专题十__概率统计
- 格式:doc
- 大小:83.50 KB
- 文档页数:3
会考复习专题十《概率统计》1.右图是某职业篮球运动员在连续11场比赛中得分的茎叶统计图,则该组数据的中位数是(A)31 (B)32 (C)35 (D)362.甲,乙两位同学考入某大学的同一专业,已知该专业设有3个班级,则他们被随机分到同一个班级的概率为(A)91 (B)61 (C)31 (D)21 3. 右图是某校高一年级各班选修《数学文化》课程学生人数的茎叶图,则该组数据的众数是(A) 27 (B )28 (C) 29 (D) 364.从2男2女共4名羽毛球运动员中选出男女各一名配对参加混合双打比赛,则其中男运动员甲被选中的概率为 (A)32 (B )21 (C) 31 (D) 41 5.右图是某小组在一次测验中的数学成绩的茎叶图,则中位数是(A)81 (B)82 (C)83 (D)876.国庆阅兵中,某兵种,,A B C 三个方阵按一定次序通过主席台,若先顺序是随机排定的,则B 先于,A C 通过的概率为 (A)16 (B)13 (C)12 (D)237.同时抛掷两枚质地均匀的硬币,出现两枚都是正面朝上的概率为41)(A 31)(B 21)(C 43)(D8.某玩具厂生产一批红、黄、蓝三种颜色的球,红球质量不超过40g ,黄球质量超过40g 但不超过60g ,蓝球质量超过60g 但不超过100g. 现从这批球中抽取100个球进行分析,其质量的频率分布直方图如图所示. 则图中纵坐标a 的值是(A )0.015 (B )0.0125(C )0.01 (D )0.0089.已知A ,B 是互斥事件,若51)(=A P ,21)(=+B A P ,则P (B )的值是(A )54 (B )107 (C )103 (D )10110.某校有教师160人,男生1000人,女生800人。
现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女生中抽取的人数为40,则n= .11.某机构调查一电视节目在20周岁至70周岁之间的收视情况,得到频率分布直方图如图所示,则该电视节目在)40,30[年龄内的收视率为12.某校有学生1485人,教师132人,职工33人.为有效防控甲型H1N1流感,拟采用分层抽样的方法,从以上人员中抽取50人进行相关检测,则在学生中应抽取 人.13.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 的样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时的人数为12人,则n = .(第13题)会考复习专题十一《排列、组合、二项式定理及二项分布》1.如果神舟七号返回舱将在4个城市展览,那么不同的展览次序的种数有256)(A 24)(B 16)(C 4)(D2.将a , b , c , d , e 五个字母填入右图的五个方格中,每个方格恰好填一个字母,则a , b 不填在相邻两个格子(即它们有一条公共边)中的填法数为(A)72 (B)96 (C)116 (D)1203.某学习小组共6人,现有三个不同的研究课题可供选择,要求每人从中选择一个,每个课题至少有1人参与,但最多3人,则不同的选法有(A) 3240种 (B )1260种 (C) 450种 (D) 150种4.若443322104)1()1()1()1(x a x a x a x a a x ++++++++=,则3a =(A) 6- (B )4- (C) 4 (D) 6 5.二项式6(x-展开式中的常数项为 (A)240- (B)160 (C)160- (D)2406.若随机变量X 的分布列如右表所示,则X 的数学期望EX=(A) 3 (B )2 (C) 1 (D) 317.已知随机变量X 的 分布列如右表所示,则X 的数学期望EX 等于21)(A 61)(B 31)(C 32)(D8.已知随机变量X 的分布列如右表所示,则X 的方差()D X 等于 (A)12 (B)1 (C)32(D)2 9.若随机变量X ~B (100, p ),X 的数学期望EX =24,则p 的值是 (A)52 (B)53 (C)256 (D)2519会考复习专题十《概率统计》参考答案1、C2、D3、A4、B5、C6、B7、A8、C9、C10、9811、12、4513、150会考复习专题十一《排列、组合、二项式定理及二项分布》参考答案1、B2、A3、C4、B5、D6、A7、B8、C9、C。
专题十概率、统计问题二:统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.学科-网2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
专题十一概率与统计概率统计抛开了数学中的“确定性”,以“不确定”的视角做出量化的、不确定性的推测,是不同与其它数学知识的重要特征.未来的众多社会规律,也都需要利用概率统计的方法去探究,所以概率统计对社会的良性和稳定发展必将起到至关重要的作用.高考以更加贴近学生日常生活的概率统计背景加强对概率统计知识的考查,也说明了高考改革的方向将更加生活化和理性化,更加贴合学生的日常.这也是提醒我们要自觉养成用“不确定性”眼光去研究生活、看待世界的习惯.一、真题再现(一)统计部分1.(2019年新课标Ⅱ理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差【分析】根据题意,由数据的数字特征的定义,分析可得答案.【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A.【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.2.(2019年新课标Ⅰ文科)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生【分析】根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第4组抽取的号码为46,可得第一组用简单随机抽样抽取的号码.【解答】解:∵从1000名学生从中抽取一个容量为100的样本,∴系统抽样的分段间隔为=10,∵46号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为{a n},则a n=6+10(n﹣1)=10n﹣4,当n=62时,a62=616,即在第62组抽到616.故选:C.【点评】本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.3.(2019年江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅲ文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.故选:C.【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.5.(2019年新课标Ⅱ文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[﹣0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.【分析】(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:=0.21=21%,产值负增长的企业频率为:=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数(﹣0.1×2+0.1×24+0.3×53+0.5×14+0.7×7)=0.3=30%,产值增长率的方差s2==[(﹣0.4)2×2+(﹣0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.【点评】本题考查了样本数据的平均值和方差的求法,考查运算求解能力,属基础题.6.(2019年新课标Ⅲ文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【分析】(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中a,b.(2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均值.【解答】解:(1)C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值为:=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.00.【点评】本题考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查推理能力与计算能力,属于基础题.7.(2019年新课标Ⅰ文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(1)由题中数据,结合等可能事件的概率求解;(2)代入计算公式:K2=,然后把所求数据与3.841进行比较即可判断.【解答】解:(1)由题中数据可知,男顾客对该商场服务满意的概率P==,女顾客对该商场服务满意的概率P==;(2)由题意可知,K2==≈4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.【点评】本题主要考查了等可能事件的概率求解及独立性检验的基本思想的应用,属于基础试题.(二)概率部分1.(2019年江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.2.(2019年新课标Ⅲ文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.【分析】利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再全部排列找到分母,可得到答案.【解答】解:方法一:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p==,方法二:假设两位男同学为A、B,两位女同学为C、D,所有的排列情况有24种,如下:(ABCD)(ABDC)(ACBD)(ACDB)(ADCB)(ADBC)(BACD)(BADC)(BCAD)(BCDA)(BDAC)(BDCA)(CABD)(CADB)(CBAD)(CBDA)(CDAB)(CDBA)(DABC)(DACB)(DBAC)(DBCA)(DCAB)(DCBA)其中两位女同学相邻的情况有12种,分别为(ABCD)、(ABDC)、(ACDB)、(ADCB)、(BACD)、(BADC)、(BCDA)、(BDCA)、(CDAB)、(CDBA)、(DCAB)、(DCBA),故两位女同学相邻的概率是:p==,故选:D.【点评】本题考查排列组合的综合应用.考查古典概型的计算.3.(2019年新课标Ⅰ理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅱ文科)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为.即可得出概率.【解答】解:法一:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p==.法二:设其中做过测试的3只兔子为a,b,c,剩余的2只为A,B,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}10种,其中恰好有两只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}6种,故恰有两只做过测试的概率为=.故选:B.【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题.5.(2019年新课标Ⅰ理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是0.18.【分析】甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.6.(2019年上海)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.【分析】分别运用直接法和排除法,结合古典概率的公式,以及计数的基本原理:分类和分步,计算可得所求值.【解答】解:方法一、(直接法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中恰有两位数字相同的个数为C C=270,则其中恰有两位数字相同的概率是=;方法二、(排除法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中三位数字均不同和全相同的个数为10×9×8+10=730,可得其中恰有两位数字相同的概率是1﹣=.故答案为:.【点评】本题考查古典型概率的求法,注意运用直接法和排除法,考查排列组合数的求法,以及运算能力,属于基础题.7.(2019年新课标Ⅱ理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【分析】(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P (X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P(),由此能求出结果.(2)P(X=4且甲获胜)=P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4),由此能求出事件“X=4且甲获胜”的概率.【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P(X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P()=0.5×0.4+0.5×0.6=0.5.(2)P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4)=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.8.(2019年天津文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.A B C D E F子女教育〇〇×〇×〇继续教育××〇×〇〇大病医疗×××〇××住房贷款利息〇〇××〇〇住房租金××〇×××赡养老人〇〇×××〇(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【分析】(Ⅰ)根据分层抽样各层所抽比例相等可得结果;(Ⅱ)(i)用列举法求出基本事件数;(ii)用列举法求出事件M所含基本事件数以及对应的概率;【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M )=.【点评】本题考查了用列举法求古典概型的概率问题以及根据数据分析统计结论的问题,是基础题目9.(2019年北京文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,求出A,B两种支付方式都使用的人数有40人,由此能估计该校学生中上个月A,B两种支付方式都使用的人数.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,由此能求出该学生上个月支付金额大于2000元的概率.(Ⅲ)从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000×=400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p==.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【点评】本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.(三)随机变量部分1.(2019年新课标Ⅱ文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98.【分析】利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:=(10×0.97+20×0.98+10×0.99)=0.98.故答案为:0.98.【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.2.(2019年浙江)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大【分析】方差公式结合二次函数的单调性可得结果【解答】解:E(X)=0×+a×+1×=,D(X)=()2×+(a﹣)2×+(1﹣)2×=[(a+1)2+(2a﹣1)2+(a﹣2)2]=(a2﹣a+1)=(a﹣)2+∵0<a<1,∴D(X)先减小后增大故选:D.【点评】本题考查方差的求法,利用二次函数的单调性是关键,考查推理能力与计算能力,是中档题.3.(2019年天津理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.【分析】(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(),可求分布列及期望;(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X =3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,利用相互对立事件的个概率公式可求【解答】解:(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(3,),从而P(X=k )=,k=0,1,2,3.所以,随机变量X的分布列为:X0123P随机变量X的期望E(X)=3×=2.(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X=3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,由(I)知,P(M)=P({X=3,Y=1}∪{X=2,Y=0}=P({X=3,Y=1}+P{X=2,Y =0}=P(X=3)P(Y=1)+P(X=2)P(Y=0)==【点评】本题主要考查了离散型随机变量的分布列与期望,互斥事件与相互独立事件的概率计算公式,考查运算概率公式解决实际问题的能力.4.(2019年北京理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(0,1000](1000,2000]大于2000仅使用A18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,求出P(E)=,答案示例1:可以认为有变化.P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,可以认为有变化.答案示例2:无法确定有没有变化.事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,无法确定有没有变化.【解答】解:(Ⅰ)由题意得:从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率p==0.4.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,P(X=0)===,P(X=1)===,P(X=2)===,∴X的分布列为:X012P数学期望E(X)==1.(Ⅲ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,假设样本仅使用A的学生中,本月支付金额额大于2000元的人数没有变化,则由上个月的样本数据得P(E)==,答案示例1:可以认为有变化,理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,∴可以认为有变化.答案示例2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,∴无法确定有没有变化.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.5.(2019年新课标Ⅰ理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1。
文科数学20XX-20XX高考真题分类训练专题十,,概率与统计第三十讲,,概率—后附解析答案专题十概率与统计第三十讲概率 20XX年 1.(20XX全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A. B. C. D. 2.(20XX全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A. B. C. D. 20XX-20XX年一、选择题 1.(20XX全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D. 2.(20XX全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3 B.0.4 C.0.6 D.0.7 3.(20XX新课标Ⅰ)如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 4.(20XX 新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B. C. D. 5.(20XX天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D. 6.(20XX年天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为A. B. C. D. 7.(20XX全国I卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A. B. C. D. 8.(20XX全国II 卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A. B. C. D. 9.(20XX年北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A. B. C. D. 10.(20XX全国III卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A. B. C. D. 11.(20XX新课标1)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为A. B. C. D. 12.(20XX山东)在区间上随机地取一个数,则事件“”发生的概率为A. B. C. D. 13.(20XX江西)掷两颗均匀的骰子,则点数之和为5的概率等于 A. B. C. D. 14.(20XX 湖南)在区间上随机选取一个数,则的概率为A. B. C. D. 15.(20XX新课标1)从中任取个不同的数,则取出的个数之差的绝对值为的概率是A. B. C. D. 16.(20XX安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 A. B. C. D. 17.(20XX辽宁)在长为12cm的线段上任取一点。
初中数学十大专题讲解教案一、实数专题1. 概念:实数是包括有理数和无理数的所有数。
2. 性质:实数具有大小、正负和加减乘除等运算性质。
3. 教学目标:理解实数的概念,掌握实数的性质和运算方法。
二、代数式专题1. 概念:代数式是由数字、字母和运算符组成的表达式。
2. 性质:代数式具有运算性和化简性。
3. 教学目标:理解代数式的概念,掌握代数式的运算和化简方法。
三、不等式和不等式组专题1. 概念:不等式是表示两个数之间大小关系的式子,不等式组是由多个不等式组成的集合。
2. 性质:不等式和不等式组具有解集和图像性质。
3. 教学目标:理解不等式和不等式组的概念,掌握解集的求法和图像性质。
四、方程和方程组专题1. 概念:方程是表示两个表达式相等的式子,方程组是由多个方程组成的集合。
2. 性质:方程和方程组具有解和图像性质。
3. 教学目标:理解方程和方程组的概念,掌握解的求法和图像性质。
五、函数专题1. 概念:函数是描述两个变量之间关系的数学模型。
2. 性质:函数具有图像、域和值域等特征。
3. 教学目标:理解函数的概念,掌握函数的图像和性质。
六、统计和概率专题1. 概念:统计是研究数据收集、处理、分析和解释的科学,概率是研究事件发生可能性的数学分支。
2. 性质:统计和概率具有数据处理和预测性质。
3. 教学目标:理解统计和概率的概念,掌握数据处理和预测方法。
七、图形的认识专题1. 概念:图形是几何学的研究对象,包括点、线、面和体等。
2. 性质:图形具有形状、大小、位置和度量等特征。
3. 教学目标:理解图形的概念,掌握图形的性质和变换方法。
八、解直角三角形和三角函数专题1. 概念:解直角三角形是解决直角三角形边长和角度问题,三角函数是描述三角形性质的数学模型。
2. 性质:解直角三角形和三角函数具有几何和代数性质。
3. 教学目标:理解解直角三角形和三角函数的概念,掌握解题方法和性质。
九、四边形专题1. 概念:四边形是具有四条边的平面图形。
高考数学考点要点汇总!专题一:集合考点1:集合的基本运算考点2:集合之间的关系专题二:函数考点3:函数及其表示考点4:函数的基本性质考点5:一次函数与二次函数。
考点6:指数与指数函数考点7:对数与对数函数考点8:幂函数考点9:函数的图像考点10:函数的值域与最值考点11:函数的应用专题三:立体几何初步考点12:空间几何体的结构、三视图和直视图考点13:空间几何体的表面积和体积考点14:点、线、面的位置关系考点15:直线、平面平行的性质与判定考点16:直线、平面垂直的判定及其性质考点17:空间中的角考点18:空间向量专题四:直线与圆考点19:直线方程和两条直线的关系考点20:圆的方程考点21:直线与圆、圆与圆的位置关系专题五:算法初步与框图考点22:算法初步与框图专题六:三角函数考点23:任意角的三角函数、同三角函数和诱导公式考点24:三角函数的图像和性质考点25:三角函数的最值与综合运用考点26:三角恒等变换考点27:解三角形专题七:平面向量考点28:平面向量的概念与运算考点29:向量的运用专题八:数列考点30:数列的概念及其表示考点31:等差数列考点32:等比数列考点33:数列的综合运用专题九:不等式考点34:不等关系与不等式考点35:不等式的解法考点36:线性规划考点37:不等式的综合运用专题十:计数原理考点38:排列与组合考点39:二项式定理专题十一:概率与统计考点40:古典概型与几何概型考点41:概率考点42:统计与统计案例专题十二:常用逻辑用语考点43:简单逻辑考点44:充分条件与必要条件专题十三:圆锥曲线考点45:椭圆考点46:双曲线考点47:抛物线考点48:直线与圆锥曲线的位置关系考点49:圆锥曲线方程考点50:圆锥曲线的综合问题专题十四:导数及其应用考点51:导数与积分考点52:导数的应用专题十五:推理与证明考点53:合情推理与演绎推理考点54:直接证明与间接证明考点55:数学归纳法专题十六:数系的扩充与复数的引入考点56:数系的扩充与复数的引入专题十七:选考内容考点57:几何证明选讲(湖南,江西暂不列入考核内容)考点58:坐标系与参数方程(湖南,江西,天津,山东,福建,上海,安徽,北京暂不列入考核内容)(浙江考)考点59:不等式选讲(天津,广东,浙江暂不列入考核内容)。
文科数学专题11--概率统计1 . 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2 . (2018年全国卷II文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.3 . (2018年全国卷Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.74 . 为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数5 . 如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是().A.B.C.D.6 . 从分别写有的张卡片中随机抽取张,放回后再随机抽取张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.7 . 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8 . 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.B.C.D.9 . 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.10 . 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个11 . 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A.B.C.D.12 . 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.13 . 根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
专题10 概率与统计【2020年】1.(2020·新课标Ⅲ)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ====D. 14230.3,0.2p p p p ====2.(2020·山东卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种 B. 90种 C. 60种D. 30种3.(2020·山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A. 62% B. 56% C. 46%D. 42%4.(2020·天津卷)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A. 10B. 18C. 20D. 365.(2020·天津卷)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.6.(2020·浙江卷)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.7.(2020·江苏卷)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.8.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.9.(2020·新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【2019年】1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7D .0.82.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是( )则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【2018年】1.【2018·全国Ⅱ卷】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1182.【2018·全国Ⅰ卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.【2018·全国Ⅲ卷】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.34.【2018·浙江卷】设01p <<,随机变量ξ的分布列是ξ 0 1 2 P12p- 122p 则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小5.【2018·全国Ⅰ卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 36.【2018·江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.7.【2018·江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【2017年】1.【2017·全国Ⅲ卷】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳2.【2017·全国Ⅰ卷】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.【2017·山东卷】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518 B .49 C .59D .7912.【2017·浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ4.【2017·山东卷】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160 B .163 C .166D .1705.【2017·全国Ⅱ卷】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________.6.【2017·江苏卷】记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.7.【2017·江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【2016年】1. 【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) (A )13 (B )12 (C )23 (D )342.【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个3.【2016高考山东理数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56(B )60(C )120(D )1404.【2016高考新课标2理数】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n5.【2016年高考北京理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多6.【2016高考江苏卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .7.【2016年高考四川理数】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .328.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .9.【2016高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.10.【2016高考山东理数】在[1,1]上随机地取一个数k,则事件“直线y=kx与圆22x y相交”发生(5)9的概率为.。
第十一章 概率统计 1. 【南师附中2017届高三模拟二】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为__________.【答案】112【解析】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,有98362n ⨯==种情形,其中一个是另一个的三倍的事件有()()()1,3,2,6,3,9,共3种情形,所以由古典概型的计算公式可得其概率是313612P ==,应填答案112。
2. 【南师附中2017届高三模拟二】射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为__________.【答案】45【解析】因为910810895x ++++==,所以[]2140111155s =++++=,应填答案45。
3. 【南师附中2017届高三模拟一】从2,3,4中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于1的概率是__________.【答案】124.【南师附中2017届高三模拟一】随机抽取年龄在[)[)[]10,20,20,30,......50,60年龄段的市民进行问卷调查,由此得到的样本的频数分布直方图如图所示,采用分层抽样的方法从不小于40岁的人中按年龄阶段随机抽取8人,则[]50,60年龄段应抽取人数为__________.【答案】2【解析】由题设提供的直方图可以看出年龄在[]40,60内的人数为()0.0150.005100.02(n n n +⨯=是样本容量),则0.028400n n =⇒=,故年龄在[]50,60内的人数为0.005100.052n n ⨯==,应填答案2。
5. 【某某中学2018届高三10月月考】记函数定义域为,在区间上随机取一个数,则的概率是_______. 【答案】点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动X 围.当考察对象为点,点的活动X 围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.6. 【某某中学2018届高三上学期开学考试】某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.【答案】660【解析】由样本频率分布直方图,知:该校高三学生中数学成绩在之间的频率为:,∴估计该校高三学生中数学成绩在之间的人数为:.故答案为660.7. 【海安县2018届高三上学期第一次学业质量测试】已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为_________.【答案】8.【海安县2018届高三上学期第一次学业质量测试】某校高一年级共有800名学生,根据他们参加某项体育测试的成绩只做了如图所示的频率分布直方图,则成绩不低于80分的学生人数为_________.【答案】240【解析】由题设中提供的频率分布直方图可以看出:不低于80分的学生人数为()0.020.0110800240m=+⨯⨯=,应填答案240。
高中二年级数学概率与统计初步概率与统计是高中数学中的一门重要课程,它涵盖了概率和统计两个方面。
概率是用来描述事件发生的可能性,而统计则是通过对数据进行收集、分析和解释,来给出结论。
本文将从概率和统计两个角度来介绍高中二年级数学中的初步内容。
一、概率1.1 概率的基本概念概率是描述随机事件发生可能性的数值。
在实际生活中,我们经常会遇到概率的问题,比如投掷一枚硬币正面朝上的概率是多少,抽一张扑克牌时抽到黑桃的概率是多少等等。
1.2 事件与样本空间在概率问题中,事件是指某个具体结果的集合,样本空间是指所有可能结果的集合。
例如,投掷一枚硬币,事件可以是正面朝上,样本空间可以是{正面,反面}。
1.3 概率的计算方法在概率的计算中,有两种主要的方法:频率法和古典概型法。
频率法是通过做大量的实验来计算概率,古典概型法是通过确定每个结果出现的可能性来计算概率。
二、统计2.1 数据的收集与整理统计的第一步是收集数据,并对数据进行整理和分类。
我们可以使用表格、图表等形式来展示数据,以便更好地进行分析。
2.2 数据的描述性统计描述性统计是用来对收集到的数据进行概括和描述的方法。
常用的描述性统计方法包括平均数、中位数、众数、标准差等。
2.3 样本与总体在统计学中,我们通常会采集一部分数据作为样本,用来对整个总体进行推断。
样本的选择要具有代表性,以确保结果的可靠性。
2.4 统计推断统计推断是通过对样本数据进行分析,来推断总体的特征和性质。
常用的统计推断方法包括假设检验、置信区间等。
结论概率与统计是高中数学中的一门重要课程,它们在实际生活和各个领域中都有广泛的应用。
通过学习概率与统计,学生可以培养逻辑思维能力,提高数据分析和决策能力,为将来的学习和工作打下坚实的基础。
希望本文对读者对高中二年级数学概率与统计初步有所帮助。
2018届高三数学成功在我专题十 概率统计误区一:()P AB 与()A P B 混淆失误(理)一、知识辨析1.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为AB .用概率的乘法公式()()()P AB P A P B =计算.2.条件概率:在事件A 发生的条件下,事件B 发生的概率,记为(/)P B A ,用概率的乘法公式()(/)()P AB P B A P A =. 3.条件概(/)P B A 与乘积概率()P AB 也是容易混淆的一对概念,条件概率是已知某事件发生条件下,另一事件发生的概率,而乘积概率中所涉及的事件都没有“已经发生”的假定.两者的关系为()()(/)P AB P A P B A =,事件A 、B 独立是指,事件A 是否发生与事件B 没有关系,独立性是相互的,两件事互不影响. 而(/)P A B 是指在事件B 发生的情况下事件A 发生的概率,如果等于()P A ,则表示事件A 、B 独立.条件概率(/)P B A 中A 、B 的地位不同,且已知A 发生作为条件,在概率()P AB 中A 、B 同时发生,地位相同,没有前提条件,在应用文题中必须区别是求(/)P B A ,还是求()P AB .4.条件概率的求法(1)利用定义,分别求出P (A ),P (AB ),得P (B |A )=P (AB )P (A ); (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),即P (B |A )=n (AB )n (A ). (3)为了求一些复杂事件的条件概率,往往可以先把它分解为两个(或若干个)互斥事件的和,利用公式P (B ∪C |A )=P (B |A )+P (C |A )进行计算,其中B ,C 互斥.5.相互独立事件同时发生的概率的求法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难于入手时,可以从其对立事件入手进行计算.二、典例精析【例1】一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.【分析】由已知甲取到了2个黑球的前提下,乙也取到2个黑球,这是一个条件概率问题,可由条件概率求得已知甲取到了2个黑球,则乙也取到2个黑球的概率.【解析】记事件“甲取到2个黑球”为A,“乙取到2个黑球”为B,则有(/)P B A =()()P AB P A =22862288C C C C ⋅⋅=1528,即事件“甲取到2个黑球,乙也取到2个黑球”的概率是1528. 【点评】本题易错误的在于()P AB 与(/)P B A 的含义没有弄清, ()P AB 表示在样本空间S 中, A 与B 同时发生的概率;而(/)P B A 表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.【小试牛刀】高二某班共有60名学生,其中女生有20名,三好学生占全班人数的16,而且三好学生中女生占一半.现在从该班任选一名同学参加某一座谈会.则在已知没有选上女生的条件下,选上的是三好学生的概率为________.【例2】某射手进行射击训练,假设每次射击击中目标的概率为35,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率;(2)其中恰有3次击中目标的概率.【分析】(1)因为第一、三、五次击中目标,可以同时发生,是独立事件概率,由题意可知,该射手在一、三、五次击中目标,在二、四次未击中目标,而每次射击的结果互不影响,因此由概率乘法公式可知所求概率为33333108(1)(1)555553125P =⋅-⋅⋅-⋅=;(2)该射手射击了5次,其中恰有3次击中目标,符合n 次独立重复试验恰发生m 次概率模型,根据二项分布相关内容,可知故所求概率为332533216()(1)55625P C =⋅-=.【点评】本题是对独立事件的概念,n 次独立重复实验的考查,解题时应综合运用相应的知识进行转化,分清每一种情况的概率,求其积概率,易错点,忽略没击中情况的概率.【小试牛刀】【河南省新乡市2017届高三上学期第一次调研测试】甲、乙两位数学老师组队参加某电视台闯关节目,共3关,甲作为嘉宾参与答题,若甲回答错误,乙作为亲友团在整个通关过程中至多只能为甲提供一次帮助机会,若乙回答正确,则甲继续闯关,若某一关通不过,则收获前面所有累积奖金.约定每关通过得到奖金2000元,设甲每关通过的概率为34,乙每关通过的概率为12,且各关是否通过及甲、乙回答正确与否均相互独立.(1)求甲、乙获得2000元奖金的概率;(2)设X 表示甲、乙两人获得的奖金数,求随机变量X 的分布列和数学期望()E X . 三、迁移运用【迁移运用】1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( )A.38B.27C.28D.372.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.453.已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取1个球(有放回,每球取到的机会均等),共取三次.设事件A :“第一次取到的球和第二次取到的球颜色相同”,事件B :“三次取到的球颜色都相同”,则P (B |A )=( )A.16B.13C.23D.14.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶也是蓝色的概率( )A .110B .17C .14D .155.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,已知甲乙相邻,则甲丙相邻的概率为( ) A .13B .23C .12D .16 6. 甲、乙、丙3位学生用互联网学习数学,每天上课后独立完成6道自我检测题,甲答题及格的概率为810,乙答题及格的概率为610,丙答题及格的概率为710,3人各答一次,则3人中只有1人答题及格的概率为 ( )(A)320(B)41125(C)47250(D)以上全不对7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.8.甲袋中有2个白球和4个红球,乙袋中有1个白球和2个红球.现在随机地从甲袋中取出一球放入乙袋,然后从乙袋中随机地取出一球,则取出的球是白球的概率是________.9. 抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,则两颗骰子的点数之和大于8的概率为________.10.盒子装中有形状、大小完全相同的五张卡片,分别标有数字1,2,3,4,5.现每次从中任意抽取一张,取出后不再放回.(1)若抽取三次,求前两张卡片所标数字之和为偶数的条件下,第三张为奇数的概率;(2)若不断抽取,直至取出标有偶数的卡片为止,设抽取次数为ξ,求随机变量ξ的分布列及数学期望.11.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(1)设所选3人中女生人数为ξ,求ξ的分布列(2)在男生甲被选中的情况下,求女生乙也被选中的概率.12.盒子中装有形状、大小完全相同的五张卡片,分别标有数字1,2,3,4,5.现从中任意抽出三张.(1)求三张卡片所标数字之和能被3整除的概率;(2)求三张卡片所标数字之积为偶数的条件下,三张卡片数字之和为奇数的概率.13.(2016山东理19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和为X的分布列和数学期望EX.。
专题11 概率与统计1. 【2014高考福建卷文第13题】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________.2. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.203. 【2014高考广东卷文第12题】从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .4. 【2014高考湖北卷文第5题】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P << 【答案】C 【解析】试题分析:依题意,36101=P ,3626361012=-=P ,36183=P ,所以231P P P <<.选C. 考点:古典概型公式求概率,容易题.5. 【2014高考湖北卷文第6题】根据如下样本数据:x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0<b B.0a > ,0>b C.0a < ,0<b D.0a < ,0>b6. 【2014高考湖北卷文第11题】甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.7. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查8. 【2014高考湖南卷文第5题】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 9. 【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .10. 【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]80,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.【考点】频率分布直方图.11. 【2014高考江西卷文3第题】掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D12. 【2014高考江西卷文第7题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( ) 表1 不及格 及格 总计 男 6 14 20 女1022 32 总计 16 3652A.成绩 表2 不及格 及格 总计 男 4 16 20 女1220 32 总计 163652B.视力表3 不及格 及格 总计 男 8 12 20 女824 32 总计 163652C.智商表4 不及格 及格 总计 男 14 6 20 女23032总计 16 36 52D.阅读量13.14. 【2014高考辽宁卷文第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π 15. 【2014高考全国1卷文第13题】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P63 ==.考点:古典概率的计算16.【2014高考全国2卷文第13题】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.17.【2014高考山东卷文第8题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【答案】C【解析】由图知,样本总数为2050.0.160.24N==+设第三组中有疗效的人数为x,则60.36,1250xx+==,故选C.考点:频率分布直方图.18.【2014高考陕西卷文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D19. 【2014高考陕西卷文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s20.【2014高考四川卷文第2题】在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
概率统计原理
概率统计原理是一种利用概率和统计方法来分析和解释现实世界中随机现象的科学原理。
在统计学中,概率统计原理主要涉及到随机变量、概率分布、参数估计和假设检验等内容。
随机变量是概率统计原理的基本概念之一。
它表示随机试验的结果,可以是离散的,也可以是连续的。
概率分布用于描述随机变量取各个值的可能性大小,常见的概率分布包括离散分布(如二项分布、泊松分布)和连续分布(如正态分布、指数分布)等。
参数估计是概率统计原理的关键内容之一。
它用于根据样本数据来估计总体的参数,即通过已知的样本数据推断总体的特征。
参数估计可以分为点估计和区间估计两种。
点估计旨在找到一个最好地表示真实参数值的估计值,而区间估计则给出了一个总体参数的范围。
假设检验是概率统计原理的另一个重要概念。
它用于对统计推断进行验证。
假设检验包括设立原假设和备择假设,通过计算样本数据的统计量与理论分布的重合程度来判断原假设是否成立。
常见的假设检验方法有Z检验、t检验、卡方检验等。
概率统计原理在实际应用中具有广泛的应用。
例如,在医学研究中,可以使用概率统计原理来分析新药的疗效;在市场调研中,可以利用概率统计原理来估计产品的市场占有率;在金融风险管理中,可以运用概率统计原理来评估投资的风险等。
总之,概率统计原理是一种基于概率和统计方法的科学原理,可以帮助我们分析和解释现实世界中的随机现象。
通过随机变量、概率分布、参数估计和假设检验等内容,我们能够得出对总体的推断和决策。
高中数学概率统计
概率统计是数学中的一个重要分支,它研究随机现象和事件发
生的可能性。
在高中阶段,学生需要通过研究概率统计来理解和应
用概率的基本概念和计算方法。
概率是指某个事件发生的可能性大小。
在数学中,概率可以通
过计算来得出。
常见的计算方法包括频率概率和几何概率。
学生需
要学会根据给定的条件计算概率,包括单个事件和多个事件的概率
计算。
在概率统计中,还有一些重要的概念需要学生掌握。
例如,样
本空间是指随机事件所有可能结果的集合;事件是样本空间的子集,表示满足特定条件的结果集合;试验是指对随机现象进行观察和记
录的过程。
高中数学概率统计还涉及到一些常见的概率分布,如二项分布、均匀分布和正态分布。
学生需要理解这些分布的特点和应用场景,
以及如何计算和图示化概率分布。
通过研究高中数学概率统计,学生可以提高他们的数据分析和问题解决能力。
他们能够在实际生活中应用概率统计的知识,例如在投资、保险和赌博等方面做出理性的决策。
总之,高中数学概率统计是一门重要的数学课程,它帮助学生理解和应用概率的基本概念和计算方法,提高他们的数学思维和问题解决能力。
高中数学必修二概率统计专题训练(经典必练题型)介绍本文档是针对高中数学必修二中的概率统计专题进行的训练,旨在帮助学生巩固和提高概率统计方面的知识和技能。
文档包含一系列经典必练题型,涵盖了该专题的重要内容。
题型一:排列组合1. 有5个不同的苹果和3个不同的橘子,从中任选3个水果,求共有几种选法。
2. 由字母A、B、C、D、E无重复组成的3位数共有多少种?题型二:事件与概率1. 一枚骰子被掷两次,求两次得到的点数之和为7的概率。
2. 从1至10的十个自然数中随机选择两个数,求两数之和为偶数的概率。
题型三:独立事件与复合事件1. 甲、乙、丙三个人独立地作一件事情成功的概率分别是1/2、1/3、1/4,求三人都成功的概率。
2. 一批零件共有100个,其中有5个次品。
从中连续取3个,求取出3个次品的概率。
题型四:条件概率1. 甲、乙两组各选一位同学参加足球比赛,甲组和乙组每组有5名同学,甲组中有两名女生和三名男生,乙组中有4名女生和一名男生。
从两组中各选出一位同学参加比赛,已知参赛者是女生,求该同学来自甲组的概率。
2. 甲、乙两个班级的数学成绩分别如下表所示,学生随机抽取一位,已知该学生是不及格的,求该学生来自乙班的概率。
题型五:概率分布1. 投掷一枚均匀硬币,正面向上为事件A,反面向上为事件B。
设事件A和事件B的概率分别为0.4和0.6,记为P(A)=0.4,P(B)=0.6。
求该硬币投掷一次出现事件A的概率。
2. 掷一个骰子,其点数的概率分布为:P(X=1)=1/6,P(X=2)=1/6,P(X=3)=1/6,P(X=4)=1/6,P(X=5)=1/6,P(X=6)=1/6。
求投掷一次出现点数为奇数的概率。
以上为高中数学必修二概率统计专题训练的经典必练题型,希望能够帮助学生加深对该专题的理解和应用。
例1 设随机变量X 具有以下是的分布律,试求Y=(X-1)2的分布律。
解 Y 所有可能的取值为0,1,4。
由P{Y=O}= P{(X-1)2=0}= P{X=1}=0.1 P{Y=1}= P{X=0}+ P{X=2}=0.7 P{Y=4}= P{X=-1}=0.2, 例2 设随机变量X 具有概率密度x/8 ,0<x <4f X (x )=0 , 其他 求随机变量Y=2X+8的概率密度。
解 分别记X,Y 的分布函数为F X (x ),F Y (y )。
下面先求F Y (x )。
F Y (y )=P{Y ≤y}=P{2X+8≤y}=P{X ≤(y-8)/2}= F X {(y-8)/2}。
将F Y (x )关于y 求导数,得Y=2X+8的概率密度为f Y (y )= f X (x/2-4)/21/8×(y-8)/2×1/2, 0<(y-8)/2<4=0 ,其他 (y-8)/32, 8<y <16=0 ,其他例3 设随机变量X 具有概率密度f X (x ),求Y=X 2的概率密度。
解 分别记X ,Y 的分布函数为F X (x ),F Y (y )。
先求Y 的分布函数F Y (y )。
由于Y=X 2≥0,故当y ≤0时F Y (y )=0。
当y >0时有F Y (y )=P{Y ≤y} =P{X 2≤y}=P{-√y ≤X ≤√y} =F X (√y )-F X (-√y )将F Y (y )关于y 求导数,即得Y 的概率密度为1/(2√y)[ f X (√y )+f X (-√y )],y >0f Y (y )=0 ,y ≤0 例如,设X ~N(0,1),其概率密度为φ=√2π−x 2/2,−∞<x <+∞由上得Y=X 2的概率密度为√2π−1/2e−y/2,y>0fY(y)=0 ,y≤0例4 设随机变量X~N(μ,σ2)。
试证明X的线性函数Y=aX+b(a≠0)也服从正态分布。
E D O B A C 专题十 概率统计
一、古典概型
例1 (2008西北工大)甲、乙两人先后掷一枚均匀的正方体骰子(其六个面分别标有点数1,2,3,4,5,6),甲掷后朝上的面的点数记为a ,乙掷后朝上的面的点数记为b.
(Ⅰ)求a 与b 中至少一个是6的概率;
(Ⅱ)求使2log a b 的值为整数的概率.
例2 (2009清华)12名职员(其中3名为男性)被平均分配到3个部门。
(1)求此三名男性分别被分到不同部门的概率;
(2)求此三名男性被分到同一部门的概率;
(3)若有一名男性被分到指定部门,求其他两人被分到其他不同部门的概率.
例3 (2010重大)甲袋中有3个红球2个黑球,乙袋中有5个红球4个黑球,现从甲、乙两袋中各任取2球,则取到的4个球颜色相同的概率为
(A )110 (B )15 (C )310 (D )25
二、几何概型
例1 如图,60AOB ∠=︒,2OA =,5OB =,在线段OB 上任取一点C ,
试求:(1)AOC ∆为钝角三角形的概率;
(2)AOC ∆为锐角三角形的概率.
例2 甲乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.
例3 在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.
例4 平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.
三、条件概率
例1 (2009华南理工)甲、乙两人下围棋,下三盘棋,甲平均能赢二盘,某日,甲、乙进行五打三胜制比赛,那么甲胜出的概率为。
例2 在10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求
1) 两次都抽到次品的概率
2 ) 第二次才取到次品的概率
3)已知第一次取到次品,第二次又取到次品的概率
例3 某地区气象资料表明,邻近的甲、乙两城市中的甲市全年雨天为12%,乙市全年雨天为9%,两市中至少有一市雨天为16.8%,
试求甲市为雨天条件下,乙市亦为雨天的概率
例4 袋中有5个球:3个红球,2个白球,每次取1个,取后放回,再放入与取出的球色相同的球两个,求连续三次取得白球概率
例5 有甲乙两个袋子,甲袋中有两个白球,1个红球,乙袋中有两个红球,一个白球.这六个球手感上不可区别.今从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,问此球是红球的概率?
例6 (2008年交大冬令营)甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的80%,乙厂生产的占20%;甲厂商品的合格率为95%,乙厂商品的合格率为90%.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为.
四、概率统计
例1 (2011华中科技)甲乙两人轮流投掷一枚均匀硬币(首先由甲投掷,然后由乙投掷,…,依此类推).规定:先投出正面者获胜,但甲乙两人每人最多投掷三次.若甲乙两人每人的3次投掷均未掷出正面,则算乙获胜.
(1)求甲获胜的概率;
(2)设决出胜负时,甲乙共投掷次数为ξ,求ξ的分布列和期望.
例2 (2011清华保送生)12名员工,9男3女,平均分配到甲、乙、丙三个部门.求:
(1)3名女工恰平分到甲、乙、丙三部门的概率.
(2)3名女工分到同一部门的概率.
(3)求甲部门分到女工的分布列.
例3 (2011卓越)一袋中有a 个白球和b 个黑球.从中任取一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,另补一个白球放到袋中.在重复n 次这样的操作后,记袋中白球的个数为n X .
(1)求1EX ;
(2)设()n k p X a k p =+=,求1(),0,1,2,,n p X a k k b +=+= ;
(3)证明:11(1) 1.n n EX EX a b
+=-++
例4 (2010重大)将3个小球随机地投入编号1,2,3,4的4个盒子中(每个盒子容纳小球的个数没有限制),求:
(1)第1号盒子为空盒的概率;
(2)小球最多的盒子中小球的个数ξ的分布列与期望、方差.。