2017年春季学期新版新人教版九年级数学下学期27.3、位似教案12
- 格式:doc
- 大小:213.00 KB
- 文档页数:5
27.3 位 似第1课时 位 似(1)知识与技能1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质. 2.掌握位似图形的画法,能够利用作位似图形的方法将—个图形放大或缩小. 过程与方法经历位似图形的探索过程,进一步发展学生的探究、交流能力. 情感、态度与价值观培养学生动手操作的能力,体验学习的乐趣.重点位似图形的有关概念、性质与作图. 难点利用位似将一个图形放大或缩小.一、问题引入1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.问:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、新课教授活动1:观察下图,图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?学生通过观察了解到有一类相似的图形,除具备相似的所有性质外,还有其他特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.每对位似对应点与位似中心共线(位似中心可在形上、形外、形内);不经过位似中心的对应线段平行.利用位似可以将一个图形放大或缩小.活动2:把图中的四边形ABCD 缩小到原来的12.师生活动:教师提出问题,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不唯一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O 可能选在四边形ABCD 外,可能选在四边形ABCD 内,可能选在四边形ABCD 的一条边上,可能选在四边形ABCD 的一个顶点上),并且同一个位似中心的两侧各有一个符合要求的图形,因此,位似中心的确定是关键.分析:把图形缩小到原来的12,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.作法一:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法二:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点A ′,B ′,C ′,D ′,使得OA ′OA=OB ′OB =OC ′OC =OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法三:如图.(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.三、例题讲解例1 如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O.(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2 画出所给图形的位似中心.答案四、课堂小结1.位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.2.位似的作用:利用位似可以将一个图形放大或缩小. 3.位似图形的画法.位似是相似的延伸和深化.位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形.本章编排的素材不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值.第2课时 位似(2)知识与技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程与方法会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小,体会数形结合的思想.情感、态度与价值观渗透数形结合的数学思想,培养学生良好的学习习惯.重点用图形的坐标的变化来表示图形的位似变换. 难点把一个图形按一定比例放大或缩小后,掌握点的坐标变化的规律.一、问题引入1.什么是位似图形?(如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.)2.如图,以点O 为位似中心,将△ABC 放大为原来的两倍.二、新课教授在前面,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.下面我们来研究如何表示.活动1:(1)如图(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?(2)如图(2),△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?学生小组讨论,共同交流,回答问题.解:可以看出,图(1)中把AB 缩小后,A ,B 两点的对应点分别为A ′(2,1),B ′(2,0);A ″(-2,-1),B ″(-2,0).图(2)中,作图略.将△ABC 放大后,A ,B ,C 对应的点分别为A ′(4,6),B ′(4,2),C ′(12,4);A ″(-4,-6),B ″(-4,-2),C ″(-12,-4).归纳位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.活动2:如图,△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2). ①将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1,B 1,C 1三点的坐标; ②写出△ABC 关于x 轴对称的△A 2B 2C 2的三个顶点A 2,B 2,C 2的坐标; ③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3,B 3,C 3三点的坐标.①将△ABC 向左平移三个单位得到△A 1B 1C 1,则A 1(-1,3),B 1(-1,1),C 1 (3,2); ②△ABC 关于x 轴对称的△A 2B 2C 2三个顶点坐标分别为A 2(2,-3),B 2 (2,-1),C 2 (6,-2) ;③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,则A 3(-2,-3),B 3(-2,-1),C 3(-6,-2).三、例题讲解例 如图,四边形ABCD 四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4).画出它的—个以原点O 为位似中心、相似比为12的位似图形.解法一:如上图,利用位似变换中对应点的坐标的变化规律,分别取点A ′(-3,3),B ′(-4,1),C ′(-2,0),D ′(-1,2).依次连接点A ′,B ′,C ′,D ′,四边形A ′B ′C ′D ′就是要求作的四边形ABCD 的位似图形.解法二:点A 的对应点A ″的坐标为(-6×(-12),6×(-12)),即A ″(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)四、巩固练习1.在平面直角坐标系中,已知点A(3,4),B(-4,3),以原点O 为位似中心,相似比为2,将△OAB 放大为△OA ′B ′,则对应点A ′,B ′的坐标分别为________.答案 A ′(6,8),B ′(-8,6)或A ′(-6,-8),B ′(8,-6).2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 答案 C五、课堂小结本节课首先巩固位似图形及其有关概念方面的知识,要求学生会用图形坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律;了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.关于位似图形的概念,教学中应注意解释:几何变换、相似变换、位似变换三者之间的关系.相似变换是特殊的几何变换,位似变换又是特殊的相似变换,位似图形是具有特殊位置关系的相似图形.四种变换中,平移、轴对称、旋转都是保距变换,变换前后图形全等.而相似变换(包括位似变换)前后得到的图形不一定全等,是保角变换.。
27.3 位似一、教学目标1.核心素养通过学习位似,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解位似图形的概念,掌握位似图形的性质.(2)利用位似图形的性质,掌握作位似图形的方法,并学会对图形放大或者缩小.(3)会用图形的坐标变化来表示图形的位似变化,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化规律.(4)了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.3.学习重点了解位似图形的概念、性质;位似与平移、轴对称、旋转的异同.4.学习难点利用位似将一个图形放大或缩小;运用四种变换解决问题.二、教学设计(一)课前设计1.预习任务任务1 阅读教材P47-P48,思考:什么叫做位似图形?位似图形有什么特征?任务2 阅读教材P48-P50,思考:如何画位似图形?直角坐标系中图形的位似变化与对应点坐标变化的规律是什么?2.预习自测1.下列说法正确的是( )A.位似图形可以通过平移相互得到;B.位似图形的对应边平行且相等;C.位似中心到对应点的距离之比都相等;D.相似图形的位似中心不止一个。
答案:C解析:略2.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是( )答案:D解析:略3.如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,已知BB′=2OB′,则△A′B′C′与△ABC 的面积比为( )A.1∶3 B.1∶4 C.1∶5 D.1∶9答案:D解析:略(二)课堂设计1.知识回顾(1)相似三角形的性质:对应角相等、对应边成比例;对应边之比等于相似比;周长之比等于相似比;面积之比等于相似比的平方.(2)前面我们已经学过的图形变换有:对称(轴对称与轴对称图形,中心对称与中心对称图形)变换:对称轴,对称中心.平移变换:平移的方向,平移的距离.旋转变换:旋转中心,旋转方向,旋转角度.相似变换:相似比.2.问题探究问题探究一什么是位似图形?位似图形有什么性质?重点、难点知识★▲●活动1 情景导入构建新知观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?归纳:如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.●活动2 自主探究位似图形的特征下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边的关系(位置和数量)呢?每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点,所以都是位似图形。
人教版数学九年级下册27.3《位似(1)》教学设计一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的概念,掌握位似图形的性质,并能够运用位似性质解决实际问题。
教材通过丰富的图形和实例,引导学生探究、发现位似的性质,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备了一定的几何知识基础。
但九年级学生的空间想象能力和抽象思维能力仍需进一步提高。
因此,在教学过程中,教师应注重引导学生通过观察、操作、思考、交流等活动,自主探究位似图形的性质,提高学生的空间想象能力和抽象思维能力。
三. 教学目标1.知识与技能:理解位似的概念,掌握位似图形的性质,能够运用位似性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:位似的概念,位似图形的性质。
2.难点:位似性质的证明和运用。
五. 教学方法1.情境教学法:通过丰富的图形和实例,引导学生观察、操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考,培养学生的问题解决能力。
3.合作学习法:分组讨论,培养学生团队合作意识和交流能力。
4.启发式教学法:引导学生自主探究,培养学生的抽象思维能力。
六. 教学准备1.准备相关的图形和实例,用于引导学生观察和操作。
2.准备投影仪或大屏幕,用于展示图形和实例。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的位似图形,如放大或缩小的地图、图片等,引导学生观察并提问:“这些图形有什么共同特点?”让学生思考位似图形的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过展示位似图形的定义和性质,引导学生理解和掌握位似的概念。
《位似》学历案(第一课时)一、学习主题本节课的学习主题是“初中数学课程《位似》”。
位似是初中数学中关于图形变换的重要概念,它涉及到图形的相似性和比例关系,是空间与几何领域的基础知识。
通过本节课的学习,学生将掌握位似的基本概念、性质和判定方法,为后续学习图形变换和几何推理打下坚实的基础。
二、学习目标1. 理解位似的概念,知道位似的图形具有相似性和比例关系。
2. 掌握位似的性质,能够识别和应用位似图形的特征。
3. 学会利用基本图形工具,如直尺、三角板等,画出位似图形。
4. 通过实际问题的解决,加深对位似概念的理解,提高应用能力。
三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对位似概念的理解程度。
2. 操作能力评价:通过学生动手操作,画出位似图形,评价学生的操作能力。
3. 应用能力评价:通过解决实际问题,评价学生对位似概念的应用能力。
4. 课堂表现和作业评价:综合学生的课堂表现和作业完成情况,评价学生的学习效果。
四、学习过程1. 导入新课:通过回顾相似图形的概念,引出位似的概念,为学习新课做准备。
2. 新课讲解:通过图示和实例,详细讲解位似的概念、性质和判定方法。
3. 操作实践:学生利用基本图形工具,动手画出位似图形,加深对概念的理解。
4. 小组讨论:学生分组讨论位似图形的特征和应用,提高合作学习能力。
5. 总结归纳:总结本节课的学习内容,强调位似概念的重点和难点。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对位似概念的理解和操作能力。
2. 作业布置:布置相关练习题,包括位似图形的识别、画法和应用题等,巩固学习效果。
3. 作业要求:要求学生认真完成作业,注意审题和解题思路的清晰性。
六、学后反思1. 反思学习过程:学生应反思自己在学习过程中的表现,找出不足之处。
2. 总结学习方法:总结有效的学习方法,如通过图示和实例加深理解、通过实际操作提高操作能力等。
3. 提出建议和问题:学生可以提出对课程内容和教学方法的建议和问题,以便教师改进教学。
人教版九年级下册27.3位似27.3位似课程设计一、背景介绍人教版九年级下册《数学》第27章“函数”的第三节课为“27.3位似”。
这一节课程主要介绍了位似变化,即通过相似变化,将图形扩大或缩小,并延伸到相似三角形的相似比例与侧比例的计算。
在未来的学习生活中,位似变化会有很多应用,如绘画、建筑和地图等。
二、课程目标1.了解相似图形的概念,掌握相似三角形的相似比例和侧比例的计算方法。
2.知道位似变化的定义和性质,能够运用位似变化扩大或缩小图形,并计算相应的比例。
3.能够在实际问题中应用位似变化,解决计算问题。
三、教学方式本课程采用讲述法和实践法相结合的方式进行教学。
1.首先,讲师将通过实例讲解相似三角形的相似比例和侧比例的计算方法,同时引入位似变化的概念和性质。
2.接下来,讲师将通过展示实物模型或视频等方式,展示位似变化的效果,并引导学生探究其原理和应用。
3.最后,讲师将给学生一些实际问题,要求他们运用所学知识计算,增进对位似变化的理解和掌握。
四、课程计划一、引入(5分钟)1.介绍本节课的主要内容和目标,激发学生的学习兴趣。
2.带领学生回顾上节课所学内容,为本节课奠定基础。
二、讲授(30分钟)1.介绍相似图形的定义和判定方法,并通过实例演示相似三角形的相似比例和侧比例的计算方法。
2.讲解位似变化的概念和性质,并展示位似变化的效果。
3.引导学生通过实践实验,探究位似变化的原理和应用。
三、练习与巩固(10分钟)1.给学生一些练习题,要求他们运用所学知识计算。
2.讲师进行解答和讲解,及时纠正学生的错误,巩固所学知识。
四、拓展与应用(10分钟)1.讲师给学生提供几个实际问题,要求他们运用所学知识解决。
2.学生在小组内讨论,提出自己的答案,讲师进行点评和总结。
五、教学评估1.通过课堂练习和实际问题的解答,检验学生对位似变化的理解和掌握程度。
2.通过作业批改,评估学生的综合能力和学习效果。
六、总结本节课主要介绍了位似变化的概念和应用,通过实例演示和实践探究,提高学生的数学思维能力和解题能力,为未来的数学学习奠定基础。
人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
人教版九年级数学下册:27.3《位似》教学设计1一. 教材分析人教版九年级数学下册第27.3节《位似》主要介绍了位似的定义、性质和运用。
位似是几何中的一个重要概念,它涉及到图形的变换和相似性质。
通过学习本节内容,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的变换和相似性质有一定的了解。
但是,对于位似的定义和性质,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生通过观察、操作和思考,逐步理解位似的含义,并能够运用位似解决实际问题。
三. 教学目标1.知识与技能:学生能够理解位似的定义,掌握位似的性质,并能够运用位似解决实际问题。
2.过程与方法:学生通过观察、操作和思考,培养直观思维和逻辑推理能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似的运用和实际问题的解决。
五. 教学方法1.情境教学法:通过创设实际情境,引导学生观察和操作,培养学生的直观思维和逻辑推理能力。
2.问题驱动法:通过提出问题,引导学生思考和讨论,激发学生的学习兴趣和探究精神。
3.案例教学法:通过分析实际案例,引导学生运用位似解决实际问题,培养学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,包括图片、动画和实例,帮助学生直观地理解位似的含义和性质。
2.教学素材:准备一些实际的图形和图片,用于展示和分析位似的情况。
3.练习题:设计一些练习题,用于巩固学生对位似的理解和运用。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形和图片,引导学生观察和思考,提出问题:“你们可以看出这些图形之间有什么关系吗?”学生可能回答:“它们看起来很相似,但是不完全一样。
”教师引导学生总结出位似的定义。
2.呈现(15分钟)教师通过课件展示位似的性质,包括位似的比例、位似的中心等。
人教版数学九年级下册教案27.3《位似》一. 教材分析《位似》是人教版数学九年级下册第27章第三节的内容,本节课主要让学生理解位似的性质,学会求位似图形的相似比。
通过本节课的学习,学生能够掌握位似的定义,理解位似与相似的关系,以及位似在实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的性质,能够求出两相似图形的相似比。
但位似这一概念对学生来说比较抽象,不易理解。
因此,在教学过程中,教师需要利用生活中的实例,引导学生直观地理解位似的含义,并学会求位似图形的相似比。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.学会求位似图形的相似比。
3.能够运用位似知识解决实际问题。
四. 教学重难点1.教学重点:位似的定义,位似图形的性质,求位似图形的相似比。
2.教学难点:位似与相似的关系,位似在实际问题中的应用。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过生活实例引入位似概念,引导学生直观地理解位似;通过具体案例,让学生学会求位似图形的相似比;通过小组合作学习,培养学生运用位似知识解决实际问题的能力。
六. 教学准备1.教学课件:位似的概念、位似图形的性质、求相似比的方法。
2.实例图片:生活中的位似现象。
3.练习题:巩固位似知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如相机拍照、放大镜观察等,引导学生直观地认识位似现象。
提问:这些现象中,你们发现了什么共同特点?2.呈现(10分钟)呈现位似的定义,引导学生理解位似的含义。
通过具体案例,让学生学会求位似图形的相似比。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,求出位似图形的相似比。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师讲解答案,巩固位似知识。
5.拓展(10分钟)引导学生运用位似知识解决实际问题,如设计图案、建筑布局等。
学生分组讨论,分享解题过程和答案。
人教版数学九年级下册27.3《位似》教案(一)一. 教材分析人教版数学九年级下册27.3《位似》是本册的一个重点章节。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习函数、解析几何等数学分支的基础。
本节课的内容包括位似的定义、位似的性质以及位似的判定。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质和判定方法,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经学习了平面几何中的许多基本概念和性质,具备了一定的几何思维能力。
但是,对于位似这一概念,学生可能较为陌生,需要通过具体的实例和操作来理解和掌握。
同时,学生可能对于位似的判定方法感到困惑,需要通过大量的练习和讲解来加深理解。
三. 教学目标1.理解位似的含义,掌握位似的性质和判定方法。
2.能够运用位似解决一些实际问题。
3.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.位似的定义和性质。
2.位似的判定方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,让学生主动发现和总结位似的性质和判定方法。
2.利用多媒体和实物模型等教学辅助工具,直观地展示位似的变化和性质,帮助学生理解和记忆。
3.学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的图片,如相似的建筑、相似的生物形态等,引导学生思考这些图片之间的相似关系。
提问:你们认为这些图片之间有什么共同的特点?引导学生发现这些图片都是相似的,从而引入位似的概念。
2.呈现(15分钟)讲解位似的定义和性质。
位似是指两个图形之间的大小和形状都相似,但位置不同。
通过展示一些具体的图形和实例,让学生直观地理解位似的概念。
同时,引导学生发现位似具有对称性、传递性和唯一性等性质。
3.操练(15分钟)学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
人教版数学九年级下册27.3《位似(2)》教学设计一. 教材分析人教版数学九年级下册27.3《位似(2)》是位似变换这一章节的延续,主要介绍了位似变换的概念、性质及其在实际问题中的应用。
本节课的内容对于学生来说是一个重要的拓展,它不仅要求学生掌握位似变换的基本性质,还要求学生能够将位似变换应用到实际问题中,提高他们解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似变换的基础知识,对于变换的概念和性质有一定的理解。
但是,对于位似变换在实际问题中的应用,他们可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的应用能力。
三. 教学目标1.知识与技能目标:使学生掌握位似变换的概念、性质及其在实际问题中的应用。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的能力。
四. 教学重难点1.重点:位似变换的概念、性质及其在实际问题中的应用。
2.难点:如何将位似变换应用到实际问题中,提高解决问题的能力。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助他们理解位似变换的概念和性质。
2.实例分析法:教师通过具体的实例,让学生了解位似变换在实际问题中的应用。
3.小组讨论法:学生分组讨论,共同解决问题,提高他们的合作能力。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:教材、练习题、笔记本。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似变换的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示位似变换的定义和性质,让学生初步了解位似变换。
3.操练(10分钟)教师提出一些实际问题,让学生运用位似变换的知识进行解决。
教师引导学生分组讨论,共同解决问题。
4.巩固(5分钟)教师针对学生解决问题的过程进行讲评,纠正错误,巩固位似变换的知识。
人教初中数学九年级下册《27-3 位似》(教学设计)一. 教材分析《27-3 位似》这一节主要介绍位似的性质和位似图形的画法。
位似是几何中的一个重要概念,它既有相似的性质,也有自己独特的特点。
通过学习位似,学生可以更好地理解图形之间的关系,提高解决问题的能力。
二. 学情分析学生在学习这一节之前,已经掌握了相似图形的性质,他们对相似图形有了一定的认识。
但位似与相似有所不同,学生需要通过学习,理解位似的本质,掌握位似图形的画法。
三. 教学目标1.知识与技能:学生能理解位似的性质,掌握位似图形的画法。
2.过程与方法:通过观察、操作、思考,学生能发现位似的规律,提高解决问题的能力。
3.情感态度与价值观:学生能积极参与学习,对几何图形产生兴趣。
四. 教学重难点1.重点:位似的性质,位似图形的画法。
2.难点:理解位似的本质,灵活运用位似解决问题。
五. 教学方法1.情境教学法:通过实物、图片等引导学生直观地理解位似。
2.启发式教学法:引导学生观察、思考,发现位似的规律。
3.小组合作学习:学生分组讨论,共同完成任务,提高合作能力。
六. 教学准备1.准备相关的实物、图片等教学资源。
2.设计好练习题,以便在课堂上进行操练。
七. 教学过程1.导入(5分钟)教师通过展示实物或图片,引导学生观察,提出问题:“这些实物或图片有什么共同的特点?”让学生思考,引出位似的概念。
2.呈现(10分钟)教师通过PPT或黑板,呈现位似的性质和位似图形的画法。
讲解位似的性质,如位似的定义、位似比、位似中心等。
然后讲解位似图形的画法,如如何确定位似比、如何画出位似图形等。
3.操练(10分钟)教师设计一些练习题,让学生动手操作,巩固位似的性质和位似图形的画法。
如给出两个图形,让学生判断它们是否位似,以及如何画出它们的位似图形。
4.巩固(10分钟)教师继续设计一些练习题,让学生解答,巩固所学知识。
如给出一个图形,让学生找出它的所有位似图形,并画出来。