七年级数学下第五章测试卷
- 格式:doc
- 大小:80.00 KB
- 文档页数:4
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。
七年级下册第五章数学测试卷一、选择题(每题3分,共30分)1. 下面四个图形中,∠1与∠2是对顶角的图形的个数是()A. 0个B. 1个C. 2个D. 3个。
2. 如图,直线AB、CD相交于点O,若∠1 + ∠2 = 100°,则∠BOC等于()A. 130°B. 140°C. 150°D. 160°.(此处可画一个简单的相交直线图,标注∠1、∠2和∠BOC)3. 如图,直线a∥b,∠1 = 70°,那么∠2的度数是()A. 50°B. 60°C. 70°D. 80°.(画直线a、b平行,标注∠1和∠2)4. 下列说法正确的是()A. 有且只有一条直线与已知直线平行。
B. 垂直于同一条直线的两条直线互相平行。
C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D. 在平面内过一点有且只有一条直线与已知直线垂直。
5. 如图,能判定EB∥AC的条件是()A. ∠C = ∠ABEB. ∠A = ∠EBDC. ∠C = ∠ABCD. ∠A = ∠ABE. (画一个简单的三角形ABC,E在AB延长线上,标注相关角)6. 如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 16cmB. 18cmC. 20cmD. 22cm.(画出三角形ABC平移得到三角形DEF的图,标注平移距离2cm)7. 如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1 = 50°,则∠2等于()A. 50°B. 60°C. 65°D. 70°.(画AB∥CD,EF与它们相交,标注∠1,EG平分∠BEF,标注∠2)8. 下列命题中:相等的角是对顶角;在同一平面内,若a∥b,b∥c,则a∥c;同旁内角互补;④互为邻补角的两角的角平分线互相垂直。
数学七年级下册第五章一、选择题(每题3分,共30分)下列各式中,属于整式的是()A. x+x1B. 3x2−2xy+y2C. xD. x+1x下列合并同类项的结果中,正确的是()A. 3x+2x=5B. 2x2−x2=1C. 7x−x=6D. x2y−yx2=0下列说法正确的是()A. a6的系数是1B. 单项式−2πab2的次数是3C. 多项式2x2−3x+1是三次三项式D. x2+y2与x+y2是同类项下列去括号正确的是()A. a−(b−c)=a−b−cB. a+(b+c−d)=a−b−c+dC. a−2(b−c)=a−2b+2cD. −(a−b)+c=−a+b+c若多项式x2−kx−15因式分解的结果是(x+3)(x−5),则k的值为()A. −2B. 2C. −8D. 86-10题略...二、填空题(每题4分,共20分)若单项式2x2y与−5xyn是同类项,则n= _______。
若多项式3x2−kx−8分解因式得(3x+4)(x−2),则k= _______。
已知(x+3)(x+n)=x2+(n+3)x+21,则n= _______。
去括号:a−2(b−c)= _______。
若A=2x2−ax−y+6,B=−bx2+3x−5y−1,且A+2B中不含x项,则a+2b= _______。
三、解答题(共50分)合并同类项:(1)3a+2b−5a+b(2)5x2y−3xy2+7x2y−xy2+1先化简,再求值:(1)(2x2−x)−2(x2−3x),其中x=−1(2)3a2−[5a−(2a−3)+2a2],其中a=−21已知多项式A=3x2−5x+1,B=2x2+3x−1,求:(1)A−B(2)当x=−1时,求A−B的值。
若关于x的多项式x2+3kxy−3y2+xy−8不含xy项,求k的值。
已知多项式A=(x+1)2−x(x−2)。
(1)化简多项式A。
(2)若(x+2)A+B=x3+5x2+8x+4,求B。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是( )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是( )图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是( )A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是( )A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是( )A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有( )A.4组B.5组C.6组D.7组10.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为( )A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD 时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.参考答案第五章相交线与平行线单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共36分)1.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角2.如图,在6×6方格中有两个涂有阴影的图形M,N,图1中的图形M平移后位置如图2所示,以下对图形M的平移方法叙述正确的是(B)图1 图2A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位3.∠1与∠2是直线a,b被直线c所截得的同位角,∠1与∠2的大小关系是(D)A.∠1=∠2 B.∠1>∠2C.∠1<∠2 D.无法确定4.如图,已知∠1=70°,要使AB∥CD,则需具备的另一个条件是(C)A.∠2=70° B.∠2=100°C.∠2=110° D.∠3=110°5.对于图中标记的各角,下列条件能够推理得到a∥b的是(D)A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°6.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为(A)A.40° B.35° C.50° D.45°7.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是(D)A.∠EMB=∠END B.∠BMN=∠MNCC.∠CNH=∠BPG D.∠DNG=∠AME8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(A)A.60° B.120° C.150° D.180°9.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C)A.4组B.5组C.6组D.7组10.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm12.下列说法正确的是(C)A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项二、填空题(每小题4分,共24分)13.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.14.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=270°.15.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.16.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.17.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.18.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3=110°.三、解答题(共60分)19.(8分)如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC 平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF 平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE 和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).20.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).21.(8分)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD.22.(8分)某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A =115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.23.(8分)如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.24.(8分)如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.解:答案不唯一,如:已知:如图,AB⊥BC,CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∠ABC=∠DCB=90°.又∵BE∥CF,∴∠EBC=∠FCB.∴∠ABC-∠EBC=∠DCB-∠FCB,即∠1=∠2.25.(12分)阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C 之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).。
人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。
七年级数学下册第五章相交线与平行线综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠BOD 等于( )A .55°B .125°C .115°D .65°2、如图,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,交点分别为点M 、点N ,若∠AME =130°,则∠DNM 的度数为( )A .30°B .40°C .50°D .60° 3、可以用来说明“若22a b =,则a b =.”是假命题的反例是( )A .1,2a b =-=B .2,2a b ==C .2,2a b =-=D .4,3a b ==4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为()A.80°B.90°C.100°D.110°5、命题“如果a<0,b<0,那么ab>0”的逆命题是()A.如果a<0,b<o,那么ab<0 B.如果ab>0,那么a<0,b<0 C.如果a>0,b>0,那么a<0 D.如果ab<0,那么a>0,b>06、下列说法正确的是()A.命题是定理,但定理未必是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题∠构成同位角的有()7、如图,能与αA.4个B.3个C.2个D.1个8、命题“等角的余角相等”中的余角是()A.结论的一部分B.题设的一部分C.既不属于结论也不属于题设D .同属于题设和结论部分9、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④10、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、举例说明命题“如果22a b ≠,那么a b ”的逆命题为假命题__.2、如图,BD 平分ABC ∠,()430A x ∠=+︒,()15DBC x ∠=+︒,要使AD BC ∥,则x =______°.3、把命题“同角的余角相等”改写成:如果_____________________,那么_____________.4、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a//b,a⊥c,那么b⊥c;②如果b//a,c//a,那么b//c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b//c.其中正确的是__.(填写序号)5、命题“垂直于同一直线的两条直线互相垂直”是______命题.(填“真”或“假”)三、解答题(5小题,每小题10分,共计50分)1、写出下列各命题的逆命题,并判断原命题和逆命题的真假.(1)同位角相等;(2)如果|a|=|b|,那么a=b;(3)等边三角形的三个角都是60°.2、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点D ,E 分别在线段AB 、BC 上,AC DE ∥,AE 平分BAC ∠,DF 平分BDE ∠交BC 于点E 、F .求证:DF AE ∥.证明:AE ∵平分BAC ∠(已知),112(2BAC ∴∠=∠=∠ ). DF 平分BDE ∠(已知), 1342∴∠=∠= (角平分线的定义),AC DE ∥(已知),(BDE BAC ∴∠=∠ ).23(∴∠=∠ ).(DF AE ∴∥ ).3、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB 的两个端点都在格点上,点P 也在格点上;(1)在图①中过点P 作AB 的平行线;(2)在图②中过点P 作PQ ⊥AB ,垂足为Q ;连接AP 和BP ,则三角形ABP 的面积是 .4、如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t (0≤t ≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵ ∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴ AB∥CD∥EF(,)∴ ∠A= ,∠C= ,(,)∵ ∠AFE =∠EFC+∠AFC,∴ = .---------参考答案-----------一、单选题1、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.2、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN =130°.3、C【分析】若22a b =,则包括a b =或a b =-,由此分析即可.【详解】解:∵22a b =,∴a b =或a b =-,∴反例可为2,2a b =-=,故选:C .【点睛】本题考查命题的判断,以及等式的性质,掌握举例证明命题真假的方法以及等式的性质是解题关键.4、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵AB //DC ,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.5、B【分析】根据互逆命题概念解答即可.【详解】解:命题“如果a<0,b<0,那么ab>0”的逆命题是“如果ab>0,那么a<0,b<0”,故选:B.【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6、B【分析】命题是判断一件事情的句子,可分为真命题和假命题;公认的真命题称之为公理,经过证明的真命题称之为定理;命题的结构必须有条件和结论,由此进行分析判断即可得到答案.【详解】解:A、说法错误,定理是经过证明的真命题,但是命题不一定是定理;B、说法正确,公理和定理都是真命题;C、说法错误,定理是经过证明的真命题,命题有真假之分;D、说法错误,取线段AB的中点C是描述性语言,不是命题,更不是真命题.故选:B【点睛】本题考查命题的定义、公理和定理的概念等相关知识点,牢记定义内容是解此类题的关键.7、B【分析】根据同位角的定义判断即可;【详解】∠能构成同位角的有:∠1,∠2,∠3.如图,与α故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.8、B【分析】根据命题题设与结论的定义:题设是已知事项,结论是已知事项推出的事项,进行逐一判断即可.【详解】解:“等角的余角相等”中题设是:两个等角的余角,结论是:相等,故选B.【点睛】本题主要考查了命题的题设与结论,熟知定义是解题的关键.9、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③B与4∠是同位角,说法正确;④1∠是内错角,说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.10、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF =FD ,BE =EC ,AB =EF =CD ,∴四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A 、B 、C 不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D 符合题意;故选D .【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、如果55-≠,而22(5)5-=(举例不唯一)【解析】【分析】首先要写出原命题的逆命题,然后通过实例说明逆命题不成立即可.【详解】解:如果22a b ≠,那么a b 的逆命题是:如果a b ,那么22a b ≠.如果55-≠,而22(5)5-=.故如果a b ,那么22a b ≠为假命题.故答案为:如果55-≠,而22(5)5-=(举例不唯一).【点睛】本题考查逆命题的相关知识,关键是能够写出原命题的逆命题.2、20【解析】【分析】利用角平分线的定义求解230,ABC x 再由AD BC ∥可得180,A ABC 再列方程求解即可.【详解】 解: BD 平分ABC ∠,()15DBC x ∠=+︒,2230,ABC DBC x由AD BC ∥,180,A ABC 而()430A x ∠=+︒,230430180,x x解得:20,x =所以当20x 时,AD BC ∥,故答案为:20【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.3、两个角是同一个角的余角 这两个角相等【解析】【分析】根据命题的概念把原命题改写成“如果…,那么…”的形式,根据余角的概念判断即可.【详解】解:命题“同角的余角相等”,改写成“如果…,那么…”的形式为:如果两个角是同一个角的余角,那么这两个角相等.故答案为:两个角是同一个角的余角,这两个角相等.【点睛】本题考查的是命题的概念,命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.4、①②④【解析】【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果a//b,a⊥c,那么b⊥c,正确;②如果b//a,c//a,那么b//c,正确;③如果b⊥a,c⊥a,那么b//c,错误;④如果b⊥a,c⊥a,那么b//c,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.5、假【解析】【分析】由平行线公理进行判断,即可得到答案.【详解】解:垂直于同一直线的两条直线互相平行;∴原命题是假命题;故答案为:假;【点睛】本题考查了判断命题的真假,解题的关键是熟记平行线公理进行判断.三、解答题1、(1)相等的角是同位角,是假命题;(2)如果a=b,那么|a|=|b|,是真命题;(3)三个角都是60°的三角形是等边三角形,是真命题.【分析】根据逆命题的概念分别写出各个命题的逆命题,判断真假即可.【详解】解:(1)同位角相等的逆命题是相等的角是同位角,是假命题;(2)如果|a|=|b|,那么a=b的逆命题是如果a=b,那么|a|=|b|,是真命题;(3)等边三角形的三个角都是60°的逆命题是三个角都是60°的三角形是等边三角形,是真命题.【点睛】h本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、角平分线的定义;BDE;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:AE∵平分BAC∠(已知),1 122BAC∴∠=∠=∠(角平分线的定义).DF平分BDE∠(已知),1 342BDE∴∠=∠=∠(角平分线的定义),//AC DE(已知),BDE BAC∴∠=∠(两直线平行,同位角相等).23∴∠=∠(等量代换).//DF AE∴(同位角相等,两直线平行).故答案为:角平分线的定义;BDE∠;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC即为所求.(2)如图②,PQ 即为所求.三角形ABP 的面积为111343131425222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.4、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60,解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t =9,当18≤t ≤30时,同理可得:18090,AOM BON∴ 4t +6t =180+90解得t =27.030,t 所以大于30的答案不予讨论,答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.。
第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
七年级下册数学第五章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。
()2. 一个三角形的内角和总是等于180度。
()3. 任何两个奇数相加的结果一定是偶数。
()4. 如果一个数的因数只有1和它本身,那么这个数一定是质数。
()5. 1千克等于1000克。
()三、填空题(每题1分,共5分)1. 24的因数有:____、____、____、____、____。
2. 一个三角形的两个内角分别是30度和60度,那么第三个内角是____度。
3. 如果一个长方体的长是10cm,宽是6cm,高是8cm,那么它的体积是____立方厘米。
4. 3.5小时等于____分。
5. 如果a=4,那么3a-7的值是____。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 简述三角形内角和的性质。
3. 解释什么是因数。
4. 简述长方体的体积公式。
5. 解释什么是比例。
五、应用题(每题2分,共10分)1. 一个长方体的长是15cm,宽是10cm,高是5cm,求它的体积。
2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是多少度?3. 找出24的所有因数。
4. 如果a=5,那么3a+4的值是多少?5. 将3.6小时转换为分钟。
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(
)
A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】人教版数学七年级下册第五章单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对2.(3分)下图中,∠1和∠2是同位角的是()A .B .C .D .1初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°2初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.3初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 48.(3分)如图,直线a ∥b ,直线c 与a ,b 相交.若∠1=70°,则∠2= 度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= °.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 510.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= 度.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 612.(3分)如图所示,请写出能判定CE ∥AB的一个条件.13.(3分)如图,已知AB ∥CD ,∠α= .初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 714.(3分)如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB ∥CD ,∠A=70°,求∠1的度数.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 816.(5分)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.9初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,10初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0B .a ,b 之一是0C .a ,b 互为相反数D .a ,b 互为倒数2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式B .单项式与单项式的和是多项式C .多项式与多项式的和是多项式D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数C .没有最大的负整数D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( )A .a ,b 同号B .a ,b 异号C .a >0D .b >05.大于-π并且不是自然数的整数有 ( )A .2个B .3个C .4个D .无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;11 则 ∥(内错角相等,两直线平行);若∠DAB +∠ABC=180°,则 ∥ (同旁内角互补,两直线平行);②当 ∥ 时,∠C +∠ABC=180°(两直线平行,同旁内角互补);③当 ∥ 时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.12初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖13初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.14初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.15初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;16初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对 B.2对 C.3对 D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.17初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A .B .C .D .【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;18初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140° D.160°【考点】J2:对顶角、邻补角.19初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()20初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方21初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.22初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,23初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.24初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;。
人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5 2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm 4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.12.(3分)如图,若∠1+∠2=220°,则∠3=.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是,依据是.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移格,再向上平移格.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=.17.(3分)如图,∠A与是内错角,∠B的同位角是,直线AB和CE被直线BC所截得到的同旁内角是.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=°.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=度.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5【考点】平行线的判定.【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°【考点】平行线的判定与性质.【分析】根据平行线的判定推出CD∥AB,根据平行线的性质得出∠A=∠DCE,代入求出即可.【解答】解:∵CD⊥BC,∴∠BCD=90°,∵∠B=90°,∴∠B=∠BCD,∴CD∥AB,∴∠DCE=∠A,∵∠A=30°,∴∠DCE=30°,故选:C.3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm【考点】点到直线的距离.【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【解答】解:∵垂线段最短,∴点P到直线m的距离≤3cm,故选:D.4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°【考点】垂线.【分析】根据垂直定义可得∠COB=90°,从而求出∠COF=40°,然后再根据对顶角相等,即可解答.【解答】解:∵AB⊥CD,∴∠COB=90°,∵∠1=50°,∴∠COF=∠COB﹣∠1=40°,∴∠2=∠COF=40°,故选:A.6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【解答】解:①∠1与∠2是同旁内角,说法正确;②∠1与∠ACE是内错角,说法正确;③∠B与∠4是同位角,说法正确;④∠1与∠3是内错角说法正确,故选:D.7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠ACD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选:B.8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【考点】平行线的性质.【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个【考点】平移的性质.【分析】利用平移的性质依次判断可求解.【解答】解:∵将三角形ABC沿直线BC向右平移2个单位得到三角形DEF,∴AD=BE=CF=2,AC∥DF,AB∥DE,AB=DE=3,AC=DF=4,BC=EF=5,∠BAC=∠EDF=90°,∴BF=5+2=7,EC=5﹣2=3,DE⊥DF,故①和②正确;∵四边形ABFD的周长=AB+AD+DF+BF,∴四边形ABFD的周长=3+4+2+7=16,故③正确;∵AD=2,EC=3,∴AD:EC=2:3,故④正确,故选:D.10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°【考点】平行线的性质.【分析】利用基本结论:∠E=∠ABE+∠CDE,∠F=∠CDF+∠ABF,构建方程组解决问题即可.【解答】解:设∠ABE=∠EBF=x,∠FDE=∠FDC=y,∵AB∥CD,∴易知∠E=∠ABE+∠CDE=x+2y,∠F=∠CDF+∠ABF=2x+y,∵2∠E﹣∠F=48°,∴2(x+2y)﹣(2x+y)=48°,∴y=16°,∴∠CDE=2y=32°,故选:B.二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【考点】命题与定理.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.12.(3分)如图,若∠1+∠2=220°,则∠3=70°.【考点】对顶角、邻补角.【分析】先根据对顶角相等求出∠1的度数,再根据平角等于180°列式求解即可.【解答】解:∵∠1+∠2=220°,∠1=∠2(对顶角相等),∴∠1=×220°=110°,∴∠3=180°﹣∠1=180°﹣110°=70°.故答案为:70°.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:垂线段最短.【考点】垂线段最短.【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.【解答】解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.故答案为:垂线段最短.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是AB∥CD,依据是同旁内角互补,两直线平行.【考点】平行线的判定.【分析】由已知∠ABC=110°,∠BCD=70°,即∠ABC+∠BCD=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:∵∠ABC=110°,∠BCD=70°,∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:AB∥CD;同旁内角互补,两直线平行.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=56°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠NOE=∠FEO,由角平分线的性质求得答案.【解答】解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,∵OE平分∠MON,∠MON=2∠NOE=2∠FEO=56°.故答案为:56°.17.(3分)如图,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE.【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的概念,在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.【解答】解:如图所示,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE,故答案为:∠ACD,∠ACE;∠ECD,∠ACD;∠B与∠BCE.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=60°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠ACD的度数,再由AC∥DF即可得出结论.【解答】解:∵AB∥CD,∠BAC=120°,∴∠ACD=180°﹣120°=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故答案为:60.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=270度.【考点】平行线的性质.【分析】首先过点B作BF∥AE,易得∠BAE+∠ABC+∠BCD=360°,又由BA⊥AE,即可求得∠ABC+∠BCD的值.【解答】解:过点B作BF∥AE,∵CD∥AE,∴CD∥BF∥AE,∴∠BCD+∠CBF=180°,∠ABF+∠BAE=180°,∴∠BAE+∠ABF+∠CBF+∠BCD=360°,即∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=270°.故答案为:270.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是99cm2.【考点】直角梯形;平移的性质;梯形.【分析】根据平移的变换只改变图形的位置不改变图形的形状与大小可得梯形ABCD的面积等于梯形EFGH的面积,CD=HG,从而得到阴影部分的面积等于梯形DMGH的面积,再求出DM的长,然后利用梯形的面积公式列式计算即可得解.【解答】解:由平移的性质,梯形ABCD的面积=梯形EFGH的面积,CD=HG=18cm,∴阴影部分的面积=梯形DMGH的面积,∵CM=3cm,∴DM=CD﹣CM=18﹣3=15(cm),∴阴影部分的面积=(DM+HG)•MG=(15+18)×6=99(cm2),答:阴影部分面积是99cm2.故答案为:99cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.【考点】作图—基本作图.【分析】(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:(1)如图所示:PQ即为所求;(2)如图所示:PR即为所求;(3)∠PQC=60°理由:∵PQ∥CD,∴∠DCB+∠PQC=180°,∵∠DCB=120°,∴∠PQC=180°﹣120°=60°.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【考点】平行线的判定与性质.【分析】(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.【考点】平行线的性质.【分析】先根据平行线的性质,得出∠ODC=∠BOD=30°,再根据∠EOF=90°,即可得到∠AOE=60°,再根据平行线的性质,即可得到∠AND的度数,进而得出∠ANM 的度数.【解答】解:∵扶手AB与底座CD都平行于地面,∴AB∥CD,∴∠ODC=∠BOD=30°,又∵∠EOF=90°,∴∠AOE=60°,∵DM∥OE,∴∠AND=∠AOE=60°,∴∠ANM=180°﹣∠AND=120°.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.【考点】平行线的性质.【分析】(1)因为长方形的对边是平行的,所以∠BFE=∠DEF=20°;在梯形EFC1D1中,∠HEF+∠EFC1+ED1C1+∠D1C1F=360°,∠C1FH=180°﹣20°﹣20°=140°;(2)由(1)的规律可以得到结果.【解答】解:(1)如图③,∵AD∥BC,∴∠BFE=∠DEF=20°,∴∠CFE=180°﹣∠BFE=160°,由折叠知∠C1FE=∠CFE=160°,∴∠C1FB=∠C1FE﹣∠BFE=160°﹣20°=140°,由折叠知∠C2FB=∠C1FB=140°,∴∠C2FE=∠C2FB﹣∠BFE=140°﹣20°=120°;(2)∵AD∥BC,∴∠BFE=∠DEF=α,∴∠CFE=180°﹣∠BFE=180°﹣α,由折叠知∠C1FE=∠CFE=∠180°﹣α,∴∠C1FB=∠C1FE﹣∠BFE=180°﹣α﹣α=180°﹣2α,由折叠知∠C2FB=∠C1FB=180°﹣2α,∴∠C2FE=∠C2FB﹣∠BFE=180°﹣2α﹣α=180°﹣3α.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.【考点】平行线的性质;平移的性质.【分析】(1)由同旁内角互补,两直线平行证明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=(∠BOF+∠FOA)=∠BOA,算出结果.(3)先得出结论,再证明.(4)由(2)(3)的结论可得.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2;(4)由(1)知:OB∥AC,则∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,则∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEC=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.。
第五章相交线与平行线(基础卷)考试时间:120分钟满分:120分一、单选题(每小题3分,共18分)1.(2022·北京·统考中考真题)如图,利用工具测量角,则的大小为()A.30°B.60°C.120°D.150°【答案】A【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,.故选A.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.2.根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.【答案】D【分析】根据直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M进行判断,即可得出结论.【详解】解:A.由于直线l2不经过点M,故本选项不合题意;B.由于点M在直线l1上,故本选项不合题意;C.由于点M在直线l1上,故本选项不合题意;D.直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M,故本选项符合题意;故选:D.【点睛】本题主要考查了相交线以及点与直线的位置关系,两条直线交于一点,我们称这两条直线为相交线.3.2022年北京冬奥会男子500米短道速滑冠军高亭玉在一次速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐52°,第二次向右拐52°B.第一次向左拐48°,第二次向左拐48°C.第一次向左拐73°,第二次向右拐107°D.第一次向左拐32°,第二次向左拐148°【答案】D【分析】两次转弯后行进的方向与原来相反,说明两次转弯的方向相同,而且一共转过了180°,由此求解即可.【详解】∵经过两次拐弯后的速滑方向与原来的方向相反,∴两次转弯的方向相同,而且一共转过了180°,∴A、两次转弯方向相反,故不符合题意;B、,故不符合题意;C、两次转弯方向相反,故不符合题意;D、两次转弯的方向相同,,一共转过了180°,符合题意.故选:D.【点睛】此题考查了平行线的性质和判定,解题的关键是熟练掌握平行线的性质和判定方法.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.4.如图,若图形A经过平移与下方图形阴影部分拼成一个长方形,则平移方式可以是()A.向右平移4个格,再向下平移4个格B.向右平移6个格,再向下平移5个格C.向右平移4个格,再向下平移3个格D.向右平移5个格,再向下平移4个格【答案】A【分析】根据平移的性质、结合图形解答即可.【详解】解:图形A向右平移个格,再向下平移个格可以与下方图形阴影部分拼成一个长方形,故选:.【点睛】本题考查的是平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.5.如图,直线,相交于点,.平分,.则的度数为()A.B.C.D.【答案】A【分析】根据先求出∠BOE的度数,再结合对顶角的性质得到∠BOD的度数,继而求得∠DOE的度数,结合角平分线的定义及角的和差即可求得答案.【详解】解:∵∴∠BOE=90°,∵∠BOD=∠AOC=46°,∴∠DOE=∠BOE-∠BOD=90°-46°=44°,∵平分,∴∠EOF=∠DOE=22°,∴∠FOB=∠BOE-∠EOF=90°-22°=68°,故选:A.【点睛】本题考查了与角平分线有关的角的计算,对顶角性质,垂直的定义,结合图形,掌握角的和差运算是解题的关键.6.下列是命题的是()A.作两条相交直线B.∠和∠相等吗?C.全等三角形对应边相等D.若a2=4,求a的值【答案】C【分析】根据命题的定义对各选项进行判断.【详解】解:A.“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B.“∠和∠相等吗?”为疑问句,它不是命题,所以B选项错误;C.全等三角形对应边相等,它是命题,所以C选项正确;D.“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(每小题3分,共18分)7.(2022春·江苏·七年级期末)如图,∠1=133°25′,AO⊥OB于点O,点C、O、D在一条直线上,则∠2的度数等于______.【答案】43°25′【分析】根据平角定义先求出∠AOD的度数,再根据垂直定义求出∠AOB=90°,从而求出∠2的度数.【详解】解:∵∠1=133°25′,∴∠AOD=180°-∠1=46°35′,∵AO⊥OB,∴∠AOB=90°,∴∠2=∠AOB-∠AOD=43°25′,故答案为:43°25′.【点睛】本题考查了垂线,度分秒的换算,根据题目的已知条件并结合图形分析是解题的关键.8.如图,O是直线上一点,,则___.【答案】##148度【分析】依据邻补角进行计算,即可得到∠1的度数.【详解】解:∵O是直线上一点,,∴,故答案为:.【点睛】本题主要考查了邻补角的概念,只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.邻补角互补,即和为.9.如图,直线、、相交于点,若,则______【答案】30【分析】根据平角的定义可以求出,再根据对顶角的性质求出即可.【详解】解:,.故答案为:.【点睛】本题考查了对顶角的性质,对顶角的性质:对顶角相等.邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.10.(2018·北京·统考中考真题)用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1【分析】根据不等式的性质3,举出例子即可.【详解】解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为,3,.【点睛】考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=________.【答案】135°##135度【分析】接利用平行线的性质结合邻补角的性质得出答案.【详解】解:如图,∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°-45°=135°.故答案为:135°.【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.12.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.三、解答题(每小题6分,共30分)13.如图,直线AB、CD被直线EF所截,GH是∠EGC的平分线,∠EGH=56°,∠EIB=68°,说明AB∥CD 的理由.解:因为GH是∠EGC的角平分线()所以∠EGH=∠HGC=56°()因为CD是条直线(已知)所以∠HGC+∠EGH+∠IGD=180°()所以∠IGD=68°因为∠EIB=68°(已知)所以__________=__________()所以AB∥CD()【答案】角平分线的意义,平角的意义,∠IGD,∠EIB,等量代换,同位角相等,两直线平行【分析】根据题意和图形,可以写出解答过程中空格中需要填写的内容,本题得以解决.【详解】解:因为GH是∠EGC的角平分线(已知)所以∠EGH=∠HGC=56°(角平分线的意义)因为CD是条直线所以∠HGC+∠EGH+∠IGD=180°(平角的意义)所以∠IGD=68°因为∠EIB=68°所以__∠IGD __=__∠EIB __(等量代换)所以AB∥CD(同位角相等,两直线平行)【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知,直线AB、CD相交于点O,过点O作,,若.求的度数.【答案】148°【分析】先根据垂直定义得到∠COE=∠AOF=90°,再根据周角是360°求解即可.【详解】解:∵,,∴∠COE=∠AOF=90°,∴∠EOF=360°-∠AOC-∠COE-∠AOF=360°-32°-90°-90°=148°.【点睛】本题考查垂直定义、周角,理解垂直定义,熟知周角等于360°是解答的关键.15.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,AB CD 吗?说明理由.现请你补充完下面的说理过程:答:AB CD理由如下:∵∠2=∠3(已知)且()∴∠1=∠2∴AB CD()【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB CD(同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.16.如图,在边长为个单位的正方形网格中,经过平移后得到,点的对应点为,根据下列条件,利用网格点和无刻度的直尺画图并解答,保留痕迹:(1)画出,线段扫过的图形的面积为______;(2)在的右侧确定格点,使的面积和的面积相等,请问这样的点有______个?【答案】(1)10(2)4【分析】(1)根据平移的性质得出,线段扫过的面积用矩形面积减去周围个直角三角形面积即可;(2)根据平行线之间的距离处处相等可得答案.【详解】(1)解:如图,即为所求,线段扫过的面积为,故答案为:;(2)解:如图,作,则点即为所求,共有个,故答案为:.【点睛】本题主要考查了作图——平移变换,平行四边形的面积,平行线的性质等知识,准确画出图形是解题的关键.17.(2022秋·河北保定·七年级统考期末)如图,平面内有两条直线l1,l2点A在直线l1上,按要求画图并填空:(1)过点A画l2的垂线段AB,垂足为点B;(2)过点A画直线AC⊥l1,交直线l2于点C;(3)过点A画直线AD∥l2;(4)若AB=12,AC=13,则点A到直线l2的距离等于 .【答案】(1)见解析;(2)见解析;(3)见解析;(4)12.【分析】(1)根据垂线段的定义画出即可;(2)根据垂线的定义画出即可;(3)根据平行线的定义画出即可;(4)根据点到直线间的距离求解即可得到答案.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)点到直线间的距离,即垂线段的长度,所以,点A到直线l2的距离等于12,故答案为:12.【点睛】本题考查作图-复杂作图,垂线,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四、解答题(每小题8分,共24分)18.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.19.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.【答案】(1)(2)【分析】(1)依据,即可得到∠DOB=∠AOC=70°,再根据角平分线的定义,即可得出∠DOE=∠DOB,即可得到;(2)依据OF⊥OE,可得∠EOF=90°,进而得到,再根据进行计算即可.【详解】(1)解:∵,∴∠AOC=,∴∠DOB=∠AOC=70°,又∵OE平分∠BOD,∴,∴,(2)∵,∴,∴,∴.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,垂直的定义,几何图形中角度的计算,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.20.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;【答案】(1)∠BOF=33°(2)∠AOC=72°【分析】(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出,进而表示出各角求出答案.【详解】(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°∴∠COE=142°,∵OF平分∠COE.∴∠EOF=∠COE=71°,又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴,∴设,则,故,,则,解得,故∠AOC=72°.【点睛】本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).五、解答题(每小题9分,共18分)21.已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,()__________.().(__________,____________)【答案】;对顶角相等;;等量代换;同位角相等,两直线平行.【分析】根据等量代换和同位角相等,两直线平行即可得出结果.【详解】分析:如图,欲证,只要证.证明:,(已知)又,(对顶角相等).(等量代换).(同位角相等,两直线平行)【点睛】本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.22.已知:如图,点D、E、F、G都在的边上,,且(1)求证:;(2)若EF平分,,求的度数.【答案】(1)见解析(2)70°【分析】(1)根据,得出∠1=∠CAE,又∠1+∠2=180°,得出∠2+∠CAE=180°,利用同旁内角互补即可推出;(2)根据,∠C=35°,得出∠BEF=∠C=35°,又因为EF平分∠AEB,得出∠AEB=70°,再根据两直线平行的性质即可得出.【详解】(1)解:证明:∵,∴∠1=∠CAE,∵∠1+∠2=180°,∴∠2+∠CAE=180°,∴;(2)解:∵,∠C=35°,∴∠BEF=∠C=35°,∵EF平分∠AEB,∴∠1=∠BEF=35°,∴∠AEB=70°,由(1)知,∴∠BDG=∠AEB=70°.【点睛】本题考查了两直线平行的判定及性质,角平分线的性质,解题的关键是掌握相应的判定定理及性质.六、解答题(本大题共12分)23.将一副三角板中的两块直角三角尺顶点C按照如图①方式叠放在一起(其中,,,)设.(1)若,说明;(2)将三角形CDE绕点C顺时针转动,若,求的度数.【答案】(1)见解析(2)或【分析】(1)根据内错角相等,两直线平行证明即可;(2)分两种情形:如图②中,当时,如图③中,当时,分别求解即可.【详解】(1)解:如图①中,∵∠,,∴∠ACE=∠A,∴;(2)解:如图②中,当时,则,;如图③中,当时,则,.综上所述,的值为15°或165°.【点睛】本题考查旋转的性质,平行线的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.。
七年级数学下册第五章《相交线与平行线》单元测试卷满分:150分考试时间:120分钟班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A. 10°B. 20°C. 30°D. 40°2.如图,下列条件中,不能判定AB//CD的是()A. ∠D+∠BAD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠DCE3.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°4.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为10,则△BCE的面积为()A. 5B. 6C. 10D. 45.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿AB方向平移AD的长度得到三角形DEF,已知EF=8,BE=3,CG=3,则图中阴影部分的面积是()A. 12.5B. 19.5C. 32D. 45.56.如图,已知AB//DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°7.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠4+∠BCD=180°,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD//BC的条件为()A. ①②③B. ①②④C. ①③④D. ②③④8.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF,则∠GEB=()A. 10°B. 20°C. 30°D. 40°9.要证明命题“若a>b则a2>b2”是假命题,下列a,b的值能作为反例的是()A. a=−1,b=2B. a=−2,b=−3C. a=−1,b=0D. a=−2,b=−110.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的∠A=110°,第二次拐的∠B是130°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A. 160°B. 150°C. 130°D. 110°二、填空题(本大题共10小题,共30.0分)11.如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.12.如图,直线a、b被直线c所截,若满足________,则a//b.(写出一个即可)13.如图,AB//CD,CB//DE,∠B=50°,则∠D=____________.14.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为______.15.根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为.16.如图,AB//CD,则∠A+∠E+∠F+∠C=.17.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是______.18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为______.19.平面上不重合的四条直线,可能产生交点的个数为______个.20.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.三、解答题(本大题共6小题,共80.0分)21.(12分)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE//DF,求证:∠E=∠F.22.(12分)如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB//CD【要求写出每一步的理论依据】.23.(12分)如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.24.(14分)如图,已知直线l1//l2,l3和l1,l2分别交于C,D两点,点A,B分别在直线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.(1)如图①,当动点P在线段CD上运动时,试确定∠1、∠2、∠3之间的关系,并给出证明;(2)如图②,当动点P在线段DC的延长线上运动时,(1)中的结论是否成立?若不成立,试写出新的结论,并给出证明.25.(14分)如图,AB⊥AC,∠1与∠B互余.(1)AD与BC平行吗?为什么?(2)若∠B=∠D,则AB与CD平行吗?为什么?26.(16分)(1)如图①,若AB//CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB//CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB//CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB//CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?答案1.B2.C3.B4.A5.B6.B7.C8.B9.B10.A11.①②12.∠1=∠2(答案不唯一)13.130°14.30°15.1616.540°17.同位角相等,两直线平行18.55°19.0,1,3,4,5,620.45°,60°,105°,135°21.解:∵CE//DF,∴∠ACE=∠D,∵∠A=∠1,∴180°−∠ACE−∠A=180°−∠D−∠1,又∵∠E=180°−∠ACE−∠A,∠F=180°−∠D−∠1,∴∠E=∠F.22.证明:∵∠1=55°(已知),∴∠CNM=55°(对顶角相等),∵∠2=125°(已知),∴∠CNM+∠2=180°(等式的性质),∴AB//CD(同旁内角互补,两直线平行).23.解:(1)设∠DOE=x,则∠AOE=4x,∵∠AOE的余角比∠DOE小10°,∴90°−4x=x−10°,∴x=20°,∴∠AOE=80°;(2)∠AOC在图中的所有补角是∠AOD和∠BOC;(3)∵∠AOE=80°,∠DOE=20°,∴∠AOD=100°,∴∠AOC=80°,如图,当OP在CD的上方时,设∠AOP=x,∴∠DOP=100°−x,∵∠COP=∠AOE+∠DOP,∴80°+x=80°+100°−x,∴x=50°,∴∠AOP=∠DOP=50°,∵∠BOD=∠AOC=80°,∴∠BOP=80°+50°=130°;当OP在CD的下方时,设∠DOP=x,∴∠BOP=80°−x,∵∠COP=∠AOE+∠DOP,∴100°+x=80°+80°−x,∴x=30°,∴∠BOP=30°,综上所述,∠BOP的度数为130°或30°.24.解:(1)∠3+∠1=∠2成立.理由如下:过点P作PE//l1,∴∠1=∠APE;∵l1//l2,∴PE//l2,∴∠3=∠BPE,又∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2.(2)∠3+∠1=∠2不成立,新的结论为∠3−∠1=∠2.理由如下:过点P作PE//l1,∴∠1=∠APE;∵l1//l2,∴PE//l2,∴∠3=∠BPE;又∵∠BPE−∠APE=∠2,∴∠3−∠1=∠2.25.解:(1)AD//BC,理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1与∠B互余,∴∠1+∠B=90°,∴∠1+∠BAC+∠B=180°,即∠B+∠BAD=180°,∴AD//BC;(2)AB//CD,理由如下:由(1)可知∠B+∠BAD=180°,∵∠B=∠D,∴∠D+∠BAD=180°,∴AB//CD.26.解:(1)如图①,过E1作E1F//AB,则E1F//CD,∴∠B+∠1=180°①,∠D+∠2=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°;(2)如图②,分别过E1,E2作E1F//AB,E2G//AB,则E1F//E2G//CD,∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;(3)如图③,分别过E1,E2,E3作E1F1//E2F2//E3F3//AB,则E1F1//E2F2//E3F3//CD,∴∠B+∠BE1F1=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°=4×180°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)⋅180°,∴∠B+∠D+∠E1+∠E2+⋯+∠E n=(n+1)⋅180°.。
七年级数学下册《第五章生活中的轴对称》单元测试卷-带答案(北师大版)一、选择题1.中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是( ) A .爱B .我C .中D .华2.如图,ABC 中356AB AC BC ===,,,EF 垂直平分BC ,点P 为直线EF 上一动点,则AP BP +的最小值为( )A .3B .5C .6D .73.等腰三角形的顶角是70︒,则它的底角是( )A .110︒B .70︒C .40︒D .55︒4.如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个5.如图,正八边形是轴对称图形,对称轴可以是直线( )A .aB .bC .cD .d6.如图,已知四边形ABCD 中,△B =98°,△D =62°,点E 、F 分别在边BC 、CD 上.将△CEF 沿EF 翻折得到△GEF ,若GE AB ,GF AD ,则△C 的度数为( )A.80°B.90°C.100°D.110°7.已知等腰三角形周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为() A.7cm B.3cm C.5cm或3cm D.5cm8.如图是2×5的正方形网格,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形.则在网格中,能画出且与△ABC成轴对称的格点三角形一共有()个.A.1B.2C.3D.4二、填空题9.圆是轴对称图形,它的对称轴有条.10.把一张长方形纸条按图中折叠后,若△EFB= 65°,则△AED’= 度.11.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABD的周长为13,BE =5,则△ABC的周长为.的正方形网格中,其中有三格被涂黑,若在剩下的6个空白小方格中涂黑其中1 12.如图,在33个,使所得的图形是轴对称图形,则可选的那个小方格的位置有种.三、解答题13.如图,五边形ABCDE 是轴对称图形,线段AF 所在直线为对称轴,找出图中所有相等的线段和相等的角.14.如图,在矩形ABCD 中,点E 是AB 的中点,EF AB ⊥交CD 于点F ,点M 在AD 上,连接BM 把ABM 延BM 翻折.当点A 的对应点A '恰好落在EF 上时,求CBA ∠'的度数.15.如图,AC 与BD 相交于点O ,且AB DC = ,AC DB = 求证:OB OC =.16.如图所示,在平面直角坐标系中△ABC 的三个顶点坐标分别为A (﹣2,4),B (-4,2),C (﹣3,1).(1)作出△ABC 关于x 轴对称的△A 1B 1C 1,并直接写出A 1点的坐标 (2)作出△ABC 关于y 轴对称的△A 2B 2C 2,并直接写出B 2点的坐标(3)在(1)(2)的条件下,若点P 在x 轴上,当A 1P +B 2P 的值最小时,直接写出A 1P +B 2P 的最小值四、综合题17.如图,一个大长方形场地割出如图所示的“L”型阴影部分,请根据图中所给的数据,回答下列问题:(1)用含x ,y 的代数式表示阴影部分的周长并化简.(2)若x =4米,y =3米时,要给阴影部分场地围上价格每米8元的围栏作功能区,请计算围栏的造价.18.如图,在ABC 中,30ABC ∠=︒,=AB AC 点O 为BC 的中点,点D 是线段OC 上的动点(点D 不与点O ,C 重合),将ACD 沿AD 折叠得到AED ,连接BE .(1)当AE BC ⊥时,AEB ∠= °;(2)探究AEB ∠与CAD ∠之间的数量关系,并给出证明;19.如图,在ABC 中,AB AC AD =,为ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB AC ,分别交于点E F ,,连接DE DF ,.(1)求证:ADE ADF ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.20.△ABC 在直角坐标系内的位置如图所示.(1)在直角坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称; (2)点C ,C 1之间的距离是 .参考答案与解析1.【答案】C【解析】【解答】解:由题意得“中”字为轴对称图形故答案为:C【分析】根据轴对称图形的定义结合题意即可求解。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
1
七年级数学(下)第五章测试卷
年级 班别 姓名 学号 总分
一、填空题。
(每空2分,共34分)
1、顶点是A 、B 、D
2、如图所示,图中共有 个三角形,其中以为一边的三角形有 个,以∠C 三角形有 个。
3、如图,在∆ABC 中,已知AE 是中线, AD 是角平分线,AF ⑴、BE= =2
1
⑵、∠BAD= =21
⑶、∠AFD= =90°。
4为 三角、 三角形和 三角形。
5、在一个三角形的内角中,最多有 个钝角,至少有 个锐角。
6、在∆ABC 中,∠B=60°,∠A=70°,则∠C= 。
7、已知三角形三个内角度数的比是1﹕2﹕3,那么这个三角形三个内角的度数分别是 。
8、三角形的两条边长分别是5㎝,8㎝,第三边的取值范围是 。
二、选择题。
(每题3分,共18分) 1、下列说法正确的是( )
A 、 三角形的角平分线是射线。
B 、三角形三条高都在三角形内。
C 、 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D 、三角形三条中线相交于一点。
2、在Rt △中,两个锐角关系是( )
A 、互余
B 、互补
C 、相等
D 、以上都不对 3、以下列长度的三条线段为边,能构成三角形的是( ) A 、7㎝,8㎝,15㎝ B 、15㎝,20㎝,5㎝ C 、6㎝,7㎝,5㎝ D 、7㎝,6㎝,14㎝
2
4、下列图中,是全等的图形是( )
5、
如图所示,若△ABC ≌△DEF ,则图中互相平行的直线的组数为
(
) A 、0
B
、1 C 、2 D 、3
6、有两个角和其中一角的对边对应相等的两个三角形( ) A 、不全等 B 、有可能全等 C 、必定全等 D 、以上皆错 三、作图题(共8分)
1、任意画一个钝角三角形,并画出它的三条高。
(4分)
2、尺规作图,已知线段a 和∠α,作一个三角形ABC ,使AC=a ,BC=2a ,∠BCA=∠α。
(4分)
a
C D
3
四、 解答题。
(共40分)
1、 图中的两个三角形有几对相等的角?这两个三角形全等吗?请说明理由。
(8分)
2、如图,△ABC 是厂房屋顶的人字架,上弦AB=AC ,中柱AD 连结屋顶A 和跨度BC 的中点D ,你能说明中柱AD ⊥BC 吗?(8分)
3、如图,AE ⊥BC ,D 是BC 的中点,AC=BE ,那么∠A=∠E 吗?说明你的理由。
(8分)
4
4、如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离,但绳子不够长,你能帮他想个主意测量吗?并说明你的理由。
(5分)
5、如图,已知AB=CD ,AE=BF
CE=DF ,求证:△AEC ≌△BFD (
6、如图,∠E=30°,AB=AD ,AC=AE, ∠BAE=∠DAC ,求∠C 的度数(6分)。