB为一条边向右侧作矩形OCDB,且点D在直线y2=-x+b上,若矩形OCDB 的面积为20,直线y1=2x+4与直线y2=-x+b交于点P.则P的坐标为()A. (2,8)B.C.D. (4,12)13.星期天,鹤翔骑电动车回老家看望奶奶,速度为20km/h.当他行驶了40千米后发现忘记带课本了,于是给奶奶打电话,同时自己按原速返回.奶奶30分钟后骑自行车从家出发,1小时后与鹤翔相遇.鹤翔与奶奶之间的距离y(km)与时间x(h)的关系如图所示.则奶奶骑车的速度为()A. 10km/hB. 45km/hC. 40km/hD. 80km/h14.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0),则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤.A. ①②③④B. ①②③C. ①③④D. ①④15.如图,在正方形ABCD中,AB=1,P是边BC上的一个动点,由点B开始运动,运动到C停止.连接AP,以AP为直角边向右侧作等腰直角三角形,另一个顶点为Q.则点P从B运动到C的过程中,点Q的运动路径长为()A. πB.C.D. 116.如图,在平面直角坐标系中,正六边形的边长为1,且有一个顶点与原点重合,现将该六边形沿x轴向右翻转(无滑动),且每次旋转60°.则翻转2020次后,点P 的运动路径长为()A. 2019π+3B. (449+)πC. (449+)πD. π+2019二、填空题(本大题共3小题,共10.0分)17.一元二次方程x2+x-12=0的根为______.18.如图,在正方形ABCD中,AC=,E,F分别是边AD,CD上的点,且AE=DF.AF,DE交于点O,P为AB的中点,则OP=______.19.一个含30度角的三角板和一个含45度角的三角板按如图所示的方式拼接在一起,经测量发现,AC=CE=,取AB中点O,连接OF.∠FCE在∠ACB内部任意转动(包括边界),则CE在运动过程中扫过的面积为______,在旋转过程中,线段OF的最小值为______.三、解答题(本大题共7小题,共68.0分)20.(1)若a+b=3,2a-b=3,求代数式a2b2+4a++b的值.(2)解方程:x2-4x-60=0.21.期末考试结束后,数学老师对本班的数学成绩进行了统计.根据图中信息回答下列问题.(1)该班级的人数为______,D等级的学生有______人.并根据数据补全统计图.(2)若规定80以上为及格,求该班级的及格率.(3)若在各个分数段的人数这一组数据上,再添加一个数据a(a为正整数),该组数据的中位数没有改变,请直接写出a的值.22.规定一种新的运算△:a△b=a(a+b)+a-b.例如,1△2=1×(1+2)+1-2=2.(1)10△12=______.(2)若x△3=-7,求x的值.(3)求代数式-2x△4的最小值.23.在Rt△ABC中,AB=8,BC=6,点P从点A出发,速度为4个单位每秒,同时点Q从点C出发,以v个单位每秒的速度向B运动.当有一个点到达点B时,点P,Q同时停止运动.设运动时间为t.(1)若v=2,t=1,求△PQB的面积.(2)若在运动过程中,PQ始终平行于AC,求v的值.24.问题探究.【情景导入】在物理学中,自由落体下落的距离s与下落时间t的平方成正比.若忽略空气阻力,则s与t满足函数关系s=2,g表示重力加速度,看作一个定值.如表是一次试验的记录,根据如表,求g的值,并求出s与t的关系式.s/m520125t/s125【尝试探索】如图所示,一个重力为的物体在理想环境下做自由落体运动,后落地.求下落点到地面的距离s.【实际应用】若鹤翔从顶楼(30楼)跳下,忽略一切影响因素,假设他做自由落体运动,每层楼高3m,在他开始运动的同时,消防员恰好赶到,则消防员铺设气垫至少需要10秒,则鹤翔能否得以生存?(结果取整数)25.【问题背景】(1)如图1,⊙O与∠P的两边分别切与A,B两点.求证:PA=PB.【深入探究】(2)在(1)的条件下,若∠APB=60°,连接PO,以PO为一条边向上作等边三角形POQ,连接AO,AQ.求证:AO=AQ.(3)若在(1)的条件下,以OP为斜边向上作等腰直角三角形POQ,取OP中点M,连接MB,MQ,BQ,求证:∠MQB=∠MBQ.【拓展延伸】在(3)的条件下,连接AO,AQ,探索AO,AQ,AP之间的数量关系.26.【情景导入】(1)如图1,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,与直线y=8交于点C.求点C的坐标.【尝试探究】(2)①在(1)的条件下,若P是直线y=6上一点,且△PBC是等腰三角形,求点P的坐标.②若确定点P的坐标为(2,6),直线AB可在平面内任意平移.当△PBC是等腰三角形时,求点C的坐标.【延伸拓展】在(1)的条件下,若△PBC为直角三角形,且∠BPC=90°,连接AP,请直接写出sin∠PAC的最大值.答案和解析1.【答案】C【解析】解:A、图形有一条对称轴,不符合题意;B、图形有三条对称轴,不符合题意;C、图形有四条对称轴,符合题意;D、图形有一条对称轴,不符合题意;故选:C.根据轴对称图形的概念、对称轴的概念解答.本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.【答案】C【解析】解:因为|a|=|b|,所以该数轴的原点可能为点C.故选:C.由|a|=|b|可知:数b的绝对值等于数a的绝对值,可得该数轴的原点.本题考查数轴的特点和绝对值性质,是需要熟练掌握的内容.本题考查数轴的特点和绝对值性质,是需要熟练掌握的内容.本题考查数轴的特点和绝对值性质,是需要熟练掌握的内容.3.【答案】C【解析】解:原式=1+2+4+8+16=31故选:C.根据零指数幂的意义以及实数的运算法则即可求出答案.本题考查实数运算,解题的关键是熟练运用实数运算法则,本题属于基础题型.4.【答案】C【解析】解:∵-3的倒数是-,∴第1题不正确;∵的算术平方根是3,∴第2题不正确,∴雨潭的得分为0分.故选:C.首先根据:求一个整数的倒数,就是写成这个整数分之一,可得:-3的倒数是-;然后根据算术平方根的含义和求法,可得:的算术平方根是3.此题主要考查了算术平方根的含义和求法,以及倒数的含义和求法,要熟练掌握.5.【答案】C【解析】解:由题意得:2x+1≥0,且x2-4≠0.解得:x≥且x≠2.故选:C.根据二次根式被开方数大于等于0和分式的分母不为0回答即可.本题主要考查了函数自变量的取值范围问题,明确二次根式被开方数大于等于0和分式的分母不为0是解题的关键.6.【答案】C【解析】解:,解①得a≥,解②得a≤2,∴不等式组的解集为≤a≤2,在数轴上表示为,故选:C.分别解出两个不等式,然后确定两个不等式的解集的公共部分.本题考查了解一元一次不等式组,解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【答案】C【解析】解:∵AB,CD是直径,∴∠ADB=∠ACD=90°,∠CAD=∠CBD=90°,∴四边形ABCD是矩形.故选:C.利用圆周角定理以及矩形的判定方法即可解决问题.本题考查圆周角定理,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】C【解析】解:∵点A在反比例函数y1=y1=(k1>0)的图象上,点B在反比例函数y2=(k2<0)的图象上,且=3,∴k1=OP•PA,k2=-OP•BP,∴==-3,故选:C.根据已知条件得到k1=OP•PA,k2=-OP•BP,代入于是得到结论.本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义、正确的理解题意是解题的关键.9.【答案】C【解析】解:∵=1,a与b互为倒数,∴=1,ab=1,∴a+b=1,∴(a+b)2-ab=1-1=0.故选:C.直接将已知变形进而得出a+b,ab的值,即可得出答案.此题主要考查了有理数的乘法,正确将已知变形是解题关键.10.【答案】C【解析】解:如图,连接OC,过点C作CE⊥x轴,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,且CE⊥OB于E,∴BE=BC=,CE=,∴OC===∴当点C1在y轴上时,点C1的纵坐标有最小值为-,故选:C.如图,连接OC,过点C作CE⊥x轴,由直角三角形的性质可求BE=BC=,CE=,由勾股定理可求OC的长,即可求解.本题考查了菱形的性质,等边三角形的判定和性质,旋转的性质,勾股定理等知识,求出OC的长是本题的关键.11.【答案】C【解析】解:设昱乾的八下三调考试级名为x,依题意有(6+6+x+4+9)÷5=(6+6+x+4)÷4+,解得x=1.故昱乾的八下三调考试级名为1.故选:C.设昱乾的八下三调考试级名为x,根据平均数的计算公式由等量关系列出方程求解即可.考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.【答案】C【解析】解:∵直线y1=2x+4分别与x轴,y轴交于A,B两点,∴B(0,4),∴OB=4,∵矩形OCDB的面积为20,∴OB•OC=20,∴OC=5,∴D(5,4),∵D在直线y2=-x+b上,∴4=-5+b,∴b=9,∴直线y2=-x+9,解得,∴P(,),故选:C.由直线y1=2x+4求得OB=4,根据解析式面积求得D(5,4),代入y2=-x+b求得解析式,然后联立解析式,解方程组即可求得.本题考查了两条直线平行或相交问题,主要考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.13.【答案】A【解析】解:设奶奶骑车的速度为x千米/时,根据题意可得:40=20×1.5+xx=10∴设奶奶骑车的速度为10千米/时,故选:A.设奶奶骑车的速度为x千米/时,由图象可得鹤翔1.5小时的路程+奶奶1小时的路程=40km,列出方程,即可求解.本题考查了一次函数的应用,理解图象是本题的关键.14.【答案】B【解析】解:∵抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)∴抛物线L与x轴的交点C为(9,0)故①正确;∵抛物线L与x轴的左交点为(1,0)∴a+b+c=0∴b+c=-a>0>-10故②正确;∵抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5∴-=5,即b=-10a又∵a+b+c=0∴c=9a∴==-16a故③正确;若该抛物线与直线y=8有公共交点,则有8≤-16a,∴a≤-故④错误.故选:B.利用图象信息以及二次函数的性质一一判断即可.本题考查二次函数的图象与系数的关系、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】C【解析】解:如图,延长AD到M,使得DM=AD,连接CM,则点Q运动轨迹是线段CM.作QN⊥BC于N,∵PA=PQ,∠APQ=90°,∴∠APB+∠QPN=90°,∠QPN+∠PQN=90°,∴∠APB=∠PQN,在△ABP和△PNQ中,,∴△ABP≌△PNQ,∴AB=PN=BC,PB=NQ,∴PB=CN=QN,∴∠QCN=45°,∴点Q在线段CM上,点Q的运动轨迹是线段CM,CM=CD=.故选:C.如图,延长AD到M,使得DM=AD,连接CM,则点Q运动轨迹是线段CM.只要证明△ABP≌△PNQ,CN=QN即可解决问题.本题考查正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、轨迹等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.16.【答案】C【解析】【分析】根据正六边形的特点,每6次翻转为一个循环组循环,求出每次循环的路径即可解决问题本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点P所在的位置是解题的关键,难点在于作辅助线构造出直角三角形.【解答】解:∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环,∵2020÷6=336余数为4每一个循环的路径=++++=π+π,∴2020次后,点P的运动路径长为336(π+π)+++=(449+)π,故选:C.17.【答案】x1=3,x2=-4【解析】解:∵x2+x-12=0,∴(x-3)(x+4)=0,则x-3=0或x+4=0,解得x1=3,x2=-4.故答案为:x1=3,x2=-4.利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】【解析】解:∵四边形ABCD是正方形,∴AD=AB,∠D=∠EAB=90°,AC=AB,∴AB=AC=×=1,在△ADF和△BAE中,,∴△ADF≌△BAE(SAS),∴∠DAF=∠ABE,∵∠DAF+∠BAO=90°,∴∠ABE+∠BAO=90°,∴∠AOB=90°,∵P为AB的中点,∴OP=AB=;故答案为:.证明△ADF≌△BAE(SAS),得出∠DAF=∠ABE,证出∠AOB=90°,由直角三角形斜边上的中线性质即可得出答案.本题考查了正方形的性质、全等三角形的判定与性质以及直角三角形斜边上的中线性质等知识;证明三角形全等是解题的关键.19.【答案】-1【解析】解:连接OC.在Rt△ABC中,∵∠ACB=90°,∠A=30°,AC=,∴BC=AC•tan30°=1,∴AB=2BC=2,∵OA=OB,∴OC=AB=1,在Rt△EFC中,∵∠CEF=90°,CE=EF=,∴CF=CE=,∴CE在运动过程中扫过的面积==π,∵OF≥CF-OC,∴OF≥-1,∴OF的最小值为-1.故答案为π,-1.利用扇形面积公式,两点之间线段最短即可解决问题.本题考查轨迹,扇形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)∵a+b=3,2a-b=3,∴a=2,b=1,∴a2b2+4a++b=22×12+4×2++1=4×1+8++1=4+8++1=13+;(2)∵x2-4x-60=0∴(x-10)(x+6)=0∴x-10=0或x+6=0解得,x1=10,x2=-6.【解析】(1)根据a+b=3,2a-b=3,可以求得a、b的值,然后代入所求式子,即可求得所求式子的值;(2)根据因式分解的方法可以解答此方程.本题考查因式分解的应用、二次根式的化简求值、解二元一次方程,解答本题的关键是明确它们各自的解答方法.21.【答案】100人 5(1)该班级的人数为45÷45%=100(人),D等级人数为100×(1-15%-45%-35%)【解析】解:=5(人),A组人数为100×15%=15(人),C组人数为100×35%=35(人),补全图形如下:故答案为:100人,5;(2)该班级的及格率为45%+15%=60%;(3)∵原分数段人数的数据为5、15、35、45,∴中位数为=25,若要使中位数不发生改变,则需添加数据25,即a=25.(1)先有B分数段人数及其所占比例求出总人数,再用总人数乘以各分数段对应的百分比求出对应人数,从而得解;(2)将80以上即A、B组百分比相加即可得;(3)根据中位数的概念求解可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,本题根据B 组的人数与所占的百分比求解是解题的关键,也是本题的突破口.22.【答案】218【解析】解:(1)∵a△b=a(a+b)+a-b,∴10△12=10×(10+12)+10-12=218.(2)∵x△3=-7,∴x(x+3)+x-3=-7,∴x2+4x+4=0,解得x=-2.(3)∵a△b=a(a+b)+a-b,∴-2x△4=-2x(-2x+4)-2x-4=4x2-10x-4=(2x-2.5)2-10.25∴2x-2.5=0,即x=1.25时,-2x△4的最小值是-10.25.故答案为:218.(1)根据:a△b=a(a+b)+a-b,求出10△12的值是多少即可.(2)若x△3=-7,则x(x+3)+x-3=-7,据此求出x的值是多少即可.(3)根据:a△b=a(a+b)+a-b,可得:-2x△4=-2x(-2x+4)-2x-4,据此求出-2x△4的最小值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.【答案】解:(1)∵AB=8,BC=6,点P从点A出发,速度为4个单位每秒,v=2,t=1∴AP=4×1=4,CQ=2×1=2∴PB=8-4=4,BQ=6-2=4∴△PQB的面积为:PB×BQ÷2=4×4÷2=8.答:△PQB的面积为8.(2)∵PQ始终平行于AC∴△BPQ∽△BAC∴=∵PQ始终平行于AC∴不妨取t=1∴=解得:v=3答:v的值为3.【解析】(1)先分别用含t的式子表示出PB、BQ,再根据直角三角形的面积公式计算即可;(2)先由PQ始终平行于AC得出△BPQ∽△BAC,从而根据相似三角形的性质列出比例式,取t=1代入,解出v即可.本题考查了相似三角形的判定与性质在几何动点问题中的应用,熟练掌握相关判定定理与性质定理是解题的关键.24.【答案】解:【情景导入】由题可得5=g×12,解得g=10,∴s与t的关系式为s=5t2 .【尝试探索】当t=10时,s=5×100=500m,即下落点到地面的距离为500m;【实际应用】当s=30×3=90时,90=5t2,解得t≈4,(负值已舍去)∵10s>4s,∴不能得以生存.【解析】【情景导入】依据表格中的数据进行计算,即可得到g的值,进而得到s与t 的关系式;【尝试探索】依据t的值为10,即可得到s的值;【实际应用】依据楼高s的值,即可得到t的值,进而得出结论.本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,实际问题中自变量x的取值要使实际问题有意义.25.【答案】解:【问题背景】(1)连接OA,OB,OP,∵PA、PB是切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,,∴Rt△PAO≌Rt△PBO(HL),∴PA=PB;【深入探究】(2)∵Rt△PAO≌Rt△PBO,∴∠APO=∠BPO,∵∠APB=60°,∴∠APO=∠BPO=30°,∵△POQ是等边三角形,∴∠OPQ=60°,PO=PQ,∴∠APQ=∠APO=30°,且PO=PQ,∴PA垂直平分OQ,∴AO=AQ;(3)如图3,连接OB,∵PB是⊙O是切线,∴PB⊥OB,且点M是OP的中点,∴BM=PO,∵△OPQ是等腰直角三角形,且点M是OP的中点,∴QM=OP,∴QM=BM,∴∠MQB=∠MBQ;拓展延伸】AO+AQ=AP,理由如下:过点Q作QH⊥AQ交AP于点H,∴∠AQH=∠PQO=90°,∴∠AQO=∠PQH,∵∠QPO+∠QOP=90°,∠AOP+∠APO=90°,∴∠APQ+∠APO=∠APO+∠AOQ,∴∠APQ=∠AOP,且∠AQO=∠PQH,QP=OQ,∴△AOQ≌△HPQ(ASA)∴QH=AQ,AO=PH,∴AH=AQ,∵AP=PH+AH,∴AO+AQ=AP.【解析】【问题背景】(1)连接OA,OB,OP,由“HL”可证Rt△PAO≌Rt△PBO,可得PA=PB;【深入探究】(2)由全等三角形的性质和等边三角形的性质,可证PA垂直平分OQ,可得AO=AQ;(3)连接OB,由直角三角形的性质和等腰直角三角形的性质可得MB=QM=OP,由等腰三角形的性质可得结论;【拓展延伸】过点Q作QH⊥AQ交AP于点H,由“ASA”可证△AOQ≌△HPQ,可得QH=AQ,AO=PH,由直角三角形的性质可得AH=AQ,即可得AO+AQ=AP.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的性质,添加恰当辅助线是本题的关键.26.【答案】解:(1)点A、B的坐标分别为:(0,-4)、(3,0),将点A、B的坐标代入一次函数表达式:y=kx+b并解得:直线AB的表达式为:y=x-4,当y=8时,x=9,故点C(9,8);(2)设点P(m,6),而点B、C的坐标分别为:(3,0)、(9,8),PB2=(m-3)2+36,PC2=(m-9)2+4,BC2=100,当PB=PC时,(m-3)2+36=(m-9)2+4,解得:m=当PB=BC时,同理可得:m=11或-5;当PC=BC时,同理可得:m=9±4;综上,P(9-4,6)或P(9+4,6)或P(11,6)或P(-5,6)或P();(3)设直线平移了m个单位,则点B、C的坐标为:(3+m,0)、(9+m,8),而点P(2,6);PB2=(m+1)2+36,PC2=(m+7)2+4,BC2=100,当PB=PC时,同理可得:m=-;当PB=BC时,同理可得:m=7或-9;当PC=BC时,同理可得:m=-7;综上,C(4+2,8)或C(2-,8)或C(16,8)或C(0,8)或C(,8);(4)如下图,点P在以BC的中点R(6,4)为圆心的圆上,当直线AP(P′)与圆R相切时,sin∠PAC有最大值,圆的半径为5,即HP′=5,而AH=10,sin∠PAC==.【解析】(1)点A、B的坐标分别为:(0,-4)、(3,0),将点A、B的坐标代入一次函数表达式即可求解;(2)分PB=PC、PB=BC、PC=BC分别求解即可;(3)分PB=PC、PB=BC、PC=BC分别求解即可;(4)如下图,点P在以BC的中点R(6,4)为圆心的圆上,当直线AP(P′)与圆R 相切时,sin∠PAC有最大值,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、等腰三角形和直角三角形的性质、圆的基本知识等,其中(2)(3),要注意分类求解,避免遗漏.。
2020 年中考数学模拟试卷及答案【名师精选试卷,值得下载练习】.选择题(满分 24 分,每小题 4 分)21.抛物线 y =ax 2+bx+c ( a ≠0)对称轴为直线 x =﹣ 1,其部分图象如图所示,则下列结论:① b 2﹣4ac >0;② 2a =b ;③ t (at+b )≤a ﹣b (t 为任意实数);④3b+2c <0; ⑤ 点(﹣ ,y 1),( ,y 2),( ,y 3)是该抛物线上的点,且c 的大小关系为(3.如图,已知在平面直角坐标系 xOy 内有一点 A (2,3),那么 OA 与 x 轴正半轴 y 的y 1<y 3<y 2, C .3 D .22.已知点 A (﹣ 2,a ),B 2,b ),C 4,c )是抛物线 y = x 2﹣ 4x 上的三点,则 a ,b , A .b >c > aB . b >a >cC .c >a >bD .a >c >b其中正确结论的个数是(4夹角α的余切值是(4.下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似5.下列说法中,正确的是()A .如果k=0 ,是非零向量,那么k =0B.如果是单位向量,那么=1C.如果| |=| |,那么=或=﹣D.已知非零向量,如果向量=﹣ 5 ,那么∥6.如图,把两条宽度都是 1 的纸条,其中一条对折后再两条交错地叠在D.A .2sin αB .2cosαD.起,相交成二.填空题(满分48 分,每小题 4 分)7.如果2a=3b,那么=.8.线段9和25的比例中项是.9.如果两个相似三角形的相似比为2:3,两个三角形的周长的和是100cm,那么较小的三角形的周长为cm.210.已知点P 是线段AB 上的一点,且BP2=AP?AB,如果AB=10cm,那么BP=cm.11.在直角三角形ABC 中,∠A=90°,BC=13,AB=12,则tanB=.12.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3⋯A n在y轴的正半轴上,点B1,B2,B3⋯B n 在二次函数位于第一象限的图象上,点C1,C2,C3⋯?n 在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3⋯四边形A n﹣1B n A n?n 都是正方形,则正方形A n ﹣1B n A n?n 的周长14.如图,在ABC 中,∠C=90°,∠A=30°,BD 是∠ABC的平分线,如果=,那么=(用表示).15.在 Rt △ABC 中,∠ABC = 90°,BD ⊥AC ,垂足为点 D ,如果 BC =4,那么线段 AB 的长是16.小杰沿坡比为 1:2.4 的山坡向上走了 130米.那么他沿着垂直方向升高了 米. 17.等腰 Rt △ABC 中,斜边 AB = 12,则该三角形的重心与外心之间的距离是 . 18.如图,在矩形 ABCD 中,将∠ABC 绕点 A 按逆时针方向旋转一定角度后, BC 的对应边 B'C'交 CD 边于点 G .连接 BB'、CC '.若 AD = 7, CG三.解答题(共 7 小题,满分 78 分)19.(10分) 2sin60 °?tan45 °+243c0o °s ﹣ tan60 °20.(10 分)已知一抛物线 y =ax 2+bx 和抛物线 y =﹣ 2x 2的形状及开口方向完全相同, 且经过点( 1, 6)( 1)求此抛物线解析式;(2)用配方法求此抛物线的顶点坐标.21.(10分)如图,直角梯形 ABCD 中,∠ADC =90°,AD ∥BC ,点 E 在 BC 上,点 F 在 AC 上, ∠DFC =∠ AEB .1)求证: △ADF ∽△ CAE ;sin ∠DBC ==4,AB'=B'G ,则(结果保留根号)2)当AD=8,DC=6,点E、F 分别是BC、AC 的中点时,求BC 的长?22.(10分)如图,一艘船由A港沿北偏东65°方向航行90 km至B港,然后再沿北偏西40 °方向航行至C港,C港在 A 港北偏东20 °方向,求A,C两港之间的距离.23.(12分)如图,在△ABC中,D 为AC上一点,E为CB延长线上一点,且=,224.(12 分)如图,过点A(5,)的抛物线y=ax2+ bx 的对称轴是x=2,点 B 是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.1)求a、b 的值;2)当△BCD 是直角三角形时,求△OBC 的面积;23)设点P 在直线OA 下方且在抛物线y=ax2+bx上,点M、N 在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,点 P 处,直角尺的两边分别交 AB 、BC 于点 E 、F ,连接 EF (如图 1). (1)当点 E 与点 B 重合时,点 F 恰好与点 C 重合(如图 2).①求证: △APB ∽△ DCP ; ②求 PC 、BC 的长;2)探究:将直角尺从图 2 中的位置开始,绕点 P 顺时针旋转,当点 E 和点 A 重合 时停止.在这个过程中(图 1 是该过程的某个时刻) ,观察、猜想并解答: ① tan ∠PEF 的值 是否发生变化?请说明理由;②设 AE = x ,当△PBF 是等腰三角形时,请直接写出 x 的值.参考答案一.选择题21.解:抛物线与 x 轴有两个不同交点,因此 b 2﹣4ac >0,故①正确; 对称轴为 x =﹣ 1,即:﹣ =﹣ 1,也就是 2a = b ,故 ② 正确;2当 x =﹣ 1 时, y 最 大=a ﹣b+c ,当 x =t 时, y =at 2+bt+c ,当 PQ 最大时,请直接写出四边形 BQMN 的周长最小时点 Q 、M 、N 的坐标.∴at2+bt+c≤a﹣b+c,即:t (at+b)≤a﹣b,故③正确;由抛物线的对称性可知与x 轴另一个交点0<x<1,当x=1 时,y=a+b+c< 0,又2a =b,即a=b,代入得:b+b+c<0,也就是3b+2c<0;因此④正确;点A(﹣,y1),B(,y2),C(,y3)到对称轴x=﹣1 的距离分别为L A、L B、L C,则有L A>L C> L B,且A、B 在对称轴左侧,C在对称轴的右侧,故y1<y3<y2,因此⑤正确,综上所述,正确的结论有 5 个,故选:A.222.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x 的增大而增大,当x<2时,y 随x 的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x 的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴ a>c> b,故选: D .3.解:过点 A 作 AB ⊥x 轴,垂足为 B ,则 OB = 2, AB =3, 在 Rt △OAB 中, cot ∠AOB = cot =α = ,4.解: A 、三边对应成比例的两个三角形相似,故 A 选项不合题意; B 、两边对应成比例,且夹角相等的两个三角形相似,故 B 选项符合题意; C 、斜边与一条直角边对应成比例的两个直角三角形相似,故 C 选项不合题意; D 、有一个角是 100°的两个等腰三角形, 则他们的底角都是 40°,所以有一个角是 的两个等腰三角形相似,故 D 选项不合题意; 故选: B .5.解: A 、如果 k = 0, 是非零向量,那么 k = 0,错误,应该是 k = . B 、如果 是单位向量,那么 = 1,错误.应该是 | |= 1.C 、如果 | |= | |,那么 = 或 =﹣ ,错误.模相等的向量,不一定平行.D 、已知非零向量 ,如果向量 =﹣ 5 ,那么 ∥ ,正确.故选: D .6.解:由题意可知:重叠部分是菱形,设菱形 ABCD ,则 ∠ ABE = α, 过A 作 AE ⊥BC 于 E ,则 AE =1,设 BE = x ,∵∠ ABE = α,∴ AB = = ,∴ BC = AB =,100∴ 重叠部分的面积是:×1=故选:C..填空题7.解:∵ 2a=3b,∴=.∴=.故答案为:.8.解:设比例中项是x,则:9:x=x:25,2x2=225,x=±15故答案为15.9.解:设较小的三角形的周长为xcm,则较大的三角形的周长为(100﹣x)cm,∵两个相似三角形的相似比为2:3,∴两个相似三角形的周长比为2:3,∴=,∴=,解得,x=40,故答案为:40.10.解:∵点P是线段AB 上的一点∴AP=AB﹣BP=10﹣BP,∵BP2=AP?AB,AB=10cm,2BP2=(10﹣BP)×10,解得BP= 5 ﹣5.故答案为:( 5 ﹣5).11.解:在直角三角形ABC 中,∵∠A=90°,BC=13,AB=12,∴ AC===5,∴ tanB==,=,故答案为.12.解:∵四边形A0B1A1C1是正方形,∠ A0B1A1=90 °,∴△ A0B1A1 是等腰直角三角形.设△A0B1A1 的直角边长为代入抛物线的解析式中得:解得m1=0(舍去),m1=;故△A0B1A1 的直角边长为,同理可求得等腰直角△A1B2A2 的直角边长为 2 ,依此类推,等腰直角△A n﹣1B n A n 的直角边长为n,故正方形A n﹣1B n A n?n 的周长为 4 n.故答案是: 4 n.2213.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线y=x2+4x+5 向右平移2 个单位后,所得抛物线的表达式为y=x2+1.2故答案为:y=x2+1.14.解:在Rt△ABC 中,∵∠C=90°,∠A=30°,∴∠ ABC=60°,∵BD 平分∠ABC,∴∠ ABD=∠CBD=30°,∴∠ A=∠ABD,∴AD=BD,DB=2DC,∴AD=2DC,∴ CD=AC,∴ =﹣故答案为﹣15.解:在Rt△BDC 中,∵ B C=4,sin∠ DBC=,∴ CD=BC×sin ∠ DBC =4× =,∴ =∠ ==,∴ BD==,∵∠ ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt △ABD 中,∴ AB=2,故答案为: 2 .16.解:设他沿着垂直方向升高了 x 米,∵ 坡比为 1:2.4,∴他行走的水平宽度为 2.4x 米,2 2 2 由勾股定理得, x 2+( 2.4x )2=1302,解得, x =50,即他沿着垂直方向升高了 50 米, 故答案为: 50.17. 解: ∵ 直角三角形的外心是斜边的中点,∴ CD = AB = 6, ∵I 是△ABC 的重心, ∴ DI = CD =2,由旋转可 得,AB =AB',AC =AC',∠BAB'=∠ CAC', ∴ = , ∴ =,∴△ ABB'∽△ACC', ∴ = , ∴= ,∵AB'=B'G ,∠AB'G =∠ABC = 90°, ∴△ AB'G 是等腰直角三角形, ∴ AG = AB',AG ,AC',设AB=AB'=x,则AG=x,DG=x﹣4,∵ Rt△ADG 中,AD2+DG2=AG2,∴ 72+(x﹣4)2=(x)2,解得x1=5,x2=﹣13(舍去),∴ AB= 5 ,∴ Rt△ABC 中,AC===,三.解答题19.解:22sin60 ° ?tan45 ° +243c0o°s﹣= 3 .2220.解:(1)∵抛物线y=ax2+bx的形状和开口方向与y=﹣2x2相同,∴ a=﹣ 2 ,∴y=﹣2x2+bx∵图象经过点(1,6)代入得:6=﹣2+b,解得:b=8 ,∴抛物线的解析式是y=﹣2x2+8x;22(2)y=﹣2x2+8x=﹣2(x﹣2)2+8,即抛物线的顶点坐标是(2,8).21.证明:(1)∵AD∥BC∴∠ DAC=∠ACE∵∠ DFC =∠AEB∴∠ AFD =∠AEC 且∠DAC=∠ACE∴△ ADF ∽△ CAE(2)∵AD=8,DC=6,∠ADC=90∴ AC==10∵点F 是AC中点∴AF=5∵△ ADF ∽△ CAE∵点E 是BC中点∴BC=2CE=22.解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90 ,过B作BE⊥AC于E,∴∠ AEB=∠ CEB=90°,在Rt△ABE 中,∵∠ ABE=45 °,AB=90 ,∴ AE=BE=AB=90km,===,在Rt△CBE 中,∵∠ ACB=60 °,∴ CE=BE=30 km,∴ AC=AE+CE=90+30 ,∴A,C 两港之间的距离为(90+30 )km.23.证明:∵ DG∥AB,,,,,,,∵∠ EHB=∠DHF ,∴△DFH ∽△ EBH,∴∠ E=∠FDH ,∴ DF ‖BC,∴ 四边形BGDF 平行四边形,∴ DF =BG.24.解:(1)∵过点的抛物线y=ax2+bx 的对称轴是x=2,解之,得;0).(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,当∠CBD=90 °时,有BC2+BD2=CD2.∴,解之,得,∴;∴;2 2 2当∠CDB=90 °时,有CD2+BD2=BC2.∴,解之,得,∴;∴;2 2 2当∠BCD=90 °时,有CD2+BC2=BD2.∴ ,此方程无解.综上所述,当△BDC 为直角三角形时,△OBC 的面积是或3)设直线y=kx 过点,可得直线.由(1)可得抛物线,∴当时,PQ 最大,此时∴PQ 最大时,线段BQ 为定长.∵MN=2,∴要使四边形BQMN 的周长最小,只需QM+BN 最小.将点 Q 向下平移 2 个单位长度,得点的对称轴的对称点 ,直线 BQ 2 与对称轴的交点就是符合条件的点 N , 此时四边形 BQMN 的周长最小. 设直线 y =cx+d 过点和点 B ( 4, 0),解之,得25.解:( 1) ①如图 2,∵四边形 ABCD 是矩形,∴∠A =∠D =90°,CD =AB =2, ∴∠ ABP+ ∠APB = 90°, BP = .又∵∠BPC =90 °, ∴∠ APB+∠DPC =90°,,作点 关于抛物线∴直线 过点 Q 2 和点 B .得解方程组∴点 N 的坐标为 ,∴点 M 的坐标为 所以点 Q 、M 、N 的坐标分别为,,,,. ,.∴∠ ABP=∠ DPC,且∠A=∠D,∴△ APB∽△ DCP;②由△APB∽△ DCP.∴,即.∴,即.∴ PC=2 ,DP=4.∴ BC =AD=AP+DP=5;(2)① tan∠ PEF 的值不变,理由如下:如图1,过 F 作FG⊥ AD,垂足为点G.则四边形ABFG 是矩形.∴∠ A=∠PGF=90°,FG=AB=2,∴在Rt△APE 中,∠ 1+∠ 2=90°,又∵∠EPF=90 °,∴∠ 3+∠2=90°,∴∠1=∠3.∴△ APE∽△ GFP,∴.∴.∴在Rt△EPF 中,tan∠ PEF==2∴ tan∠ PEF 的值不变;②由△APE∽△ GFP.∴.∴.∴GP=2AE=2x,∵ 四边形ABFG 是矩形.∴BF=AG=AP+GP=2x+1.△PBF 是等腰三角形,分三种情况讨论:Ⅰ)当PB=PF 时,点P在BF的垂直平分线上.∴ BF=2AP.即2x+1=2,∴ x=,Ⅱ)当BF=BP 时,2x+1=.∴ x=,∴ =,2 2 2Ⅲ)当BF=PF 时,(2x)+2 =(2x+1),∴ x=.=.。
江苏省镇江市九年级中考模拟测试数学冲刺卷(考试时间:120分钟 试卷满分:120分)第Ⅰ卷(选择题 共12分)一、选择题(共6小题,每小题2分,计12分,每小题只有一个选项是符合题意的)1.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .46×10﹣7 B .4.6×10﹣7C .4.6×10﹣6D .0.46×10﹣5【答案】C【解析】0.0000046=4.6×10﹣6. 故选:C .2.下列运算正确的是( ) A .2325a a a += B .232a a a -= C .325()()a a a --=-gD .324222(24)(2)2a b ab ab b a -÷-=- 【答案】D【解析】 A 、325a a a +=,故此选项错误; B 、232a a -,无法计算,故此选项错误;C 、325()()a a a --=g ,故此选项错误;D 、324222(24)(2)2a b ab ab b a -÷-=-,正确.故选:D .3.有理数8-的立方根为( ) A .2- B .2C .2±D .4±【答案】A【解析】 有理数8-2=-.故选:A . 4. 下列各数中,小于﹣2的数是( ) A .﹣B .﹣C .﹣D .﹣1【答案】A【解析】 比﹣2小的数是应该是负数,且绝对值大于2的数, 分析选项可得,﹣<﹣2<﹣<﹣<﹣1,只有A 符合.故选:A .5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A .a>b B .|a| < |b| C .a+b>0 D .ba <0【答案】D【解析】 a 是负数,b 是正数,异号两数相乘或相除都得负.故选:D6.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A.B.C.D.【答案】A【解析】过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF =.故选:A .第Ⅱ卷(非选择题 共108分)二、填空题(共10小题,每小题2分,计20分)7. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是 .【答案】1【解析】 根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ⨯=-=,即:212ab =,则222()213121a b a ab b -=-+=-=. 故答案为:1.8.数轴上表示﹣3的点到原点的距离是 . 【答案】3【解析】在数轴上表示﹣3的点与原点的距离是|﹣3|=3.故答案为:3.9.分解因式:ax2﹣ay2=.【答案】a(x+y)(x﹣y)【解析】ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).10.若在实数范围内有意义,则x的取值范围为.【答案】x≥2【解析】由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.11.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是.【答案】48°【解析】∵a∥b,∴∠2=∠1+∠CAB=18°+30°=48°,故答案为:48°12. 如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【答案】3【解析】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.14.a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【答案】8【解析】 ∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.15. 如图,AB 是O e 的弦,OC AB ⊥,垂足为点C ,将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则O e 的半径为 .【答案】【解析】 连接OA ,设半径为x ,Q 将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,23OC x ∴=,OC AB ⊥, 12AC AB ∴=, 222OA OC AC -=Q ,∴222()103x x -=,解得,x =故答案为:16.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)【答案】①③④【解析】 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,OD =OB ,OA =OC , ∴∠DCB +∠ABC =180°, ∵∠ABC =60°, ∴∠DCB =120°, ∵EC 平分∠DCB , ∴∠ECB =∠DCB =60°,∴∠EBC =∠BCE =∠CEB =60°, ∴△ECB 是等边三角形, ∴EB =BC , ∵AB =2BC ,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴==,∴OF=OB,∴S△AOD=S△BOC=3S△OCF,故②错误,设BC=BE=EC=a,则AB=2a,AC=a,OD=OB==a,∴BD=a,∴AC:BD=a:a=:7,故③正确,∵OF=OB=a,∴BF=a,∴BF2=a2,OF•DF=a•(a+a)=a2,∴BF2=OF•DF,故④正确,故答案为①③④.三、解答题(共11小题,计88分.解答应写出过程) 17.(7分)化简:(12)2(1)(1)a a a a -++- 【解析】 原式2222(1)a a a =-+- 22222a a a =-+-2a =-18.(7分) 解方程:2121xx x +=+- 【解析】 ab (3a ﹣2b )+2ab 2 =3a 2b ﹣2ab 2+2ab 2 =3a 2b .19.(7分)如图,在矩形ABCD 中,点E ,F 在对角线BD .请添加一个条件,使得结论“AE =CF ”成立,并加以证明.【解析】添加的条件是BE =DF (答案不唯一). 证明:∵四边形ABCD 是矩形, ∴AB ∥CD ,AB =CD ,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.20.(8分)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.【解析】(1)这个班级的学生人数为15÷30%=50(人),选择C饮品的人数为50﹣(10+15+5)=20(人),补全图形如下:(2)=2.2(元),答:该班同学每天用于饮品的人均花费是2.2元;(3)画树状图如下:由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果,所以恰好抽到2名班长的概率为=.21.(7分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【解析】(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH,∠DCM=∠BCH=45°,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.22.(8分)如图,在Rt ABC∠的平分线AD交BC于点D,点E在AC上,∆中,90B∠=︒,BAC以AE为直径的Oe经过点D.(1)求证:①BC是Oe的切线;②2=g;CD CE CA(2)若点F是劣弧AD的中点,且3CE=,试求阴影部分的面积.【解析】 (1)①连接OD ,AD Q 是BAC ∠的平分线,DAB DAO ∴∠=∠,OD OA =Q ,DAO ODA ∴∠=∠, DAO ADO ∴∠=∠, //DO AB ∴,而90B ∠=︒,90ODB ∴∠=︒, BC ∴是O e 的切线;②连接DE ,BC Q 是O e 的切线,CDE DAC ∴∠=∠,C C ∠=∠,CDE CAD ∴∆∆∽, 2CD CE CA ∴=g ;(2)连接DE 、OE ,设圆的半径为R ,Q 点F 是劣弧AD 的中点,∴是OF 是DA 中垂线,DF AF ∴=,FDA FAD ∴∠=∠,//DO AB Q ,PDA DAF ∴∠=∠, ADO DAO FDA FAD ∴∠=∠=∠=∠,AF DF OA OD ∴===,OFD ∴∆、OFA ∆是等边三角形,30C ∴∠=︒, 1()2OD OC OE EC ∴==+,而OE OD =,3CE OE R ∴===, 260333602DFO S S ππ==⨯⨯=阴影扇形. 23.(8分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣,0),(,1),连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【解析】 (1)如图,过点B 作BH ⊥x 轴 ∵点A 坐标为(﹣,0),点B 坐标为(,1)∴|AB |==2∵BH =1 ∴sin ∠BAH ==∴∠BAH =30° ∵△ABC 为等边三角形 ∴AB =AC =2∴∠CAB+∠BAH=90°∴点C的纵坐标为2∴点C的坐标为(,2)(2)由(1)知点C的坐标为(,2),点B的坐标为(,1),设直线BC的解析式为:y =kx+b则,解得故直线BC的函数解析式为y=x+24.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解析】作CE⊥AB于E,则四边形CDBE 为矩形, ∴CE =AB =20,CD =BE , 在Rt △ADB 中,∠ADB =45°, ∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =,∴AE =CE •tan ∠ACE ≈20×0.70=14, ∴CD =BE =AB ﹣AE =6,答:起点拱门CD 的高度约为6米.25.(8分)现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线y=2x 上的概率. 【解析】(1)∵抽取的负数可能为-2,-1,∴抽取出数字为负数的概率为P=2142 (2)列表如下∵共有16种等可能结果,其中点A 在直线y=2x 上的结果有2种 ∴点A 在直线y=2x 上的概率为81162=='P 26.(9分)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣(t ﹣h )2+0.4刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【解析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]=40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.27.(11分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【解析】(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。
湖北省中考数学黄金冲刺试卷(本试题共4页,满分120分,考试时间120分钟)★祝 考 试 顺 利★注意事项: 1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效. 3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷与答题卡一并上交。
一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.在2-,1-,0,2这四个数中,最小的数是:A .2- B. 1- C. 0 D. 22.下列运算正确的是:A.2x ·63x x =B.x x x =÷56C.642)(x x =- D.532x x x =+ 3.如图所示,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是:A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等4.“六·一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是:A .⎩⎨⎧=+=+33602436,120y x y xB .⎩⎨⎧=+=+33603624,120y x y x C .⎩⎨⎧=+=+3360,1202436y x y x D .⎩⎨⎧=+=+3360,1203624y x y x 5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是:A.正方体B.圆柱C.圆椎D.球6.要得到抛物线1)4(22--=x y ,可以将抛物线22x y =: A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度7.关于x 的一元二次方程032=+-m x x 有两个不相等的实数根,则实数m 的取值范围为:A .m ≥49 B. m <49 C.m 49= D.m <49- 8. 为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(千瓦/户) 40 50 55 60那么这10户居民月用电量(单位:千瓦时),关于这组数据下列说法错误的是:A.中位数是55B.众数是60 C .方差是29 D.平均数是549.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是:A .①②B .①③C .③④D .②③10.函数m mx y +-=2与xm y =(x ≠0)在同一坐标系中的图象大致可能是: 11.如图,在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,则AE 的长为:A.38B. 23C.3D. 38或23 12.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=36cm ;③sin ∠AOB=23;④四边形ABOC 是菱形. 其中正确结论的序号是: A.①③ B.①②③④ C. ②③④ D.①③④二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.分式方程xx 325=+的解为 . 14. 某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图1,图2的两幅不完整的统计图,已知该校有1200名学生,估计全校最喜爱艺体类图书的学生约有 人.15.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处.已知折痕AE=55cm,且tan ∠EFC=43,则矩形ABCD 的周长为 . 16. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 .17.在△ABC 中,∠BAC=90°,∠C=30°,BC=6,P 为直线AC 上的一点(不与A 、C 重合),满足∠APB=60°,则CP= .三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分6分)先化简,再求值:144)131(2+++÷+--x x x x x ,其中x 是方程05221=---x x 的解. 19.(本题满分6分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?20.(本题满分6分)如图,已知函数b x y +-=21的图象与x 轴,y 轴分别交于点A ,B ,与函数x y =的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a >2),过点P 作x 轴的垂线,分别交b x y +-=21和x y =的图象于点C ,D.(1)求点A 的坐标;(2)若OB=CD ,求a 的值.21.(本题满分6分)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?22.(本题满分6分)某船以每小时 36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东 30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.23.(本题满分7分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.(1)求证:CE=CF ;(2)△CDF 可看成图中哪个三角形通过旋转变换得到的?写出旋转过程;(3)若点G 在AD 上,且∠GCE=45°,试判断线段GE ,BE ,GD 之间的数量关系,并说明理由.24.(本题满分10分)某地区发生了特大旱情,为抗旱保丰收,该地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下Ⅰ型 Ⅱ型 投资金额x (万元) x 5 x 2 4补贴金额y (万元) kx y =1(k ≠0) 2 bx ax y +=22(a ≠0) 2.4 3.2(1)分别求1y 和2y 的函数解析式;(2)有一农户投资10万元购买Ⅰ型、Ⅱ型两种设备,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 25.(本题满分10分)如图,在△ABC 中,AB=AC ,D 是BC 的中点.AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O过A ,E 两点,交AB 于点F.已知BC=216,AD=4.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径;(3)求co s ∠BEF 的值.26.(本题满分12分)如图,在平面直角坐标系中,已知点A (-1,0)和点B (4,0),点C 在y 轴正半轴上,且∠ACB =90°,将△COB 绕点C 旋转180°得到△CDE ,连结AE .(1)求证:CE 平分∠AED ;(2)若抛物线c bx x y ++-=221过点E 和点C , 求此抛物线解析式;(3)点P 是(2)中抛物线上一点,且以A 、C 、E 、P为顶点的四边形是平行四边形,求点P 的坐标.答案 一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案A B A B C D B C D B D B二.填空题13.3=x 14.160 15.36 16. 1-π 17.34或32三.解答题 18.解:原式142+-=x x ·22)2(12+-=++x x x x . (3分) 解方程05221=---x x ,得31=x , (5分) 代入原式75231231-=+-=. (6分) 19. 解:设两把不同的锁分别为1A ,2A ,则它们对应能打开的钥匙分别为1a ,2a ,第三把钥匙为3a . (1分)(3分)从表中看出,共有6种等可能情况,其中只有(1A ,1a ),(2A ,2a )可打开锁.(4分) 故一次打开锁的概率是P=31. (6分) 20.解:(1)∵点M 在函数x y =的图象上,且点M 的横坐标为2, ∴点M 的坐标为(2,2). (1分)把点M (2,2)代入b x y +-=21,得21=+-b ,解得3=b , ∴一次函数的解析式为321+-=x y . (2分) 把0=y 代入321+-=x y 得0321=+-x ,解得6=x , ∴点A 的坐标为(6,0). (3分)1a 2a 3a 1A (1A ,1a ) (1A ,2a ) (1A ,3a ) 2A(2A ,1a ) (2A ,2a ) (3A ,3a )(2)把0=x 代入321+-=x y ,得3=y , ∴点B 的坐标为(0,3).∵CD=OB ,∴CD=3. ∵PC ⊥x 轴,∴点C 的坐标为(a ,321+-a ),点D 的坐标为(a ,a ), ∴3)321(=+--a a ,∴4=a . (6分) 21.解:(1)设轮船上的货物总量为k 吨,根据已知条件得240830=⨯=k , (1分)所以v 关于t 的函数关系式为 tv 240=. (2分) (2)把5=t 代入t v 240=,得 485240==v (吨)(4分) 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数tv 240=,当t >0时,t 越小,v 越大,这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.(6分)22. (1)如图 ,过点B 作BD ∥AE ,交AC 于点D.∵AB=36×0.5=18(海里),∠ADB=60°,∠DBC=30°,∴∠ACB=30°,又∵∠CAB=30°,∴BC=AB.(2分)∴BC=AB=18>16. ∴点B 在暗礁区域外.(3分)(2)如图,过点C 作CH ⊥AB ,垂足为点H .由(1)得BC=AB=18(海里)在Rt △CBH 中,∠CBH=60°,∴CH=392318=⨯<16.(5分) ∴船继续向东航行有触礁的危险.(6分)23.(1)证明:在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF (SAS ). (1分)∴CE=CF. (2分)(2)△CDF 可以看成是△CBE 绕点C 顺时针旋转90°得到的. (3分)(3)解:GE=BE+GD. (4分)理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF.∵∠GCE=45°,∴∠BCE+DCG=45°.∴∠GCF=∠DCF+∠DCG=45°.(5分)在△ECG 与△FCG 中,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴△ECG ≌△FCG (SAS ). (6分)∴GE=GF. ∴GE=DF+GD=BE+GD. (7分)24. 解:(1)由题意得①25=k ,52=k ,∴x y 521=. (1分) ② ⎩⎨⎧=+=+,2.3416,4.224b a b a ∴51-=a ,58=b ,∴x x y 585122+-=.(3分) (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资)10(t -万元,共获补贴Q 万元.∴t t y 524)10(521-=-=,t t y 585122+-=, (5分) ∴4565158515242221++-=+--=+=t t t t t y y Q (7分) 529)3(512+--=t . (8分) ∵51-<0,∴Q 有最大值,即当3=t 时,529=最大Q , (9分) ∴710=-t (万元). 即投资7万元购Ⅰ型设备,投资3万元投资Ⅱ设备,共获得最大补贴5.8万元.(10分)25. 解:(1)连接OE. ∵AB=AC ,D 是BC 的中点. ∴∴AD ⊥BC. (1分)∵OA=OE ,∴∠OEA=∠OAE.又∵∠OAE=∠DAE. ∴∠OEA=∠DAE.(2分)∴O E ∥AD. ∴∠OED=∠ADC=90°.∴BC 是⊙O 的切线.(3分)(2)∵BC=216,AD=4,∴BD=28,AB=12.(4分)∵O E ∥AD. ∴△BE O ∽△BDA. ∴AB OB AD OE =.(5分) 设⊙O 的半径为r ,则12124r r -=,即r =3.(6分) (3)∵∠FAE=∠DAE ,∠AEF=∠ADE=90°,∴Rt △AFE ∽Rt △AED.(7分)∴ADAE AE AF =. ∴24462=⨯=⋅=AD AF AE .∴AE=62.(8分)∵∠BEF+∠AED=90°,∠AED+∠EAD=90°∴∠BEF=∠EAD.(9分)∴cos ∠BEF=cos ∠EAD=AE AD =36.(10分) 26.解:(1)由题意得:BC =EC ,∠ABC =∠DEC . (1分)∵AC ⊥BE ,∴AB =AE ,∴∠AEB =∠ABC . (2分)∴∠AEB =∠DEC . 即CE 平分∠AED . (3分)(2)∵∠ACB =90°,CO ⊥AB ,∴△AOC ∽△COB .(4分) ∴OBOC OC OA =. ∴OB OA OC ⋅=2=4,∴OC =2.∴点C 坐标为(0,2),点E 坐标为(-4,4). (6分)由⎪⎩⎪⎨⎧=+-⨯-=.441621,2c b c 得25-=b ,2=c . (7分) ∴所求抛物线解析式为225212+--=x x y . (8分)(3)若以AC 、CE 为邻边,则点E 可以看成点C 向左平移4个单位,再向上平移2个单位,将点A 向左平移4个单位,再向上平移2个单位得点P (-5,2).当x =-5时,()225252521=+-⨯-⨯-=y ,∴点P 在抛物线上.∴点P (-5,2)即为所求; (10分)若以EC 、EA 为邻边,同理可得点P (3,-2),经验证此点不在抛物线上,故舍去;(11分)若以AC 、AE 为邻边,同理可得点P (-3,6),经验证此点不在抛物线上,故舍去;∴点P 的坐标为(-5,2). (12分)。
(第5题)浙江省中考数学黄金冲刺试卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上. 3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.(-2)+3的值等于( ▲ )A .-5 B. -1 C .-6 D . 12.化简a a ⋅2的结果是( ▲ ) A .2a B .22a C .3a D .a3.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B .C .D .4.2015年浙江省公务员考试计划录用9525名.数9525用科学记数法表示为( ▲ ) A .9.525×103 B .0.9525×104 C .95.25×103 D .95.25×102 5.如图是小刘做的一个风筝支架示意图,已知BC ∥PQ ,:2:5AB AP =, BC =20cm ,则PQ 的长是( ▲ )A .45 cmB .50 cmC .60 cmD .80 cm 6.不等式组102+1x x +<⎧⎨-⎩ 的解集是( ▲ )A .1x -<≤12-B .x ≤12C .1x <-D .无解7.甲、乙、丙、丁四位选手各射击10次,每人平均成绩都是9.3环,方差如下表,则这四人中成绩最稳定的是( ▲ )A .甲B .乙C .丙D .丁8.2014年底,我国核电装机容量大约为2000万千瓦,到2016年底我国核电装机容量将达到约3200万千瓦.若设平均每年的增长率为x ,则可列方程为( ▲ ) A .2000(1)3200x += B . 2000(12)3200x += 选手 甲 乙 丙 丁 方差(环2) 0. 31 1.4 2.2 0.5≥0C .22000(1)3200x +=D .22000(1)3200x += 9.甲、乙两人进行跑步训练,他们所跑的路程y (米)与时间 x (秒)之间的关系如图所示,则下列说法错误的是( ▲ ) A .离终点40米处,乙追上甲 B .甲比乙迟3秒到终点C .甲跑步的速度是5米/秒D .乙跑步的速度是203米/秒 10.已知点A ,B 的坐标分别为(-4,0)和(2,0),在直线 y =21-x +2上取一点C ,若△ABC 是直角三角形,则满足条件的点C 有( ▲ ) A . 1个 B .2个 C .3个 D .4个卷 Ⅱ说明:本卷共有2大题,14小题,共90分,请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.因式分解:24a -= ▲ .12.已知a ,b 是一元二次方程220x x --=的两根,则a b += ▲ . 13.小李随机调查了7辆不同品牌汽车的百公里油耗如下:品牌 A B C D E F G 百公里油耗(升)8.19.312.5911137.6这7辆不同品牌汽车百公里油耗的中位数是 ▲ 升.14.如图为一圆柱体工艺品,其底面周长为60cm ,高为25cm ,从点A 出发绕该工艺品侧面一周镶嵌一根装饰线到点B ,则该装饰线最短长为 ▲ cm .15.如图,在矩形ABCD 中,AB =4,BC =5. 点E 在边BC 上,以AE 为边作正方形AEFG , 顶点F 恰好在边CD 上,FG 与AD 交于点H . 则DH 的长为 ▲ .16.如图,在直角坐标系中,过点P (x ,0)作x 轴的垂线分别交抛物线22+=x y 与直线x y 21-= 于A ,B 两点,以线段AB 为对角线作正方形ADBC ,已知点Q (,)a b 为该抛物线上的点.(1)若1x =,当点Q 在正方形ADBC 边上(点A 除外)时,则a 的值为__▲___.(2)若1a =-,当点Q 在正方形ADBC 的内部 (包括边界) 时,x 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)(第14题) (第15题) A BP CDQ . x OyA CH FGB B A图1(第19题)ACD图2αβ 17.(本题6分) 计算:01272sin 60+33⎛⎫︒- ⎪⎝⎭.18.(本题6分) 解方程:1211x x =-+.19.(本题6分)安装了软件“Smart Measure ”的智能手机可以测量物高.其数学原理是:该软件通过测量手机离地面的高度、物体底端的俯角和顶端的仰角即可知道物体高度.如图2小明测得大树底端C 点的俯角α为20°,D 点的仰角β为60°,点A 离地面的高度AB =1.5m . 求大树CD 的高. (结果精确到0.1米,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈, 3 1.73≈,5 2.24.)20.(本题8分) 已知二次函数21533y ax x =+-的图象交y 轴于点C ,与反比例函数ky x=的图象相交于点A (4,1). (1)求a 和k 的值;(2)求二次函数图象的顶点B 的坐标,并判断点B 是否在反比例函数的图象上.21.(本题8分) 桃源中学为了丰富学生的校园生活,组织七年级同学开展每周一次的社团活动,活动内容有篆刻、足球、乐队、篮球、象棋5项.为了方便组织,规定每位同学只能报一项活动,根据报名结果绘制了如下统计图:(1)请将图1中条形统计图补充完整;(2)王明、章杨两位同学对篆刻、乐队、足球三项活动都很感兴趣,决定从三项活动中随机抽取一项参加,利用树状图或列表表示所有可能结果,并求两人参加同一项活动的概率;(3)由于场地限制,参加足球活动的学生人数不能超过参加其余活动学生人数的19,那么至少几位同学需要从参加足球活动调整到参加其余活动.桃源中学七年级社团活动报名情况条形统计图 桃源中学七年级社团活动报名情况扇形统计图(第21题)图2 足球 20% 篆刻乐队 象棋 篮 球22.(本题10分) 如图,⊙O 的半径OA =2, AB 是弦,直线EF 经过点B ,AC ⊥EF 于点C ,∠BAC =∠OAB . (1)求证:EF 是⊙O 的切线; (2)若AC =1,求AB 的长;(3)在(2)的条件下,求图中阴影部分的面积.23.(本题10分)如图,在△ABC 中,AB=BC =10,tan ∠ABC =43,点P 是边BC 上的一点,在线段AP 上取点M ,将线段PM 绕点P 顺时针旋转90°得线段PN .设BP=t . (1)如图1,当点P 在点B ,点M 是AP 中点时,试求AN 的长; (2)如图2,当1=3PM MA 时. ①求点N 到BC 边的距离(用含t 的代数式表示);②当点P 从点B 运动至点C 时,试求点N 运动路径的长.OA(第22题)图1N B(P ) AMC(第23题) 图224.(本题12分)如图,将两块直角三角板摆放在平面直角坐标系中,有∠COD =∠ABO =Rt ∠,∠OCD =45°,∠AOB =60°,且AO =CD =8.现将Rt △AOB 绕点O 逆时针旋转,旋转角为β(0°≤β≤180°).在旋转过程中,直线CD 分别与直线AB ,OA 交于点F ,G . (1)当旋转角β=45°时,求点B 的坐标;(2)在旋转过程中,当∠BOD =60°时,求直线AB 的解析式;(3)在旋转过程中,△AFG 能否为等腰三角形?若能,请求出所有满足条件的β值;若不能,请说明理由.O G Dx C B A Fy(第24题)参考答案及评分标准一. 选择题题号 1 2 3 4 5 6 7 8 9 10 答案 DCDABCACBD评分标准选对一题给3分,不选,多选,错选均不给分二、填空题11.(2)(2)a a -+ 12.1 13.9.3 14. 65 15.3416.(1)a =0 (2)2≤x ≤4或8-3≤x ≤-1三、解答题 (本题有8小题,共66分) 17.(本题6分)原式=1+33-322⨯+3………………………………4分 =234+…………………………………2分 18.(本题6分)12(1)x x +=-…………………………2分3x =……………………………………2分 经检验:原方程的根是3x =…………2分19.(本题6分)在Rt △ACE 中,AB =CE =1.51.5tan 20AE=o 得AE ≈4.17 ………………………………………2分 在Rt △ADE 中tan60 4.17DE=o 得7.21DE =,………………………………………2分 ∴ 1.57.218.718.7CD CE DE =+=+=≈米…………………………1分 答:大树CD 的高为8.7米. ………………………………………1分 20.(本题8分) (1)112a =,4k =……………………………………4分 (2)(-2,-2)……………………………………2分点B 在反比例函数图象上…………………2分21.(本题8分)(1)篆刻的人数为80,图略…………………………………2分 (2)树状图或列表略…………………………………………2分A CD图②αβ E13P =同一项活动……………………………………1分 (3)设x 位同学需要从参加足球活动调整到参加其余活动70x -≤1(280)9x +………………………………1分解得x ≥35…………………………………………1分答:至少35位同学需要从参加足球活动调整到参加其余活动………………1分22.(本题10分)(1)∵OB OA =∴OAB OBA ∠=∠ ∵BAC OAB ∠=∠ ∴BAC OBA ∠=∠∴OB ∥AC ………………………………………1分 ∵AC ⊥EF ∴OB ⊥EF∴EF 是⊙O 的切线………………………………2分 (2)过点O 作OD ⊥AB 于点D ,则12AD AB =………………………………1分 由△ABC ∽△AOD 得AC ABAD AO=………………………………1分 ∴1122AB AB =∴2AB =………………………………1分 (3)∵2OB OA AB === ∴△ABO 是正三角形∴60AOB ∠=︒………………………………1分 在Rt △ABC 中BC ===∴1(12)2OBCA S =+=梯形1分 ∴2-60223603O AB S ππ⨯==扇形………………………………1分∴23S π=阴影………………………………1分 23.(1)在R t △ABC 中∠A BN =90°,AB =10,152BN BM AB ===∴AN ==……………2分(第22题)(2)①Ⅰ)0≤t ≤6时(如图1)过点A 作A E ⊥BC 于点E ,过点N 作NF ⊥BC 于点F .易证:APE ∆∽PNF ∆∴41===AP PN PE FN AE PF∴()t t DN 4123641-=-= ……………2分Ⅱ)当6≤t ≤10时同理可得:()2341641-=-=t t DN ……………2分②(如图2)点N 的运动路径是一条线段. (1)当P 与O 重合时,23=FN ,2=PF ………………1分 当P 与C 重合时,1''=N F ,'2PF =………………1分∴点N 的路径长2235'10(1)1722NN =++=………………1分 24.(本题12分) 解:(1)过点B 作BH ⊥x 轴于点H在Rt △AOB 中,∠AOB =60°,OA =8∴142OB OA ==……………………2' 当β=45°时,即∠BOC =45°, ∴OH =BH =22∴B (2,22'(2)Ⅰ当点B 在第一象限时(如图2)∵∠BOD =60°∴∠BOC =30° ∴B (32) ∵点A 在y 轴上 ∴A (0,8)∴直线AB :y 3+8…………………2'Ⅱ当点B 在第二象限时,(如图3)过点B 作 BE ⊥x 轴于E ,过点A 作AF ⊥BE 于H ∵∠BOD =60° ∴∠BOE =30° 又∵OB =4 ∴B (-32)Oxy B CD E图3OxyABCDH 图1OxyA BC D图2 图1PMBACEF AN B(P ) M C E F 图2N ’ F ’(P )由△OBE ∽△BAH ∴3BE OE OB AH BH AB ===∴AH =23,BH =6 ∴A (-43,-4)∴直线AB :y =3x +8…………………2'(3)Ⅰ当0°<β<45°时(如图4)∵∠AGF 为钝角 ∴当GA =GF 时∴∠A =∠AFG =30° ∴∠OGC =60° 又∵∠GCO =45° ∴∠GOC =180°-60°-45°=75°∴β=∠BOC =75°-60°=15°…………………1'Ⅱ当45°<β<75°时(如图5) ∵∠GAF 为钝角 ∴当AF =AG 时 ∴∠AGF =∠AFG =12∠OAB =15° ∴∠GOC =180°-15°-45°=120°∴β=∠BOC =120°-60°=60°…………………1'Ⅲ当75°<β<180°时 ①F A =FG (如图6) ∴∠A =∠FGA =30°∴∠COG =45°-30°=15°=∠AOM∴β=∠BOC =180°-15°-60°=105°…………………1'②AF =AG (如图7)∴∠AFG =∠AGF =(180°-30°)÷2=75° ∴∠AOM =∠COG =75°-45°=30° ∴∠BOM =30°∴β=∠BOC =180°-30°=150° (1)③GA =GF (如图8) ∴∠A =∠AFG =30°OxyABC DG图4F G OxyABC D F图5GOxyABC D F图6M精品资料∴∠AMO=∠F+∠BCF=75°∴∠BOM=15°β=∠BOC=180°+15°=195°(舍去)综上所述当β为15°或60°或105°或150°时△AFG为等腰三角形.。
2020年中考冲刺训练初三数学试卷分值:150分 时间:120分钟一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.20191的倒数是( ) A .20191 B .20191 C .2019 D .﹣2019 2.下列图标不是轴对称图形的是( )A B C D3.下列各式的计算中正确的是( )A .a 3+a 2=a 5B .a 2•a 3=a 6C .a 6÷a 3=a 2D .(﹣a 3)2=a 6 4.港珠澳大桥是连接香港、珠海和澳门的超大型跨海通道,总长55000米.数据55000米用科学记数法表示为( )A .5.5×104米B .5.5×103米C .0.55×104米D .55×103米5.下列各图形是正方体展开图的是( )A B C D6.一个正多边形的每一个外角都等于45°,则这个多边形的边数为( )A .4B .6C .8D .10 7.如图,△ABD 的三个顶点在⊙O 上,AB 是直径,点C 在⊙O 上,且∠BCD =38°,则∠ABD 等于( )A 、38°B 、52°C 、62°D 、76°8.已知二次函数y=﹣x 2+x+6,将该二次函数在x 轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新的函数图像(如图所示),当直线y=﹣x+m 与新图像有3个交点时,m 的值是( )A .﹣B .﹣2C .﹣2或3D .﹣6或﹣2 二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9. 若二次根式有意义,则x 的取值范围是10.若分式11-x 无意义,则x 的值为 . 11.因式分解:x 2﹣9= .12.将一把直尺和一块含30°的直角三角板ABC 按如图所示的位置放置,如果∠BAF=22°,那么∠CDE 的度数为 .13.如图是由若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是 .14.一元二次方程2x 2+3x-1=0的两个根为x 1、x 2, 则x 12x 2+x 1x 22= .15.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为1,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为 .第12题 第13题 第15题16.如图,直线l 1:y=k 1x 与反比例函数y=xk 2交于点A(-3,1)和点B ,点C 是y 轴正半轴上一个动点,连接AC,BC ,若∠ACB=45°,则△ABC 的面积为 .三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:﹣12019+(π+3)0+|﹣2|﹣.18.解方程:+=419.先化简,再求值:aa a a a a a -+÷---222)242(,请从0、1、2、﹣1、﹣2五个数中选一个你喜欢的数代入求值.20.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,用树状图或列表的方法求恰好选中《九章算术》和《孙子算经》的概率.21. 2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:第16题请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有多少人.22.如图,在□ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若DC=2BC,∠F=33°.求∠BAE的度数.23.如图是公路两侧的路灯在铅垂面内的示意图,灯杆AB的长度为2米,灯杆AB与灯柱BC的夹角∠B=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为14米,从D、E两处测得路灯A的仰角分别为α和β,且tanα=6,β=45º. 求路灯BC的高度.24.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=6cm,DE=5cm,求⊙O直径的长.25.冬季来临,某网店准备在厂家购进A、B两种暖手宝共100个用于销售,若购买A种暖手宝8个,B 种暖手宝3个,需要950元,若购买A种暖手宝5个,B种暖手宝6个,则需要800元.(1)购买A,B两种暖手宝每个各需多少元?(2)由于资金限制,用于购买这两种暖手宝的资金不能超过7650元,且购进A种暖手宝不能少于48个,设购买A种暖手宝m个,求m的取值范围;(3)购买后,若一个A种暖手宝运费为5元,一个B种暖手宝运费为4元,在第(2)各种购买方案中,购买100个暖手宝,哪一种购买方案所付的运费最少?最少运费多少元?26.我们定义:如果一个三角形一条边上的高等于这条边的一半,那么这个三角形叫做“半高底”三角形,这条边叫做这个三角形的“倍底”.图1 图2 图3(1)【概念理解】如图1,在正方形ABCD 中,点E 是AB 的中点,试判断△BCE 是否是“半高底”三角形,请说明理由;(2)【问题探究】如图2,钝角△ABC 是“半高底”三角形,BC 是“倍底“,∠C =135°,AC =2,求BC 的长;(3)【应用拓展】如图3,已知l 1∥l 2,l 1与l 2之间的距离为1.“半高底”△ABC 的“倍底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的22倍.将△ABC 绕点C 按顺时针方向旋转60°得到△A'B'C ,A′C 所在直线交l 2于点D .求CD 的值.27.如图,已知抛物线 y=ax 2+bx (a≠0)过点B (-1,4),C (3,0),直线AB :31634+=x y 与x 轴交于点A ,点D 是抛物线上一点且BD ∥x 轴,连接AD .(1)求该抛物线的解析式及D 点的坐标;(2)点P 是线段AD 上一个动点,连接PB ,试求BP+55DP 的最小值; (3)动点M 从点A 出发沿A ﹣B ﹣D 向终点D 匀速运动,将射线OM 绕点O 顺时针旋转45°得到射线OQ ,过点M 作MN ⊥OQ 于点N①当点N 落在抛物线上时,求出此时点N 的横坐标;②设BN 的长度为n ,直接写出在点M 移动的过程中,n 的最大值和最小值.数学参考答案一、选择题:1--8 CADA DCBD二、填空题:9. 51≥x10. X=111. (x+3)(x-3)12. 52°13. 8314. 4315. 1-π16. 9193+二、解答题:17 4 (6分)18. x=1 (6分)19. 1-a 2 (4+4=8分)20.解:(1) 41(2分)(2) 61(6分)21.解:(1)120 (2分)(2)略(2分)(3108°(2分)(4)150(2分)22. (1)略(5分)(2)∠BAE=33°(5分)23. BC=11(10分)24(1)略(5分) (2)215(5分)25.(1)A 、100元 B 、50元(4分)(2)48≤m ≤53 (4分)A 种48个,B 种52个(1分)最少运费448元 (1分)26.(1)略(3分)(2)BC=2(3分)(3)2610-3032626或或+-=CD (2分×3=6分) 27(1)x 3-x y 2=(2分)D(4,4)(1分)(2)最小值为4(3分)(3)①517233-11+或的横坐标为N (各2分) ②n 的最大值为41,最小值为10213(各2分)。
2020年中考数学金榜冲刺卷(一)(北京专版)数学试卷答案及评分参考 2020.6一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 图略 -----------------2分AF ,BE ;一组邻边相等的平行四边形是菱形-----------------5分18.解:原式 24=-…………………………………………………………4分 4=.………………………………………………………………………………………5分19.(1)解不等式组2+1)5733<+⎧⎪⎨+≤+⎪⎩(①②x x x x ,并写出它的整数解.解:解不等式①得3<x , ………………………………………………………2分解不等式②得1≥-x , ……………………………………………………3分 ∴此不等式组的解集是13-≤<x ,…………………………………………4分 ∴此不等式组的非负整数解是0,1,2. ………………………………………5分20.解:(1)∵关于x 的方程220mx mx m n -++=有两个实数根,∴0≠m .…………………………………………………………………………………1分2(2)4()m m m n ∆=--+40.mn =-≥…………………………………………………………………………2分∴0≤mn .∴实数m ,n 需满足的条件为0≤mn 且0≠m .………………………………………3分(2)答案不唯一,如:1=m ,0=n . ……………………………………………………4分此时方程为2210x x -+=.解得121==x x . ………………………………………………………………………5分21.(1)证明:∵∠A =90°, CE ⊥BD 于E ,∴90∠=∠=︒A CEB . ∵AD ∥BC , ∴∠=∠EBC ADB . 又∵BD=BC ,∴△ABD ≌△ECB . …………………………………………2分 ∴BE=AD . ……………………………………………………3分(2)解:∵∠DCE =15°,CE ⊥BD 于E ,∴∠BDC =∠BCD =75°,∴∠BCE =60°,∠CBE =∠ADB =30°,在Rt △ABD 中,∠ADB =30°,AB=2.∴BD=4,AD=23. ∴∆=ABD S 1232232⨯⨯=.…………………………………4分∵△ABD ≌△ECB . ∴CE = AB=2. ∴∆=BCD S 14242⨯⨯=. ∴=四边形ABCD S ∆ABD S +∆=BCD S 423+………………………5分22.(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°. ………………………………………………………………………1分∴∠CAD +∠CAB =90°. ∵AB 是⊙O 的直径, ∴∠ACB =90°. ∴∠CAB +∠B =90°. ∴∠CAD =∠B . ∵CE =CD , ∴AE =AD .∴∠CAE =∠CAD =∠B . ∵∠B =∠F , ∴∠CAE =∠F .∴AC =CF .………………………………………………………………………………2分(2)解:由(1)可知,sin ∠CAE =sin ∠CAD =sin B=35.∵AB =4,∴在Rt △ABD 中,AD =3,BD =5.………………………………………………………3分 ∴在Rt △ACD 中,CD =95. ∴DE =185,BE =75. ……………………………………………………………………4分 ∵∠CEF =∠AEB ,∠B =∠F ,∴CEF AEB ∆∆.∴35EF CE EB AE ==. ∴EF =2521. ………………………………………………………………………………5分23.解:(1) 将1)(,A a 代入 4=y x得 a =4 ------1分将14)(,A 代入 =4+k k , 得=2k ----2分(2)①区域W 内的整点个数是3 --------------4分②∵直线l 是过点(2,0)D 且平行于直线22=+y x ∴直线l 的表达式为24=-y x当24=5-x 时,即=4.5x 线段PM 上有整点 5分 ∴3 4.5<≤m ---------------------------6分24.(1)9.80;………………………2分(2)画出函数图象………………………4分(3)5.43,8.30………………………6分 25.解:补全表格如下:6≤x <77≤x <8 8≤x <9 9≤x ≤10 机器人 0 0 9 11 人工 33 4 10 ……………3分(1)110; ………………………………………………………………………………………4分 (2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6,可以推断人工的优势在于能完成一些最高水平的操作. ……6分26.解:(1)∵抛物线 223=+-y mx mx (0m >)的顶点D 的纵坐标是4-∴212444--=-m m m ,解得=1m ∴ 223=+-y x x令0=y ,则 13=-x ,21=x∴ A (-3 ,0) B (1 ,0) ------------------------------2分 (2)由题意,抛物线的对称轴为1=-x平均数 中位数 众数 方差 机器人 8.8 9.0 9.5 0.333 人工8.68.8101.868x /–112345678910–112345678910y/cm 2O图1yx-3-2-11-3-1OAB CMN点C (0 ,-3)的对称点坐标是E (-2 ,-3) 点A (-3 ,0)的对称点坐标是B (1 ,0) 设直线l 的表达式为=+y kx b∵ 点E (-2 ,-3)和点B (1 ,0)在直线l 上∴-23,0.+=-⎧⎨+=⎩k b k b 解得1,1.=⎧⎨=-⎩k b ∴直线l 的表达式为1=-y x -------------------------4分 (3)由对称性可知 21(1)1--=--x x ,得122+=-x x 321-<<x∴12341-<++<-x x x ------------------------------6分27.(1)∵线段AD 绕点A 逆时针旋转60︒得到线段AE,∴△ADE 是等边三角形. 在等边△ABC 和等边△ADE 中 AB =AC AD =AE∠BAC =∠DAE =60°∴∠BAD =∠CAE ……………………………………………………1分在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS )……………………………2分 ∴BD=CE ……………………………………3分(2)如图,过点C 作CG ∥BP 交DF 的延长线于点G∴∠G =∠BDF∵∠ADE =60°,∠ADB =90°∴∠BDF =30°∴∠G =30°……………………………………………………4分 由(1)可知,BD =CE ,∠CEA =∠BDAP GFEBCAD∵AD ⊥BP ∴∠BDA =90° ∴∠CEA =90° ∵∠AED =60°,∴∠CED =30°=∠G , ∴CE =CG∴BD =CG ……………………………………………………5分 在△BDF 和△CGF 中BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CGF (AAS )∴BF =FC即F 为BC 的中点.……………………………………………………6分(3)1……………………………………………………7分 28.解:(1)A 1,A 3;……………………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12)为圆心,2为半径作圆,两圆在直线MN 上方的部分与直线12y x =+分别交于点E ,F .可求E ,F 两点坐标分别为(0,12)和(1,32). 只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点.∴点B 的横坐标t 的取值范围是01t ≤≤.……………………………………………5分 (3)1522b ≤≤或332b -<≤-. …………………………………………………………7分。
中考数学冲刺卷学校:___________姓名:___________班级:___________考号:___________一、选择题(12小题,每小题4分,共48分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A .+4B .﹣9C .﹣4D .+92.下列计算正确的是( ).A .3a −a =2B .a 2⋅a 3=a 6C .(a +b)2=a 2+b 2D .a 2+2a 2=3a 23.下列调查中,适宜采用全面调查(普查)方式的是(( )A .对一批圆珠笔使用寿命的调查B .对韩江水质现状的调查C .对某品牌烟花爆竹燃放安全的调查D .对一枚用于发射于卫星的运载火箭各零部件的检查4.下列扑克牌中,中心对称图形有A .1张B .2张C .3张D .4张5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .196.为估计池塘两岸A ,B 间的距离,小明的办法是在地面上取一点O ,连接OA ,OB ,测得OB=15.1m ,OA=25.6m .这样小明估算出A ,B 间的距离不会大于( )A .26mB .38mC .40mD .41m7.某商场把一个双肩背包按进价提高50%标价,然后再按标价八折出售,这样商场每卖出一个书包仍可赢利8元,则这款双肩包的进价是( )A .16元B .24元C .30元D .40元试卷第2页,总25页8.“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD 长为( )A .252寸B .13寸C .25寸D .26寸9.在某次海上搜救工作中,A 船发现在它的南偏西30°方向有一漂浮物,同时在A 船正东10 km 处的B 船发现该漂浮物在它的南偏西60°方向,此时,B 船到该漂浮物的距离是( )A .5√3kmB .10√3kmC .10kmD .20km10.关于的不等式组{x ≤−12x >m的所有整数解的积为2,则的取值范围为( ) A .m >−3 B .m <−2 C .−3≤m <−2 D .−3<m ≤−211.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 2018,若点P (4035,m )在第2018段抛物线C 2018上,则m 的值是A .1B .-1C .0D .403512.如图,在△ABC 中,AC =50 cm ,BC =40 cm ,∠C =90°,点P 从点A 开始沿AC 边向点C 以2 cm/s 的速度匀速运动,同时另一点Q 由点C 开始以3 cm/s 的速度沿着CB 向点B 匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ 的面积等于300 cm 2时,运动时间为( )A .5 sB .20 sC .5 s 或20 sD .不确定二、填空题(6小题,每小题4分,共24分)13.计算:(3-π)0+(-0.2)-2=________.14.现有两张铁片:长方形铁皮长为x+2y,宽为x﹣2y(其中x﹣2y>0);正方形铁皮的边长为2(x﹣y),根据需要把两张铁皮裁剪后焊接成一张长方形的铁片,铁皮一边长为6x,则新铁片的另一边长为_____(不计损失)AC长为半径画弧,两15.已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于12弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于1BD长为半2径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=_____.16.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m2.17.小明到商场购买某个牌子的铅笔x支,用了y元(y为整数).后来他又去商场时,发现这种牌子的铅笔降阶20%,于是他比上一次多买了10支铅笔,用了元钱,那么小明两次共买了铅笔________支.18.大于1的正整数的三次方可“分裂”成若干个连续奇数的和,23=3+5,33= 7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则的值是_________.三、解答题(8小题,共78分)19.已知:如图,在等边△ABC 中,DB 是 AC 边上的高,E 是 BC 延长线上一点,且 DB =DE,求∠E 的度数.试卷第4页,总25页20.(1)计算:(a +1)(a −1)−(a −2)2;(2)解不等式:x −1≥x−22+321.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果技照“A 非常了解.B 了解.C 了解较少.D 不了解”四类分别统计,并绘制了下列两幅统计图不完整).请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)扇形统计图中D 所在的扇形的圆心角为______;(3)将条形统计图补充完整;(4)若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.22.如图,直线y=﹣x+1与x 轴,y 轴分别交于B ,A 两点,动点P 在线段AB上移动,以P 为顶点作∠OPQ=45°交x 轴于点Q .(1)求点A 和点B 的坐标;(2)比较∠AOP 与∠BPQ 的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.23.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元. (1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?(2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺素材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺素材和陶艺素材的数量在原计划基础上分别增加了2.5 %和m%,结果在结算时发现,两种耗材的总价相等,求的值.24.如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB 交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想−−转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程√2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.26.如图,二次函数y=ax2+bx+√3的图像经过A(−1,0),B(3,0),与y轴相交于点C.点P为第一象限的抛物线上的一个动点,过点P分别做BC和x轴的垂线,交BC 于点E和F,交x轴于点M和N.(1)求这个二次函数的解析式;(2)求线段PE的最大值,并求出线段PE最大时点P的坐标;(3)若S△PMN=3S△PEF时,求出点P的坐标.答案解析一、选择题(12小题,每小题4分,共48分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【考点】正负数的运用【分析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.解:收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.2.下列计算正确的是().A.3a−a=2 B.a2⋅a3=a6 C.(a+b)2=a2+b2 D.a2+2a2=3a2【考点】合并同类项的法则,同底数幂的乘法,完全平方公式【分析】根据合并同类项的法则,同底数幂的乘法,完全平方公式进行计算,即可求得答案.解:A、3a-a=2a,故原选项错误;试卷第6页,总25页B、a3•a2=a5,故原选项错误;C、(a+b)2=a2+2ab+b2,故原选项错误;D、a2+2a2=3a2,故本选项正确.故选D.【点睛】此题考查了合并同类项的法则,同底数幂的乘法,完全平方公式.解题的关键是熟记公式.3.下列调查中,适宜采用全面调查(普查)方式的是(()A.对一批圆珠笔使用寿命的调查 B.对韩江水质现状的调查C.对某品牌烟花爆竹燃放安全的调查 D.对一枚用于发射于卫星的运载火箭各零部件的检查【考点】抽样调查和全面调查【分析】普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.由此即可解答.解:选项A,对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查;选项B,对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查;选项C,对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查;选项D,对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查.故选D.【点睛】本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.下列扑克牌中,中心对称图形有()A.1张B.2张C.3张D.4张【考点】中心对称图形【分析】根据中心对称图形的概念求解.解:根据中心对称图形的概念可得:①③是中心对称图形.试卷第8页,总25页故选:B .【点睛】本题考查了中心对称图形的概念,关键是根据中心对称图形是要寻找对称中心,旋转180度后与原图重合解答.5.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .19【考点】列表法或树状图法【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A .【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.6.为估计池塘两岸A ,B 间的距离,小明的办法是在地面上取一点O ,连接OA ,OB ,测得OB=15.1m ,OA=25.6m .这样小明估算出A ,B 间的距离不会大于( )A .26mB .38mC .40mD .41m【考点】三角形的三边关系【分析】根据三角形的三边关系定理得到10.5<AB <40.7,根据AB 的范围判断即可.解:连接AB,根据三角形的三边关系定理得:25.6﹣15.1<AB<25.6+15.1,即:10.5<AB<40.7,∴AB的值在10.5和40.7之间.故选:D.【点睛】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.7.某商场把一个双肩背包按进价提高50%标价,然后再按标价八折出售,这样商场每卖出一个书包仍可赢利8元,则这款双肩包的进价是()A.16元 B.24元 C.30元 D.40元【考点】一元一次方程的应用【分析】设这款双肩包的进价为x元,根据利润=售价-成本价,即可得出关于x的一元一次方程,解之即可得出结论.解:设这款双肩包的进价为x元,根据题意得:(1+50%)×0.8x−x=8,解得:x=40.故选D.【点睛】本题考查的是一元一次方程的应用,正确列出方程是解题的关键.8.“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD长为()A.25寸 B.13寸 C.25寸 D.26寸2【考点】垂径定理,勾股定理【分析】连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x-1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD的长.解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x-1,试卷第10页,总25页∵OA 2=OE 2+AE 2,则x 2=(x-1)2+25,解得:x=13.则CD=2×13=26(cm ).故选D .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.9.在某次海上搜救工作中,A 船发现在它的南偏西30°方向有一漂浮物,同时在A 船正东10 km 处的B 船发现该漂浮物在它的南偏西60°方向,此时,B 船到该漂浮物的距离是( )A .5√3kmB .10√3kmC .10kmD .20km【考点】解直角三角形的应用【分析】首先根据等角对等边证明△ABC 是等腰三角形,作AD ⊥BC 于点D ,则BC =2BD ,在直角△ABD 中利用三角函数求的BD ,则BC 即可求得.解:∵△ABC 中,∠ABC =90°-60°=30°,∠CAB =30°+90°=120°, ∴∠C =30°,∴∠C =∠ABC ,∴AB =AC =10km .作AD ⊥BC 于点D ,则BC =2BD .在直角△ABD 中,BD =AB •cos30°=5√3(km ).则BC =10√3(km ).故选B .【点睛】本题考查了方向角以及等腰三角形的判定和三角函数,解题关键是正确理解方向角的定义,证明△ABC 是等腰三角形.10.关于x 的不等式组{x ≤−12x >m 的所有整数解的积为2,则m 的取值范围为( )A .m >−3B .m <−2C .−3≤m <−2D .−3<m ≤−2 【考点】一元一次不等式组的整数解【分析】首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围. 解:原不等式组的解集为m <x ≤−12.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m <-2. 故选C .【点睛】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,要借助数轴做出正确的取舍. 11.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 2018,若点P (4035,m )在第2018段抛物线C 2018上,则m 的值是A .1B .-1C .0D .4035 【考点】二次函数与几何变换【分析】根据抛物线与x 轴的交点问题,得到图象C 1与x 轴交点坐标为:(0,0),(2,0),再利用旋转的性质得到图象C 2与x 轴交点坐标为:(2,0),(4,0),则抛物线C 2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x 为偶数时,纵坐标为0,横坐标是奇数时,纵坐标为1或-1,只要判断n 的值即可解决问题. 解:∵一段抛物线C 1:y=-x (x-2)(0≤x≤2), ∴图象C 1与x 轴交点坐标为:(0,0),(2,0), ∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;, ∴抛物线C 2:y=(x-2)(x-4)(2≤x≤4), 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; …∴P (4035,m )在抛物线C 2018上,∵n=2018是偶数,∴P(4035,m)在x轴的下方,m=-1,∴当x=4035时,m=-1.故选:B.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在△ABC中,AC=50 cm,BC=40 cm,∠C=90°,点P从点A开始沿AC边向点C以2 cm/s的速度匀速运动,同时另一点Q由点C开始以3 cm/s的速度沿着CB 向点B匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ的面积等于300 cm2时,运动时间为( )A.5 s B.20 s C.5 s或20 s D.不确定【考点】一元二次方程的应用【分析】设x秒后,△PCQ的面积等于300 cm2,根据路程=速度×时间,可用时间x表示出CP和CQ的长,然后根据直角三角形的面积公式,得出方程,求出未知数,然后看看解是否符合题意,将不合题意的舍去,即可得出时间的值.解:设x秒后,△PCQ的面积等于300 cm2,有:1(50-2x)×3x=300,2∴x2-25x+100=0,∴x1=5,x2=20.当x=20s时,CQ=3x=3×20=60>BC=40,即x=20s不合题意,舍去.答:5秒后,△PCQ的面积等于300 cm2.故选:A.【点睛】此题主要考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程求出是解题关键.二、填空题(6小题,每小题4分,共24分)13.计算:(3-π)0+(-0.2)-2=________.【考点】实数的运算试卷第12页,总25页【分析】由任意一个非0实数的0次幂为1及实数的负指数幂概念即可求出。
河北省保定市九年级中考模拟测试数学冲刺卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.平方是的数是()A.B.C.D.2.如图是一个工件,从正面看,所看到的图形是()A.B.C.D.3.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 4.如图下面镜子里哪个是他的像?()A.A B.B C.C D.D5.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OE⊥AC于点E,且OE =2,则AB、CD之间的距离为()A.2 B.4 C.6 D.86.在平面内,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三条边垂直平分线的交点7.若x2﹣kx+64是完全平方式,则k的值是()A.±8 B.±16 C.+16 D.﹣168.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.9.如图,用一根绳子检查一个书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC,BD就可以判断,其数学依据是()A.三个角都是直角的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形10.据天气预报报道,福建省部分城市某日的最高气温如表所示:城市福州厦门宁德莆田泉州漳州龙岩三明南平最高气11 16 11 13 13 17 16 11 9温(℃)则下列说法正确的是()A.龙岩的该日最高气温最高B.这组数据的众数是16C.这组数据的中位数是11D.这组数据的平均数是1311.如图,二次函数y=ax2+bx+c(a≠0)图象经过点(﹣1,2),下列结论中正确的有()①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,A.1个B.2个C.3个D.4个12.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm 13.如图所示,在平面直角坐标系中,直线y1=2x+4分别与x轴,y轴交于A,B两点,以线段OB为一条边向右侧作矩形OCDB,且点D在直线y2=﹣x+b上,若矩形OCDB 的面积为20,直线y1=2x+4与直线y2=﹣x+b交于点P.则P的坐标为()A.(2,8)B.C.D.(4,12)14.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.m≥﹣1 D.m>﹣1 15.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()A.1m B.1.1m C.1.2m D.1.3m16.如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I为AD上一点,且DC=DB=Dl,A I长为()A.B.C.D.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.因式分解b2﹣2bc+c2﹣1=.18.若实数a,b满足,则a﹣b的平方根是.19.观察下列等式(式子中的“!”是一种数学运算符号)1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,……,那么计算:=.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)先化简,再求值:已知x=,y=1,求的值.21.(本小题满分9分)如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.22.(本小题满分9分)今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是60;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.23.(本小题满分9分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,进市场调查,甲种花卉的种植费用y(元)与种植面积xm2之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)请直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,如果甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?(3)在(2)的条件下,若种植总费用不小于123000元,求出甲种花卉种植面积的范围是多少?24.(本小题满分10分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知“1”所在的台阶数为4k﹣1.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ̂上且不与A点重合,但Q点可与B点重合.发现:AP̂的长与QB̂的长之和为定值l,求l:思考:点M与AB的最大距离为√3,此时点P,A间的距离为2;点M与AB的最小距离为√32,此时半圆M的弧与AB所围成的封闭图形面积为π6−√34;探究:当半圆M与AB相切时,求AP̂的长.(注:结果保留π,cos35°=√63,cos55°=√33)26.(本小题满分12分)如图,抛物线L:y=−12(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=kx(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.。
中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________第I卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1.2-的绝对值是()A.2B.2-C.2或2-D.12或12-2.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.84410⨯B.84.410⨯C.94.410⨯D.104410⨯3.化简25()a a-g所得的结果是()A.7a B.7a-C.10a D.10a-4.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.5.若一个三角形的两边长分别是4、9,则这个三角形的第三边的长可能是() A.3B.5C.8D.136.抽样调查某班10名同学身高(单位:厘米)如下:160,152,165,152,160,160,170,160,165,159.则这组数据的众数是()A.152B.160C.165D.1707.若关于x的一元二次方程2(6)230a x x--+=有实数根,则整数a的最大值是() A.4B.5C.6D.78.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:)A与电阻R(单位:)Ω是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器的限制电流不能超过6A ,那么用电器的可变电阻R 应控制在( )A .2R …B .02R <„C .1R …D .01R <„第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.因式分解:2269x xy y -+= .10.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为cm .11.方程110x-=的解是 . 12.一个多边形的内角和是720︒,这个多边形的边数是 . 13.不等式组2x ax >⎧⎨>⎩的解为2x >,则a 的取值范围是 .14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r =,扇形的圆心角120θ=︒,则该圆锥母线l 的长为 .(第14题)(第15题)(第16题)15.如图,已知123////l l l ,直线4l 、5l 被这组平行线所截,且直线4l 、5l 相交于点E ,已知1AE EF ==,3FB =,则ACBD= . 16.已知矩形ABCD 的两边AB 与BC 的比为4:8,E 是AB 上的一点,沿CE 将EBC ∆上翻折,若B 点恰好落在边AD 上的F 点,则tan DCF ∠= .三、解答题(本大题共有11小题,共102分。
2020年中考数学冲刺卷
一、选择题(共10小题,每小题3分,计30分)
1.(3分)下列四个数中是无理数的是( )
A .3
B .3π
C .3.14159
D .√9
2.(3分)一个空心的圆柱如图所示,那么它的主视图是( )
A .
B .
C .
D .
3.(3分)党的十八大以来,积极践行“绿水青山就是金山银山”的发展理念,大力开展植树造林,到2018年底,全国森林面积达到32.2亿亩,森林覆盖率达到22.35%,32.2亿用科学记数法表示为( )
A .32.2×108
B .32.2×109
C .3.22×108
D .3.22×109
4.(3分)如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =65°,则∠2的度数为( )
A .20°
B .25°
C .30°
D .35° 5.(3分)用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是( )
A .(x ﹣1)2=4
B .(x +1)2=4
C .(x ﹣1)2=16
D .(x +1)2
=16 6.(3分)一元一次不等式组{2(x +3)−4≤0x+13
>x −1的最大整数解是( ) A .﹣1 B .0 C .1 D .2
7.(3分)把直线y =﹣x +2向上平移a 个单位后,与直线y =2x +3的交点在第二象限,则a
的取值范围是()
A.a>1 B.−7
2<a<0C.−
7
2<a<1D.a<1
8.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()
A.40°B.36°C.50°D.45°
9.(3分)若(a
a−b −
1
a+b
)÷M的化简结果是−
1
a+b,那么分式M为()
A.a
a+b B.
b
b−a
C.
a
a−b
D.−
b
a+b
10.((3分)《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长x尺,则可列方程为()
A.x2+102=(x+1)2B.(x﹣1)2+52=x2
C.x2+52=(x﹣1)2D.x2+12=(x﹣1)2
二、填空题(共4小题,每小题3分,计12分)
11.(3分)计算:(√2+1)(√2−1)=.
12.(3分)如果一个正多边形的中心角为45°,那么这个正多边形的边数是.
13.(3分)如图,点A是双曲线y=4
x在第一象限上的一动点,连接AO并延长交另一分支于
点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.
14.(3分)如图,在矩形ABCD 中,O 是对角线AC 的中点.将ABCD 绕点B 顺时针旋转90°.旋转后的四边形为A 'B ′C ′D ',点A ,C ,D ,O 的对应点分别为A ′,C ',D ',O ’,若AB =8,BC =10,则线段CO ’的长为 .
三、解答题(共11题,计78分,解答应写出过程)
15.若实数x ,y 满足√2018−x +|x +y −4037|=0,求代数式x 2﹣2xy +y 2的值.
16.先化简:(
3a+1−a +1)÷a 2−4a+4a+1
,并从0,﹣1,2中选一个合适的数作为a 的值代入求值.
17.如图,已知点P 为△ABC 边BC 上一点.请用直尺和圆规作一条直线EF ,使得A 关于EF 的对称点为P .(保留作图痕迹,不写作法)
18.如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =m x 的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3.
(1)求一次函数与反比例函数的表达式;
(2)当x >0时,比较kx +b 与m x 的大小.
19.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
20.小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.请你求出松树的高.
21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)若小明快递的物品超过1千克,则他应选择哪家快递公司更省钱?
22.某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于50元/件,设一次性购买x万件(x>10)
(1)若x=15,则售价应是元/件;
(2)一次性购买多少件产品时,该公司的销售总利润为728万元;
23.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD 分别交于点E、点F,且∠ABE=∠DBC.
(1)判断直线BE与⊙O的位置关系,并证明你的结论;
(2)若sin∠ABE=√3
3,CD=2,求⊙O的半径.
24.某厂家欲将n件产品运往A,B,C三地销售,运费分别为30元/件,8元/件,25元/件,且要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.
(1)当n=200时,
①根据信息填表:
A地B地C地产品件数(件)x2x
运费(元)30x
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方
案?
(2)若总运费为5800元,求n的最小值.
25.【探索发现】
如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.
【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)
【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=60cm,BC=105cm,CD=70cm,
且tan B=4
3,tan C=2,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大
的矩形PQMN,求该矩形的面积.。