高频电子线路实验范例
- 格式:doc
- 大小:142.50 KB
- 文档页数:14
实验三幅度调制(AM, DSB)一. 实验目的1. 掌握AM, DSB 调制的原理与性质;2. 掌握模拟乘法器的工作原理及其调整方法;二. 实验内容1. 产生并观察AM, DSB 的波形;2. 观察DSB 波和过调幅时的反相现象.三. 实验仪器1. 数字存储示波器1 台;2. 信号发生器1 台; 导线2根.四. 实验原理实验原理图如图17-1所示.图3-1 模拟乘法器调幅实验原理图调制信号从TP2输入, 载波从TP1输入. 合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1), 可在TT1处观察普通调幅波(AM) 和抑制载波双边带调幅波(DSB).五. 实验步骤1. 连接实验电路在主板上正确插好幅度调制与解调模块, 开关K1. K2. K8. K9. K10. K11向左拨, 主板GND 接模块GND, 主板+12V 接模块+12V, 主板-12V 接模块-12V, 检查连线正确无误后, 打开实验箱右侧的船形开关, K1. K2 向右拨. 若正确连接, 则模块上的电源指示灯LED1. LED2 亮.2. 产生并观察AM 波和DSB 波(1) 输入调制信号VΩ调制信号VΩ由信号发生器CH1通道产生. 频率1kHz, 峰峰值200mVpp, 正弦. 调制信号VΩ接到"幅度调制与解调模块" 的TP2.(2) 输入载波信号V i载波信号V i由信号发生器CH2通道产生. 频率20kHz, 峰峰值400mVpp, 正弦. 载波信号V i. 接到"幅度调制与解调模块" 的TP1.(3) 产生并观察记录AM 信号, DSB 信号, 过调幅信号.①示波器探头1选择衰减悉数为X1, 接到"幅度调制与解调模块" TP2 观察调制信号的波形.②示波器探头2选择衰减悉数为X1, 接到"幅度调制与解调模块" TT1 观察乘法器的输出信号. 调节W1 , 改变调制信号中直流分量的数值, 可以观察到不同调制度的AM 信号, 如图3-2 所示..图3-2 普通调幅波(AM 波)或者观察到形如图 3-3 所示的DSB 信号.图3-3 抑制载波双边带调幅波(DSB 波)③ 在AM 和 DSB 信号之间还会观察到形如图 3-4 所示的过调幅信号.图3-4 过调幅的波形用示波器的 FFT 功能观察上述各种信号的频谱. 并将所有观察到的信号波形与频谱通过 USB 接口保存到优盘中.3. 观察 DSB 波和过调制情况下的反相现象调节电路使其输出 DSB 信号, 如图 3-3 所示. 调节扫描时基旋钮, 设定扫描速度为 5uS/div. 观察并记录在调制信号过零时刻前后的 DSB 信号的峰谷位置与屏幕刻度线之间的位置.注意:本实验所产生的普通调幅波和抑制载波双边带调幅波, 将作为实验四 "调幅信号解调" 的输入信号. 如果两个实验连续完成, 不要拆线.六. 实验报告1. 按步实验并画出各种调幅波的波形图及频谱图;2. 对比实验所得的 DSB 信号频谱, 与理论上的 DSB 信号频谱有何不同? 不同的的原因可能是什么?。
高频电子线路仿真实验报告专业班级:学号:姓名:2017.5.实验一 LC并联谐振回路仿真实验(空一行)一、实验目的(标题均为小三号,宋体)(对实验目的和实验环境的描述)(正文均为小四号,宋体,1.2倍行距)。
二、实验内容(标题均为小三号,宋体)1.(对实验任务的描述以及实验波形和测试数据的记录)2. (对实验任务的描述) 以及实验波形和测试数据的记录3. (对实验任务的描述以及实验波形和测试数据的记录)(正文均为小四号,宋体,1.2倍行距)。
三、仿真实验小结(标题均为小三号,宋体)回答实验任务中的相关问题(所有问题都要回答!)(正文均为小四号,宋体,1.2倍行距)。
实验二丙类谐振功率放大器原理仿真(空一行)一、实验目的(标题均为小三号,宋体)(对实验目的和实验环境的描述)(正文均为小四号,宋体,1.2倍行距)。
二、实验内容(标题均为小三号,宋体)1.(对实验任务的描述)2. (对实验任务的描述)3. (对实验任务的描述)(正文均为小四号,宋体,1.2倍行距)。
三、仿真实验小结(标题均为小三号,宋体)回答实验任务中的相关问题(所有问题都要回答!)(正文均为小四号,宋体,1.2倍行距)。
实验三模拟相乘器DSB信号调制及解调电路仿真(空一行)一、实验目的(标题均为小三号,宋体)(对实验目的和实验环境的描述)(正文均为小四号,宋体,1.2倍行距)。
二、实验内容(标题均为小三号,宋体)1.(对实验任务的描述)2. (对实验任务的描述)3. (对实验任务的描述)(正文均为小四号,宋体,1.2倍行距)。
三、仿真实验小结(标题均为小三号,宋体)回答实验任务中的相关问题(所有问题都要回答!)(正文均为小四号,宋体,1.2倍行距)。
实验四二极管峰值包络检波仿真(空一行)一、实验目的(标题均为小三号,宋体)(对实验目的和实验环境的描述)(正文均为小四号,宋体,1.2倍行距)。
二、实验内容(标题均为小三号,宋体)1.(对实验任务的描述)2. (对实验任务的描述)3. (对实验任务的描述)(正文均为小四号,宋体,1.2倍行距)。
深圳大学实验报告课程名称:高频电路实验项目名称:高频谐振功率放大器学院:信息工程专业:电子信息工程指导教师:***报告人:学号:班级:实验时间:2014年4月2日实验报告提交时间:教务部制一、实验目的:1.熟悉电子元器件和高频电子线路实验系统。
2.熟悉高频谐振功率放大器的基本工作原理,三种工作状态,功率、效率计算。
3.了解集电极电源电压VCC与集电极负载变化对谐振功率放大器工作的影响。
二、实验仪器:实验板2(丙类高频功率放大电路单元)双踪示波器AS1637函数信号发生器(用作为高频信号源)万用表三、实验原理:1.高频谐振功率放大器原理高频谐振功率放大器原理电路如图3-1所示。
图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。
R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。
C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。
L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。
C8还起隔直流作用。
R12是放大器集电极负载。
丙类功率放大器原理电路2.高频谐振功率放大器电路高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。
BG1、BG2是两级前置放大器,C2、C6用以调谐,A、B点用作为这两级的输出测试点。
BG3为末级丙类功率放大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测IC0值。
同时,E点可近似作为集电极电流iC波形的测试点(R10=10Ω,C9=100pF,因而C9并未对R10构成充分的旁路)。
K1~K3用以改变集电极负载电阻。
四、实验步骤:1.实验准备⑴在箱体右下方插上实验板2(丙类高频功率放大电路单元)。
接通实验箱上电源开关,此时箱体上12V、5V电源指示灯点亮。
⑵把实验板2右上方的电源开关(K5)拨到上面的ON位置,就接通了+12V电源(相应指示灯亮),即可开始实验。
实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。
2)、掌握ICL8038的应用方法。
二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。
三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。
它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。
恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。
当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。
当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。
若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。
C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。
将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。
1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。
目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。
3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。
把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
实验二 三点式LC 振荡器及压控振荡器一. 实验目的1. 了解三点式LC 振荡器的基本原理;2. 了解反馈系数对幅度与频率的影响;二. 实验内容1. 测量振荡器的信号幅度与频率.2. 观察反馈系数对输出强度与频率的影响;3. 测量振荡器的频率稳定度.三. 实验仪器(略) 四. 实验原理1. 三点式LC 振荡器三点式LC 振荡器的实验原理图如图2-1所示.图 2-1 三点式LC 振荡器实验原理图图中, T2为可调电感, Q1组成振荡器, Q2组成隔离器, Q3组成放大器. C6=100pF, C7=200pF, C8=330pF, C40=1nF. 通过改变K6. K7. K8的拨动方向, 可改变振荡器的反馈系数. 设C7. C8. C40的组合电容为C ∑, 则振荡器的反馈系数F =C6/ C ∑.反馈电路不仅把输出电压的一部分送回输入端产生振荡, 而且把晶体管的输入电阻也反映到LC 回路两端. F 大, 使等效负载电阻减小, 放大倍数下降, 不易起振. 另外, F 的大小还影响波形的好坏, F 过大会使振荡波形的非线性失真变得严重. 通常F 约在0.01~0.5之间.同时, 为减小晶体管输入输出电容对回路振荡频率的影响, C6和C ∑取值要大. 当振荡频率较高时, 有时可不加C6和C ∑, 直接利用晶体管的输入输出电容构成振荡电容, 使电路振荡. 忽略三极管输入输出电容的影响, 则三点式LC 振荡器的交流等效电路图如图 2-2所示.C6图2-2 三点式LC 振荡器交流等效电路图图2-2中, C5=33pF, 由于C6和C ∑均比C5大的多, 则回路总电容C 0可近似为:450C C C += (2-1)则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ (2-2)实际中C6和C ∑也往往不是远远大于C5, 且由于三极管输入输出电容的影响, 在改变C ∑, 即改变反馈系数的时候, 振荡器的频率也会变化.五. 实验步骤1. 三点式LC 振荡器 (1)连接实验电路在主板上正确插好正弦波振荡器模块, 开关K1, K9, K10, K11, K12向左拨, K2, K3, K4, K7, K8向下拨, K5, K6向上拨. 主板GND 接模块GND, 主板+12V 接模块+12V . 检查连线正确无误后, 打开实验箱左侧的船形开关, K1向右拨. 若正确连接, 则模块上的电源指示灯LED1亮.(2)测量LC 振荡器的幅度与振荡频率稳定度.用示波器(或高频毫伏表)在三极管Q2的发射极(军品插座处)观察反馈输出信号的峰峰值(或有效值), 记录下来. 然后每隔 10秒记录一次频率计读数, 填表2-1.表2-1(3)观察反馈系数对输出信号的幅度与频率的影响用示波器在三极管Q2的发射极观察并记录反馈输出信号V o 的波形. 改变反馈系数F 的大小 (通过选择K6, K7, K8的拨动方向来改变), 测量V o 峰峰值V op-p . 和有效值V rms , 通过频率计测量振荡器频率的变化情况, 填表2-2.表2-2调试时, 先使反馈系数F=1/2, 记录Q2发射极处信号的频率和峰峰值和有效值. 然后改变反馈系数的大小, 记录Q2发射极处信号的频率和峰峰值和有效值, 直至F=1/2. F=1/3. F=1/5. F=1/10的情况都做完.六. 实验报告1. 画出三点式LC 振荡器和压控振荡器的交流等效电路图, 按步实验并完成表2-1. 2-2并对数据进行处理, 计算频率稳定度.。
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
实验一正弦波振荡器第一部分LC 振荡器一、实验容1. 根据图2-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2. 研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S2 的1 拨上,构成LC 振荡器。
(2)改变上偏置电位器R A1,记下发射极电流Ieo (=V e/R10)填入表中,并用示波器测量对应点的振荡幅度V P-P(峰—峰值)填于表中,记下停振时的静态工作点电流值。
分析输出振荡电压和振荡管静态工作点的关系。
分析思路:静态电流I CQ会影响晶体管跨导gm,而放大倍数和gm 是有关系的。
在饱和状态下(I CQ过大),管子电压增益A V 会下降,一般取I CQ =(1~5mA)为宜。
3. 测量振荡器输出频率围。
用万用表测量J1 ,任意改变CCI,用示波器从TH1 处观察波形,并观察输出频率的变化。
二、实验仪器1. 高频实验箱HD-GP- Ш 1 台2. 双踪示波器 1 台三、实验数据记录静态工作点VQ=2.35V ,F=4.02MHz,停振I=3.93mA,Vpp=480mV,振荡频率f0=4.202MHz四、实验结果分析1.分析静态工作点、反馈系数F 对振荡器起振条件和输出波形振幅的影响。
晶体管的振荡条件是基极-发射极间电压是-0.1——-0.4V,如果达不到这个条件,是不会起振的。
所以静态工作点要接近这个电压,然后加上正反馈后才可起振。
正反馈放大器产生振荡的条件是AF=1,反馈系数完全是由线性网络所决定的比例系数,与振荡幅度大小无关。
由于放大器的放大倍数随振幅的幅度增大而下降,为了维持一定的振幅的振荡,反馈系数F要比AF=1中的F大一些。
这样,就可以使得在AF>1情况下起振,而后随着振幅的增强A0就向A过渡,直到振幅增大到某一程度,出现AF=1时,振幅就达到平衡状态。
因此,振荡器的起振条件为AF>1。
振荡器的平衡条件为AF=1。
2.计算实验电路的振荡频率f o ,并与实测结果比较。
THKGPZ-1A 型高频电子线路实验教学系统实验范例(供参考)①号板(一) 晶体滤波器(选做实验三)扫频仪:扫频输出:衰减0,Y 衰减:10 Y 增幅适当 扫频宽度:约0.3MHz 扫频中心频率10.7MHz观察晶体滤波器带通幅频特性,要求估算晶体滤波器衰减量和带宽。
高讯仪和示波器:(探头衰减10)高讯仪输出10.7MHz 载波,幅度达到最大接入J1,在J2处观察载波输出,然后改变载波(二)陶瓷滤波器(选做实验三)扫频仪:扫频输出:衰减0,Y 衰减:10 Y 增幅适当 扫频宽度:约1MHz 扫频中心频率10.7MHz观察陶瓷滤波器带通幅频特性,要求估算陶瓷滤波器衰减量和带宽。
高讯仪和示波器:(探头衰减10)高讯仪输出10.7MHz 载波,幅度达到最大接入J1,在J2处观察载波输出,然后改变载波(三)LC 串联谐振(选做实验四)扫频仪:扫频输出:衰减6dB ,Y 衰减:10 Y 增幅适当 扫频宽度:约10MHz 扫频中心频率6.5MHz观察LC 串联谐振带通幅频特性,要求估算LC 串联谐振回路吸收量和带宽。
(可改变W1分别估算)高讯仪和示波器:(探头衰减10)高讯仪输出P P mV 100、6.5MHz 载波接入J1,在J2处观察载波吸收情况,然后改变载波(四)LC 并联谐振(选做实验四)扫频仪:扫频输出:衰减10dB ,Y 衰减:10 Y 增幅适当扫频宽度:约8MHz 扫频中心频率10.7MHz观察LC 并联谐振带通幅频特性,要求估算LC 并联谐振回路Q 值和带宽。
(可改变W2分别估算)高讯仪和示波器:(探头衰减10)高讯仪输出P P mV -300、10.7MHz 载波接入J1,在J2处观察载波输出情况,然后改变(五)低通滤波器(选做实验三)扫频仪:扫频输出:衰减10dB ,Y 衰减:10 Y 增幅适当 扫频宽度:约5MHz 扫频中心频率2.5MHz W3逆时针最大观察5MHz 低通滤波器带通幅频特性,要求估算5MHz 低通滤波器谐振Q 值和带宽。
目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。
实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。
实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。
实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。
(2接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。
高频电子线路实验报告实验一、调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
3.熟悉谐振电路的幅频特性分析——通频带与选择性。
4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验电路图 1-1 单调谐回路谐振放大器原理图四、实验内容及步骤1、(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K,测量各静态工作点,并计算完成表1-1表1-1*Vb,Ve是三极管的基极和发射极对地电压。
3.动态研究(1)测量放大器的动态范围Vi ~ Vo(在谐振点上)a.选R=10K ,Re=1K 。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为,调节Ct,使回路“谐振”,此时调节Vi由变到,逐点记录Vo电压,完成表1-2的第二行。
(Vi的各点测量值也可根据情况自己选定)b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
表1-2*Vi , Vo可视为峰峰值(2)测量放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=为中心频率,然后保持输入电压 V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量Vo变化快的点),测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的倍的两个频率之差为放大器的3dB带宽)。
高频电子线路实验指导范例盐城工学院信息学院实验一、 函数信号发生实验开通K 1、K 3、K 700示波器,频率计接入TP 701测量,J 701为信号输出口。
1、K 702 1—2,正弦波输出。
用W 703、W 704、W 705来调整波形失真度。
W 703 调整 一、二象限对称,调整三、四象限对称。
W 704 调整 90度处过渡波形。
W 705 调整270度处过渡波形。
以上要求利用示波器显示屏方格标尺仔细、反复地调整,达到目测波形失真最小,要求小于1%。
2、输出正弦波的频率、幅度测量 K 702 1—2 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率:100Hz 幅度调节范围:0—12V P -P 2—3 频率:1KHz 幅度调节范围:0—12V P -P 4—5 频率:10KHz 幅度调节范围:0—12V P -P3、输出三角波的频率、幅度测量 K 702 2—3 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率 100Hz 幅度调节范围:0—20V P -P 2—3 频率 1KHz 幅度调节范围:0—20V P -P 4—5 频率 10KHz 幅度调节范围:0—20V P -P 4、输出方波的频率,幅度测量 K 702 4—5 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度: K 701 1—2 频率:100Hz 幅度调节范围:0—22V P -P 2—3 频率:1KHz 幅度调节范围:0—22V P -P 4—5 频率:10KHz 幅度调节范围:0—22V P -P实验二、非线性波形变换实验开通 K 1,K 3, K 300,K 700 准备工作:1、开通函数信号发生与非线性变换两项电源,K 301至K 306全部1—2。
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
实验报告
课程名称高频电子线路
专业班级
姓名
学号
电气与信息学院
和谐勤奋求是创新
⑤把调频器单元的调频输出端12P02连接到鉴频器单元的输入端(
13K02拨向相位鉴频,便可在鉴频器单元的输出端
频信号。
如果没有波形或波形不好,应调整12W01和13W01。
⑥将示波器CH1接调制信号源(可接在调制模块中的12TP03
,比较两个波形有何不同。
改变调制信号源的幅度,观测鉴频器解调输出有何变化。
调整调制信号源的频率,观测鉴频器输出波形的变化。
实验报告要求
.根据实验数据,在坐标纸上画出静态调制特性曲线,说明曲线斜率受哪些因素影响。
高频电子线路实验指导范例盐城工学院信息学院实验一、 函数信号发生实验开通K 1、K 3、K 700示波器,频率计接入TP 701测量,J 701为信号输出口。
1、K 702 1—2,正弦波输出。
用W 703、W 704、W 705来调整波形失真度。
W 703 调整 一、二象限对称,调整三、四象限对称。
W 704 调整 90度处过渡波形。
W 705 调整270度处过渡波形。
以上要求利用示波器显示屏方格标尺仔细、反复地调整,达到目测波形失真最小,要求小于1%。
2、输出正弦波的频率、幅度测量 K 702 1—2 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率:100Hz 幅度调节范围:0—12V P-P 2—3 频率:1KHz 幅度调节范围:0—12V P-P 4—5 频率:10KHz 幅度调节范围:0—12V P-P3、输出三角波的频率、幅度测量 K 702 2—3 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701 频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度为: K 701 1—2 频率 100Hz 幅度调节范围:0—20V P-P 2—3 频率 1KHz 幅度调节范围:0—20V P-P 4—5 频率 10KHz 幅度调节范围:0—20V P-P 4、输出方波的频率,幅度测量 K 702 4—5 K 701 1—2 W 701 频率调节范围: 9.6Hz —154Hz 2—3 W 701频率调节范围: 77Hz —1.24KHz 4—5 W 701 频率调节范围:733Hz —11.4KHz 以100Hz ,1KHz ,10KHz 频率为基准,测量输出幅度: K 701 1—2 频率:100Hz 幅度调节范围:0—22V P-P 2—3 频率:1KHz 幅度调节范围:0—22V P-P 4—5 频率:10KHz 幅度调节范围:0—22V P-P实验二、非线性波形变换实验开通 K 1,K 3, K 300,K 700 准备工作:1、开通函数信号发生与非线性变换两项电源,K 301至K 306全部1—2。
2、J 701与J 301用短接线联接,并分别连接双踪示波器探头。
3、函数信号发生器输出1KHz (频率计监测)三角波,幅度电位器旋至输出最 大处。
4、示波器CH 1与CH 2电压档皆为0.2V/格,幅度调节将三角波调至屏幕8格 ,双踪要求精确等幅。
5、 示波器CH 1与CH 2电压档换至0.1V/格,屏幕8格内装入三角波正半周。
测量:示波器一探头从TP 301移至TP 302,以8格幅度为1,分别测量四个折点幅度。
K 301 2—3 V O1=0.28 V i1=0.282—3 V O2=0.56 V i2=0.52 K 302 2—3 V O3=0.78 V i3=0.61 K 303 2—3 V O4=1 V i1=0.75 同样方法测量负半周:K 304 2—3 V O5=0.28 V i5=0.282—3 V O6=0.56 V i6=0.52 K 305 2—3 V O7=0.78 V i7=0.61 K 306 2—3 V O8=1 V i8=0.75将以上测量值与理论值进行比较。
实验三、小信号调谐放大实验开通K 1 、K 1100一、 单调谐放大电路1、 K 1101 1-2 ,K 11021-2扫频输出衰减40db ,Y 衰减10,调节Y 增幅。
扫频输出接TP 1101,检波探头接TP 1102,调节T 1101至波形顶峰6.5MHz ,调节Y 增幅至6 格,测量单调谐放大级的增益和带宽。
Re=1K R L =10K 增益:31db 带宽:约500KHz 2、K 1101 1-2,K 11022-3扫频输出衰减30db ,Y 衰减10,调节Y 增幅至6格。
Re=1K R L =2K 增益:21db 带宽:约1.2MHz3、K 1101 1-2 ,K 11024-5扫频输出衰减20db ,Y 衰减10Re=1K R L =470 增益:6db带宽:约4MHz 4、K 1101 的2-3 ,K 1102的1-2扫频输出衰减35db ,Y 衰减10,调节Y 增幅至6格。
Re=2K R L =10K 增益:26db 带宽:约500KHz 。
5、K 1101 的4-5 ,K 1102的1-2扫频输出衰减36DB ,Y 衰减10,调节Y 增幅至6格。
Re=470 R L =10K 增益:36db 带宽:约500KHz 。
结论:发射极电阻Re 对增益有一定的影响,但对带宽和中心频率影响较小。
阻尼电阻R L 对增益有很大的影响,且对带宽和中心频率影响较大。
二、 双调谐放大电路1、 扫频输出衰减37db ,Y 衰减10,调节Y 增幅至6格。
K 11031-2,调整T 1102,T 1103至双峰等高。
耦合电容12P 紧耦合 增益:27db 带宽约为:1MHz 。
2、扫频输出衰减38db ,Y 衰减10,调节Y 增幅至6格。
K 11032-3。
耦合电容9P 适中耦合 增益:28db 带宽:约0.7MHz3、扫频输出衰减38db ,Y 衰减10,调节Y 增幅至6格。
K 11034-5。
耦合电容5.1P 松耦合 增益:28db 带宽:约0.3MHz4、J 1102,TP 1103输入高讯仪输出的高频载波0.4V ,频率分别为6.1,6.5,6.9MHz ,用示波器在TP 1104测试三种耦合状态下的输出幅度。
以上测试用的高频载波亦可取自“变容二极管调频器及相位鉴频器实验”所产生的载波,频偏调节W 401。
实验四、LC 与晶体振荡器实验开通K 1、K 1001、 将K 101的1—2,K 102的1—2,K 103的1—2,K 104的1—2短接,组成LC 西勒振荡器,可在TP 101或TP 102处用示波器观察振荡正弦波形,其频率约1.5MHz ,幅度约为1.60 V P-P 。
2、 调整静态工作点:将K 104的2—3短接,使L 102对地短路,西勒振荡器停振。
调整R 101,使BG 101的U eq =0.5V ,即I eq =0.5V/1k=0.5mA ,U eq 和I eq 为静态工作点。
3、 将K 104的1—2短接,恢复西勒振荡器工作,测量U e =0.97V ,比较U e 和U eq 。
4、 观察反馈K fu 系数对振荡电压的影响:表4—1、K fu 对V L 的影响 图4—1、K fu 对V L 的曲线图5、测量振荡电压V L 与振荡频率f 之间的关系,计算波段复盖系数和作f —V L 曲线。
示波器和频率计同时接TP 102改变C 110,找出f max 和f min ,之间的频率点可适当等填入表内(C 107=1000P ,U eq =0.5V )。
).5.0(. 102107107106V U V TP C C C K eq L fu ==保持荡电压幅度振处用示波器测量输出的在按下表改变反馈系数表4—2、 f 对Vc 的影响 图4—2、 f 对V L 的曲线图6、观察直流工作点对V L 的影响:表4—3 、I eq 对V L 的影响首先保持C 107=1000P ,U eq =0.5V , f=1.5MHz ,然后按第二条方法改变I eq ,测量相应的V L 。
7、观察外界因素对LC 振荡频率稳定度的影响:首先保持C 107=1000P ,U eq =0.5V , f=1.5MHz , V L =1.60V ,(用示波器和频率计在TP 102处观察),然后将频率计接在TP 101处,测量频率为1.491MHz 。
8、将K 101的2—3,K 102的2—3,K 103的2—3,K 104的1—2短接,拔掉C 107, 组成6MHz 晶体振荡器,用示波器和频率计在TP 102处观察波形、幅度和频率。
波形:正弦波 幅度:V L =1.4 V P-P 频率:f=5.9993MHz 9、观察外界因素对晶体振荡频率稳定度的影响:将频率计接在TP 101处,测量频率为:f=5.9992MHz10、比较以上两种振荡器频率稳定度△f/ f 0(仅做负荷影响一项)实验五、集成乘法混频实验开通 K 1 、K 3、K 100 、K 1000%00167.09993.59992.59993.5/ %667.05.149.15.1/ 00=-=∆=-=∆MHZ MHZMHZ f f MHZMHZMHZ f f LC 晶体振荡器振荡器一、中频LC 滤波器的调整扫频输出衰减10db ,Y 衰减10,调节Y 增幅至适当幅度,扫频输出接TP 1003,检波探头接TP 1004,调整L 1003至1.5MHz 至峰顶。
扫频输出衰减 10db,Y 衰减10。
二、观察中频频率接J 101-J 1001(J 101输出6MHz 晶振频率作为本实验的本振频率),高讯仪输出 4.5MHz ,0.4V P-P 载波(CW ),在TP 1004用示波器观察1.5MHz 。
中频载波,可用双踪同时观察本振-载波,载波-中频。
三、镜象干涉频率的观察在双踪同时观察载波-中频后,缓慢将高讯仪频率从4.5MHz 调至7.5MHz ,再次观察载波-中频,验证镜象频率-载波频率=2中频频率。
四、中频调制信号观察高讯仪输出经1K 音频调制的4.5MHz 调幅波,用以示波同时观察TP 1002和 TP 1003。
取自函数信号发生实验,波形:率:一、 701501502502TP 501和TP 503。
首先将K 501 的2—3 短接,调整W 501和W 502 ,以至TP 503输出最小,然后将K 501的1—2,K 503的2—3短接,调整W 503以至TP 503输出最小。
二、调幅波输出K 5011—2、K 5031—2、K 3011—2,调整W 501,微调W 502, TP 503和J 503输出为0.4V P-P ,调制度约50%的调幅波。
此外,在K 301 2—3时可观察平衡调幅波。
三、乘法器U 502解调输出用短接线连接J 503和J 504,J 502和J 505,用双踪示波器探头监视TP 501和TP 507。
首先分别将K 504和K 505的2—3短接,再分别调整W 504和W 505,按第一项将乘法器U 502失调调零,然后K 5041—2、K 5051—2,用示波器在TP 506、TP 507或J 506处观察解调正弦波,K 301 的2—3 用平衡调幅波输入。