攸县二中高二数学月考试题
- 格式:doc
- 大小:243.00 KB
- 文档页数:6
攸县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、252. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除3. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( )A .1B .2C .3D .4. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A5. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .6. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )A .(0,1)∪(2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)7. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12)8. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米9. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .10.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .211.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]12.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .二、填空题13.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.14.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.15.已知f(x)=,则f[f(0)]=.16.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.17.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.18.下列关于圆锥曲线的命题:其中真命题的序号.(写出所有真命题的序号).①设A,B为两个定点,若|PA|﹣|PB|=2,则动点P的轨迹为双曲线;②设A,B为两个定点,若动点P满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.三、解答题19.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.20.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.21.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.22.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系; (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值.23.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t y =1+sin t(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.24.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.攸县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =.2. 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证. 命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”的否定是“a ,b 都不能被5整除”. 故选:B .3. 【答案】D【解析】解:∵复数z 满足zi=1﹣i ,(i 为虚数单位),∴z==﹣i ﹣1,∴|z|==.故选:D .【点评】本题考查了复数的化简与运算问题,是基础题目.4. 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .5. 【答案】D【解析】解:作出不等式组对应的平面区域如图, 则对应的区域为△AOB ,由,解得,即B (4,﹣4),由,解得,即A (,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.6.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.7.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.9.【答案】C【解析】解:F,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.1点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.10.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.11.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m ﹣1≤16,解得m;故m 的取值范围是(﹣];故选D .12.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A ,B ,D 皆有可能,而<1,故C 不可能.故选C .【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.二、填空题13.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.14.【答案】 ≤a <1或a ≥2 .【解析】解:①当a=1时,f (x )=,当x <1时,f (x )=2x﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x+2)=4(x ﹣)2﹣1,当1<x <时,函数单调递减,当x >时,函数单调递增,故当x=时,f (x )min =f ()=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x=1时,h (1)=2﹣a >0,所以0<a <2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.15.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.16.【答案】3.【解析】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.17.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.18.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.三、解答题19.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.20.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f (x )有最小值,当时,f (x )有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.…21.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】【解析】解:(Ⅰ)由4ρ2cos 2θ+9ρ2sin 2θ=36得4x 2+9y 2=36,化为;(Ⅱ)设P (3cos θ,2sin θ),则3x+4y=,∵θ∈R ,∴当sin (θ+φ)=1时,3x+4y 的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =cos ty =1+sin t(t 为参数)得x 2+(y -1)2=1, 即x 2+y 2-2y =0,∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π3)|,α∈[0,π),由|AB |=2得|sin (α+π3)|=12,∴α=π2或α=5π6.当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,此时l 的方程为y =x ·tan 5π6(x <0),即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32=32,∴△ABC 2的面积为S =12|AB |·d=12×2×32=32. 即△ABC 2的面积为32.24.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =.(3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.。
高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 若矩阵A的行列式为0,则A不可逆。
()3. 两条平行线上的任意一对对应线段比例相等。
()4. 双曲线的渐近线一定经过原点。
()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。
()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。
2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。
3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。
4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。
5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。
四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。
2. 请解释什么是反函数。
3. 简述等差数列的通项公式。
4. 请说明直线的斜率的意义。
5. 简述三角函数的周期性。
攸县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个2. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)3. 若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .214. 已知集合,则A0或 B0或3C1或D1或35. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )A .5B .7C .9D .116. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .7. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .8. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣39. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .10.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 11.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >12.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.25πC. 5πD. 225π+π【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.二、填空题13.函数f(x)=(x>3)的最小值为.14.函数f(x)=a x+4的图象恒过定点P,则P点坐标是.15.若tanθ+=4,则sin2θ=.16.已知点A的坐标为(﹣1,0),点B是圆心为C的圆(x﹣1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为.17.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.18.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).三、解答题19.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.20.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.21.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。
2020年湖南省株洲市攸县第二中学高二数学理测试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 观察下列等式,,,根据上述规律,()A. B. C. D.参考答案:C2. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是 ( )A. B. C. D.参考答案:A3. ①若p∧q为假命题,则p,q均为假命题,②x,y∈R,“若xy=0,则x2+y2=0的否命题是真命题”;③直线和抛物线只有一个公共点是直线和抛物线相切的充要条件;则其中正确的个数是()A.0 B.1 C.2 D.3参考答案:B【考点】命题的真假判断与应用.【分析】由复合命题的真假判断方法判断①;写出命题的否命题判断②,距离说明③是假命题.【解答】解:①∵p,q中只要有一个假命题,就有p∧q为假命题,∴命题①错误;②x,y∈R,“若xy=0,则x2+y2=0的否命题是x,y∈R,“若xy≠0,则x2+y2≠0”是真命题”;③直线和抛物线只有一个公共点是直线和抛物线相切的充要条件为假命题,当直线与抛物线对称轴平行时,直线和抛物线也只有一个公共点.∴真命题的个数是1个.故选B.4. 已知两点,且是与的等差中项,则动点的轨迹方程是()A. B. C. D.参考答案:C5. 某程序的框图如图所示,则运行该程序后输出的的值是()A.B.C.D.参考答案:A无6. 根据右边程序框图,当输入10时,输出的是()A.12 B.14.1 C.19 D.-30参考答案:B略7. 在每一试验中事件A发生的概率均为,则在次试验中恰好发生次的概率为( )A、1-B、C、1-D、参考答案:D8. 若为虚数单位,复数等于()A.B.C.D.参考答案:B9. 已知数列{a n}是逐项递减的等比数列,其首项a1 < 0,则其公比q的取值范围是()A.(-,-1)B.(-1,0) C.(0,1) D.(1,+)参考答案:D略10. 在一个袋子中装有分别标注数学1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 在样本频率分布直方图中,共有个小长方形,若最中间一个小长方形的面积等于其它个小长方形的面积之和的,且样本容量为,则最中间一组的频数为___ .参考答案:3212. 已知实数x,y满足,则的最大值是__________.参考答案:13【分析】根据约束条件得到可行域,根据的几何意义可知当过时,取最大值,代入求得结果.【详解】实数满足的可行域,如图所示:其中目标函数的几何意义是可行域内的点到坐标原点距离的平方由图形可知仅在点取得最大值本题正确结果:13【点睛】本题考查线性规划求解最值的问题,关键是明确平方和型目标函数的几何意义,利用几何意义求得最值.13. 如图,已知可行域为及其内部,若目标函数当且仅当在点B 处取得最大值,则k的取值范围是 .参考答案:14. 关于函数.有下列三个结论:①的值域为;②是上的增函数;③的图像是中心对称图形,其中所有正确命题的序号是_______;参考答案:①②③略15. 对任意实数x,若不等式恒成立,则k的取值范围是_______.参考答案:【分析】构造函数y=|x+1|﹣|x﹣2|,根据绝对值的几何意义,得函数的值域,根据不等式|x+1|﹣|x ﹣2|>k恒成立,则y min>k,构造关于k的不等式,进而得到k的取值范围.【详解】对任意实数,若不等式恒成立,而表示数轴上的对应点到-1对应点的距离减去它到2对应点的距离,其最小值为-3,故有,故答案为.【点睛】本题考查的知识点是绝对值不等式,其中熟练掌握绝对值的几何意义,并分析出绝对值函数的值域是解答此类问题的关系,本题也可以用零点分段法,将构造的函数表示为分段函数,然后求出值域,但过程较为复杂.16. 公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是___________________。
高二下学期第二次月考数学(理科)一、选择题:木大题共12小题,每小题5分,每小题给出的四个选项中,只有一项 是符合题目要求的。
(1) 已知集合 A= {-1, 0, 1), B= {X | X 2<1},贝ij AAB=()(A) 0 (B) {0} (C) {-1,1} (D) {-1,0,1}已知椭圆召+务]上的-点P 到椭圆-个焦点的距离为7,则P 到另-焦点(8) RAND (0,1)表示生成一个在(0,1)内的随机数(实数),若"RAND (0,1),y=RAND (0,1),则x 2+y 2<l 的概率为() (A) -(B) 1—-(C) -(D) 1—-(2)的距离为()(A) 2 (B) 3 (C) 5(D) 7(3) 已知向量。
=(1, -1), b= (x,2),且d 丄方则I a + h I 的值为((A) V2(B) V7(C) 2^2(D) V10(4) 命题“X/XG R, X 2—X +1 >(F 的否定是()(A) V XG R,x 2一x+] <0 (B) V XG R, x 2一x+l<0 (C) 3X 0G R, X O 2—X O + l<0(D) 3X 0G R, X O 2—X O + KO(5) 已知等数列{a n }中,ai=ll,a5=-l,则{ a* }的前n 项和的最大值是()(A) 15 (B) 20 (C) 26 (D) 30(6) 若执行如图所示的程序框图,则输出的结果K=()(A) 2(B) 3(C) 4(D) 5(7) 已知等比数列{a n )满足 ai= — , a3a5=4 (a 4-l),则 a2=()4(A) 2(B) 1(C)-2 (D)4 4 8 8(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该儿何体的体积为()(A)—(龙+ 1)3Q(B)| (2兀 + 1)(C)8(2^ + 1)(D)16(龙 + 1)(10)已知函数f (x) =lg ( >/1+4X2-2X) +1,则f (3) +f (-3)=( )(A) -1 (B) 0 (C) 1 (D) 2(11)已知函数f (x) =sin (2x+ -),将其图像向右平移<p ((p>0)个单位后得到的函数为奇函数,则(P的最小值为()(A) —(B) - (C) - (D)-12 6 3 2(12)设M {a, b, c} = ® 坎c 的中位数,(山)(b-c)(c-d)H0[a, b, c 的众数,(a-b)(b-c)(c-a) = 0若f (x) =M {2V, x2, 4一7.5x} (x>0),则f (x)的最小值是( )(A) -(B)-(C) 1(D)-424第II卷二、填空题:本大题共4小题,每小题5分。
攸县高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1.(+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .452. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 3. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .44. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A. B .18 C. D.5. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A.B.C.D.6. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.7. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( ) A.B.C.D.8. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .49. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.915210.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°11.cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 12.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( )A .1或﹣3B .﹣1或3C .1或3D .﹣1或﹣3二、填空题13.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .14.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1 是“单曲型直线”的是 .15.已知1sin cos3αα+=,(0,)απ∈,则sin cos7sin12ααπ-的值为.16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.17.如图所示,圆C中,弦AB的长度为4,则AB AC×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.18.已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是.三、解答题19.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.20.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.21.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.22.已知函数f(x)=|x﹣1|+|x﹣a|.(I)若a=﹣1,解不等式f(x)≥3;(II)如果∀x∈R,f(x)≥2,求a的取值范围.23.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.24.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.25.已知f(x)=|x﹣1|+|x+2|.(1)解不等式f(x)≥5;(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,求a的取值范围.26.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名95%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌3.841 6.635附:K2=.攸县高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.【解答】解:由已知(+)2n(n ∈N *)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项. 2. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.3. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y 2=2px 的焦点为(2,0), ∴=2, ∴p=4. 故选D .【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.4. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.5.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.6.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.7.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.8.【答案】A 【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.9.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.10.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.11.【答案】D【解析】试题分析:原式()()=︒︒-︒︒=︒+︒=︒=︒+︒=-︒cos80cos130sin80sin130cos80130cos210cos30180cos30=考点:余弦的两角和公式.12.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.二、填空题13.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.14.【答案】①②.【解析】解:∵|PM|﹣|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即,(x>0).对于①,联立,消y得7x2﹣18x﹣153=0,∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.对于②,联立,消y得x2=,∴y=2是“单曲型直线”.对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.对于④,联立,消y得20x2+36x+153=0,∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.故符合题意的有①②.故答案为:①②.【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.15.【答案】3【解析】7sin sin sin cos cossin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭4=, sin cos 73sin 12ααπ-∴==,考点:1、同角三角函数之间的关系;2、两角和的正弦公式.16.【答案】. 【解析】解:由题意可得,2a ,2b ,2c 成等差数列∴2b=a+c∴4b 2=a 2+2ac+c 2①∵b 2=a 2﹣c 2②①②联立可得,5c 2+2ac ﹣3a 2=0∵∴5e 2+2e ﹣3=0∵0<e <1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题17.【答案】818.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.三、解答题19.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…20.【答案】【解析】解:(1)由圆C与直线l1:y=﹣x的一个交点的横坐标为2,可知交点坐标为(2,﹣2),∴(2﹣a)2+(﹣2)2=a2,解得:a=2,所以圆的标准方程为:(x﹣2)2+y2=4,(2)由(1)可知圆C的圆心C的坐标为(2,0)由直线l2与直线l1垂直,直线l1:y=﹣x可设直线l2:y=x+m,则圆心C到AB的距离d=,|AB|=2=2所以S△ABC=|AB|•d=•2•=2令t=(m+2)2,化简可得﹣2t2+16t﹣32=﹣2(t﹣4)2=0,解得t=(m+2)2=4,所以m=0,或m=﹣4∴直线l2的方程为y=x或y=x﹣4.21.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.22.【答案】【解析】解:(Ⅰ)当a=﹣1时,f(x)=|x+1|+|x﹣1|,由f(x)≥3即|x+1|+|x﹣1|≥3当x≤﹣1时,不等式可化为﹣x﹣1+1﹣x≥3,解得x≤﹣;当﹣1<x<1时,不等式化为x+1+1﹣x≥3,不可能成立,即x∈∅;当x≥1时,不等式化为x+1+x﹣1≥3,解得x≥.综上所述,f(x)≥3的解集为(﹣∞,﹣]∪[,+∞);(Ⅱ)由于|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|,则f(x)的最小值为|a﹣1|.要使∀x∈R,f(x)≥2成立,则|a﹣1|≥2,解得a≥3或a≤﹣1,即a的取值范围是(﹣∞,﹣1]∪[3,+∞).【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题转化为求函数的最值,运用分类讨论和绝对值不等式的性质,是解题的关键.23.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE 与平面所成角的正弦值为(Ⅲ)解:设CD=x (0<x <6),则A 1D=6﹣x ,在(2)的坐标系下有:A 1(0,0,6﹣x ),B (3,x ,0), ∴==(0<x <6), 即当x=3时,A 1B 长度达到最小值,最小值为.24.【答案】(1)(842π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.25.【答案】【解析】解:(1)不等式即|x﹣1|+|x+2|≥5,由于|x﹣1|+|x+2|表示数轴上的x对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故不等式的解集为(﹣∞,﹣3]∪[2,+∞).(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,故f(x)的最小值大于a2﹣2a.而由绝对值的意义可得f(x)的最小值为3,∴3>a2﹣2a,解得﹣1<a<3,故所求的a的取值范围为(﹣1,3).26.【答案】100人中,“歌迷”有25人,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得:K2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.∴P(A)= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.。
攸县第二中学校2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)2. sin570°的值是( ) A.B.﹣ C.D.﹣3. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .34. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .305. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .96. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( ) A .1B.C.D.7. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈8. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q9. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④11.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .3512.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°二、填空题13.如图,在棱长为的正方体1111D ABC A B C D 中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.14.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示.①函数f (x )的极大值点为0,4; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .15.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则m的取值范围是.16.若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g(x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是.17.曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为.18.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.三、解答题1920142015CBA5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.20.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.21.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.22.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.∆面积;(1)当点N与点A重合时,求NMF-最小时,LOGO最美观,试求此时LOGO图案的面积.(2)经观察测量,发现当2NF MF23.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.24.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.攸县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .2. 【答案】B【解析】解:原式=sin (720°﹣150°)=﹣sin150°=﹣. 故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.3. 【答案】D 【解析】考点:简单线性规划.4.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.5.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.6. 【答案】D【解析】解:设函数y=f (x )﹣g (x )=x 2﹣lnx ,求导数得=当时,y ′<0,函数在上为单调减函数,当时,y ′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x 2>lnx 恒成立,问题转化为求两个函数差的最小值对应的自变量x 的值.7. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.8. 【答案】D【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x>0成立,即p 为真命题, q :“x >2”是“x >4”的必要不充分条件,即q 为假命题, 则p ∧¬q 为真命题, 故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础9. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 10.【答案】D【解析】解:幂函数y=x 为增函数,且增加的速度比价缓慢,只有④符合. 故选:D .【点评】本题考查了幂函数的图象与性质,属于基础题.11.【答案】C【解析】【知识点】算法和程序框图 【试题解析】否,否,否,是,则输出S=24. 故答案为:C 12.【答案】B【解析】解:y=x 2的导数为y ′=2x ,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tan α=1, 解得α=45°. 故选:B .【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.二、填空题13.【答案】4⎡⎢⎣⎦ 【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.14.【答案】①②⑤.【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x <5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.15.【答案】m>1.【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则命题“∀x∈R,x2﹣2x+m>0”是真命题,即判别式△=4﹣4m<0,解得m>1,故答案为:m>116.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.17.【答案】.【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)∴曲线y=x2和直线x=0,x=1,y=所围成的图形的面积为S=()dx+dx=(x﹣x3)+(x3﹣x)=.故答案为:.18.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。
攸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 2. 如图框内的输出结果是( )A .2401B .2500C .2601D .27043. 10y -+=的倾斜角为( )A .150B .120C .60D .304. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .35. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π6. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1 B .﹣=1 C .﹣=1 D .﹣=17. 若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2 B .3C .4D .58. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β9. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D610.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1211.函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)12.等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( ) A .14 B .18C .21D .27二、填空题13.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.15.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .16.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.17.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .18.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.20.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F .(1)求证:BD CE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长21.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为﹣4,求a 的值.22X(I )求该运动员两次都命中7环的概率; (Ⅱ)求ξ的数学期望E ξ.23.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.24.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.攸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 2. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500, 故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.3. 【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 4. 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax ﹣y (a >0)得y=ax ﹣z , ∵a >0,∴目标函数的斜率k=a >0. 平移直线y=ax ﹣z ,由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=. 故选:B .5.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.6.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.7.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4.故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.8. 【答案】C【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.9. 【答案】B【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 10.【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 11.【答案】B 【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x+2(a >0且a ≠1)图象一定过点(0,3), 故选B .【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.12.【答案】A【解析】解:由等差数列的通项公式可得,a 3+a 4=2a 1+5d=9,a 1+d=3 解方程可得,a 1=2,d=1 ∴a 1a 6=2×7=14 故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题二、填空题13.【答案】 5﹣4 .【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.14.【答案】0.9【解析】解:由题意,=0.9,故答案为:0.915.【答案】25【解析】考点:分层抽样方法.16.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.17.【答案】=1【解析】解:由题意得,圆心C (1,0),半径等于4,连接MA ,则|MA|=|MB|,∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1, ∴b=,∴椭圆的方程为=1. 故答案为:=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.18.【答案】[3,6]-. 【解析】三、解答题19.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.20.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.21.【答案】【解析】解:(1)要使函数有意义:则有,解得﹣3<x <1,所以函数f (x )的定义域为(﹣3,1).(2)f (x )=log a (1﹣x )+log a (x+3)=log a (1﹣x )(x+3)==,∵﹣3<x <1,∴0<﹣(x+1)2+4≤4,∵0<a <1,∴≥log a 4,即f (x )min =log a 4;由log a 4=﹣4,得a ﹣4=4,∴a==.【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.22.【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P (A )=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10且P (ξ=7)=0.04,P (ξ=8)=2×0.2×0.3+0.32=0.21,P (ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P (ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ 7 8 9 10 P 0.04 0.21 0.39 0.36 ξ的期望为E ξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.23.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 24.【答案】【解析】【专题】概率与统计. 【分析】(I )确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II )确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I )所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II )先求从所种作物中随机选取一株作物的年收获量为Y 的分布列∵P (Y=51)=P (X=1),P (48)=P (X=2),P (Y=45)=P (X=3),P (Y=42)=P (X=4)∴只需求出P (X=k )(k=1,2,3,4)即可记n k 为其“相近”作物恰有k 株的作物株数(k=1,2,3,4),则n 1=2,n 2=4,n 3=6,n 4=3由P (X=k )=得P (X=1)=,P (X=2)=,P (X=3)==,P (X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E (Y )=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.。
攸县高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)2. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)3. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=4. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .45. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非6. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .7. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假 B .¬q 为真 C .p ∨q 为真 D .p ∧q 为假8. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、259. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.10.复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.11.集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.712.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .3二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.14.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15.命题:“∀x∈R,都有x3≥1”的否定形式为.16.已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N+),向量=(0,1),θn是向量与i的夹角,则++…+=.17.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且•=24,则△ABC的面积是.18.函数f(x)=2a x+1﹣3(a>0,且a≠1)的图象经过的定点坐标是.三、解答题19.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E ﹣ACD 1的体积.20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.21.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.22.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.23.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.24.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.攸县高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:令f(x)=x3﹣,∵f′(x)=3x2﹣ln=3x2+ln2>0,∴f(x)=x3﹣在R上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.2.【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k∈(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A3. 【答案】C【解析】解:对于A ,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C .【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.4. 【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1)B (x 2,y 2)两点∴|AB|=2﹣(x 1+x 2), 又x 1+x 2=﹣6∴∴|AB|=2﹣(x 1+x 2)=8故选A5. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C6. 【答案】C【解析】解:∵M 、G 分别是BC 、CD 的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.7. 【答案】C【解析】解:函数y=sin (2x+)的图象向左平移个单位长度得到y=sin (2x+)的图象,当x=0时,y=sin =,不是最值,故函数图象不关于y 轴对称,故命题p 为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q 为假命题; 则¬q 为真命题; p ∨q 为假命题; p ∧q 为假命题, 故只有C 判断错误, 故选:C8. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 9. 【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)nx n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .10.【答案】C【解析】i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+. 11.【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。
数学高二月考试卷一、选择题(每题5分,共60分)1. 椭圆frac{x^2}{25}+frac{y^2}{16}=1的长轴长为()A. 5B. 4C. 10D. 8.2. 双曲线x^2-frac{y^2}{3}=1的渐近线方程为()A. y = ±√(3)xB. y=±(√(3))/(3)xC. y = ± 3xD. y=±(1)/(3)x3. 抛物线y^2=2px(p>0)的焦点坐标为()A. ((p)/(2),0)B. (-(p)/(2),0)C. (0,(p)/(2))D. (0,-(p)/(2))4. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. - 2B. 2C. -(1)/(2)D. (1)/(2)5. 若直线y = kx + 1与圆x^2+y^2=1相切,则k=()A. ±√(3)B. ±1C. ±2D. ±√(2)6. 在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点为()A. (1,2,- 3)B. (-1,2,3)C. (1,-2,3)D. (-1,-2,-3)7. 设等差数列{a_n}的首项a_1=2,公差d = 3,则a_5=()A. 14B. 17C. 20D. 23.8. 等比数列{b_n}中,b_1=1,公比q = 2,则b_4=()A. 8B. 16C. 32D. 64.9. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)10. 已知函数f(x)=x^3-3x^2+1,则函数f(x)的单调递增区间为()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(3,+∞)D. (1,3)11. 若∫_0^a(2x + 1)dx=6,则a=()A. 2B. 3C. 4D. 5.12. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法共有()A. 46种B. 56种C. 70种D. 80种。
攸县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .22. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 3. 设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}4. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)5. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A . B . C . D .6. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .357. 阅读如下所示的程序框图,若运行相应的程序,则输出的S 的值是( )A .39B .21C .81D .1028. 直线的倾斜角是( )A .B .C .D .9. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1B .y=lnxC .y=x 3D .y=|x|10.将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π11.如图框内的输出结果是( )A.2401 B.2500 C.2601 D.270412.函数y=|a|x﹣(a≠0且a≠1)的图象可能是()A. B.C.D.二、填空题13.设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM,其中正确的是(把所有正确的序号都填上).14.设α为锐角,若sin(α﹣)=,则cos2α=.15.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.16.已知双曲线的一条渐近线方程为y=x,则实数m等于.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.若C=,则=.18.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.三、解答题19.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.20.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.21.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k00.455 0.708 1.323 2.072 2.706 3.84 5.0246.6357.879 10.8322.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.23.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
高二上册数学月考试卷一、选择题(每小题5分,共40分)1.下列说法正确的是()A. 一个骰子掷一次得到2的概率是1/6,则掷6次一定会出现一次2B. 若买彩票中奖的概率为万分之一,则买一万元的彩票一定会中奖一元C. 随机事件发生的概率是随着试验次数的增加而改变的D. 随机事件发生的概率与试验次数无关答案:D2.在棱长均等的正三棱柱ABC-A'B'C'中,直线AB与A'C'所成角的余弦值为()A. -√3/2B. √3/3C. -√2/2D. √2/2答案:(此处需要具体计算,但选项未直接给出,需通过空间向量或几何法求解)3.已知直线l经过点P(4,1),且与直线2x-y-3=0垂直,则直线l的方程是()A. x+2y-8=0B. x+2y+8=0C. 2x-y-4=0D. 2x-y+4=0答案:A4.在四面体ABCD中,OA=a,OB=b,OC=c,点M在AB上,且OM=2MA,N为BC中点,则MN等于()A. -(1/2)a-(1/2)b+(1/2)cB. (1/2)a+(1/2)b+(1/2)cC. -(1/2)a-(1/2)b-(1/2)cD. -(1/2)a+(1/2)b-(1/2)c答案:B(通过向量运算求解)5-8. (其他选择题,题目和选项略)二、填空题(每小题5分,共20分)9.已知直线l的方程为x-3y-2=0,则直线l的倾斜角为______。
答案:30°(通过斜率求解)10.在空间直角坐标系中,已知点A(1,2,3),点B(4,5,6),则AB的中点坐标为______。
答案:(5/2, 7/2, 9/2)(通过中点公式求解)11-12. (其他填空题,题目和答案略)三、解答题(共40分)13.已知向量a=(x,1),b=(1,y),c=(2-x,2-y),且a⊥b,a⊥c。
(1)求x+y的值;(2)求向量a+b与2a-c的夹角。
攸县高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________则几何体的体积为()4意在考查学生空间想象能力和计算能b=log)c D.b<c<aA.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=4.幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是()A.B.﹣C.3 D.﹣35.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是()A.B.C.D.6.若,则等于()A.B.C.D.7.点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是()A.B.C.D.8.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.20种B.22种C.24种D.36种9.若某程序框图如图所示,则该程序运行后输出的值是()A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.10.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 11.定义行列式运算:.若将函数的图象向左平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A.B.C.D.12.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a二、填空题13.若的展开式中含有常数项,则n 的最小值等于 .14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .16.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).17.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .18.81()x x的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.三、解答题19.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD , 平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点. (Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.20.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.21.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.22.平面直角坐标系xOy中,圆C1的参数方程为(φ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sinθ.(1)写出圆C1的普通方程及圆C2的直角坐标方程;(2)圆C1与圆C2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.23.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.24.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(a∈R).(1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。
攸县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β2.定义运算,例如.若已知,则=()A.B.C.D.3.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知等差数列的公差且成等比数列,则()A.B.C.D.5.已知两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,则=()A.﹣2 B.2 C.﹣D.6.已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x2+y2=4内的面积为()A.B.C.πD.2π7.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()A.48 B.±48 C.96 D.±968.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .49. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2010.已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣311.已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.12.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .9二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 17.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .18.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .三、解答题19.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.20.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.21.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.22.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.23.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.24.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.攸县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D2.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.3.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.4.【答案】A【解析】由已知,,成等比数列,所以,即所以,故选A答案:A5.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.6.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.7.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.8.【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A.【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.9.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.10.【答案】A【解析】解:由|x+1|≤2得﹣3≤x ≤1,即p :﹣3≤x ≤1, 若p 是q 的充分不必要条件, 则a ≥1, 故选:A .【点评】本题主要考查充分条件和必要条件的判断,比较基础.11.【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .12.【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.二、填空题π13.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.14.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.216.【答案】3【解析】17.【答案】a≤0或a≥3.【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.18.【答案】.【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.三、解答题19.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)20.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.21.【答案】【解析】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x1<x2则f(x1)﹣f(x2)=﹣=因为函数y=2x在R上是增函数且x1<x2∴f(x1)﹣f(x2)=>0即f(x1)>f(x2)∴f(x)在(﹣∞,+∞)上为减函数(III)f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.22.【答案】【解析】解:(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,则“这2名抗战老兵参加纪念活动的环节数相同”为事件,根据题意可知P()==,由对立事件的概率计算公式可得,故这2名抗战老兵参加纪念活动的环节数不同的概率为.(Ⅱ)根据题意可知随机变量ξ的可能取值为0,1,2,3,,P(ξ=1)==,P(ξ=2)==,P(ξ=4)=()3=,ξξ0 1 2 3P则数学期望.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.23.【答案】【解析】解:(Ⅰ)f (x )=ax++b ≥2+b=b+2当且仅当ax=1(x=)时,f (x )的最小值为b+2(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:f (1)=,∴a++b=①f'(x )=a ﹣,∴f ′(1)=a ﹣=②由①②得:a=2,b=﹣124.【答案】(1)3,2,1;(2)710. 【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710.考点:1、分层抽样的应用;2、古典概型概率公式.。
攸县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c2. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±963. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或4. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .5. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直6. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)7. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .8. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .9. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°10.已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( ) A .22 B .32 C .322 D .32411.已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .14.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .15.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 16.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.17.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .18.已知线性回归方程=9,则b= .三、解答题19.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.20.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )=.(Ⅰ)当a=1时,求φ(x )的单调区间;(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.23.设常数λ>0,a>0,函数f(x)=﹣alnx.(1)当a=λ时,若f(x)最小值为0,求λ的值;(2)对任意给定的正实数λ,a,证明:存在实数x0,当x>x0时,f(x)>0.24.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.25.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程.26.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.攸县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.2.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.3.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.4.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.5.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.6.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.7. 【答案】A【解析】解:由题意双曲线kx 2﹣y 2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A .【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k ,熟练掌握双曲线的性质是求解本题的知识保证.8. 【答案】B【解析】解:∵y=f (|x|)是偶函数,∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.9. 【答案】B【解析】解:y /=3x 2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°. 故选B .【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.10.【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=,∴1220y y +=③, 联立①②③可得218m =, ∴2121212()432y y y y y y -=+-=.∴1213222S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12222y y ⎧=⎪⎨=-⎪⎩或12222y y ⎧=-⎪⎨=⎪⎩)考点:抛物线的性质. 11.【答案】C【解析】解:由a 2b >ab 2得ab (a ﹣b )>0, 若a ﹣b >0,即a >b ,则ab >0,则<成立,若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立, 若<则,即ab (a ﹣b )>0,即a 2b >ab 2成立,即“a 2b >ab 2”是“<”的充要条件, 故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.12.【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.二、填空题13.【答案】 4 .【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,∴+=(+)(+)=2++≥2+2=4,当且仅当3a=4b时“=”成立,故答案为:4.【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.14.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.2,615.【答案】[]【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()0,0的距离;(2(),x y与点(),a b间的距离;(3)yx可表示点(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.16.【答案】5 12【解析】17.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.18.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.三、解答题19.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x>0,∴22x>1,∴f'(x)>0,∴f(x)在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.20.【答案】【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II)φ′(x)=e﹣x[﹣x2+(2﹣a)x]∵φ(x)在x∈[1,+∞)是递减的,∴φ′(x)≤0在x∈[1,+∞)恒成立,∴﹣x2+(2﹣a)x≤0在x∈[1,+∞)恒成立,∴2﹣a≤x在x∈[1,+∞)恒成立,∴2﹣a≤1∴a≥1∵a≤2,1≤a≤2;(III)φ′(x)=(2x+a)e﹣x﹣e﹣x(x2+ax+a)=e﹣x[﹣x2+(2﹣a)x]令φ′(x)=0,得x=0或x=2﹣a:由表可知,φ(x)极大=φ(2﹣a)=(4﹣a)e a﹣2设μ(a)=(4﹣a)e a﹣2,μ′(a)=(3﹣a)e a﹣2>0,∴μ(a)在(﹣∞,2)上是增函数,∴μ(a)≤μ(2)=2<3,即(4﹣a)e a﹣2≠3,∴不存在实数a,使φ(x)极大值为3.21.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:0 1 2EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.22.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.23.【答案】【解析】(1)解:当a=λ时,函数f(x)=﹣alnx=﹣(x>0).f′(x)=﹣=,∵λ>0,x>0,∴4x2+9λx+3λ2>0,4x(λ+x)2>0.∴当x>λ时,f′(x)>0,此时函数f(x)单调递增;当0<x<λ时,f′(x)<0,此时函数f(x)单调递减.∴当x=λ时,函数f(x)取得极小值,即最小值,∴f((λ)==0,解得λ=.(2)证明:函数f(x)=﹣alnx=﹣alnx=x﹣﹣alnx>x﹣λ﹣alnx.令u(x)=x﹣λ﹣alnx.u′(x)=1﹣=,可知:当x>a时,u′(x)>0,函数u(x)单调递增,x→+∞,u(x)→+∞.一定存在x0>0,使得当x>x0时,u(x0)>0,∴存在实数x0,当x>x0时,f(x)>u(x)>u(x0)>0.【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.24.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.25.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.26.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.。
攸县二中高二数学试题
满分:150分 时间:120分钟
一、 选择题(本大题共8小题,每小题 5 分,共 40分)
1、已知数列{}n a 的通项公式)(43*2N n n n a n ∈--=,则4a 等于( )。
A 1
B 2
C 3
D 0
2、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a
=则cos B = ( )
A .
14 B .34 C .4 D .3
3、已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( )
A .9
B .18
C .93
D .183
4、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )
A 4-
B 4±
C 2-
D 2±
5、等差数列}a {n 中,已知前15项的和90S 15
=,则8a 等于 ( )
A .
2
45
B .12
C .4
45 D .6
6、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是
A ...不确定 7、在ABC ∆中,已知C
B A sin cos sin 2=,那么AB
C ∆一定是 ( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .正三角形
8、计算机的成本不断降低,若每隔3年计算机价格降低3
1
,现在价格为8100
元的计算机,9年后的价格可降为 ( ) A .300元
B .900元
C .2400元
D .3600元
二、填空题(本大题共7小题,每小题 5 分,共35分)
9、在△ABC 中,AB=1, BC=2, B=60°,则AC =___________________。
10、已知{}n a 是等比数列,且0,n a <243546281a a a a a a ++=,则
35a a +=________________。
11、若数列{}n a 满足:111,2(1,2,3...)
n n a a a n +===其中。
则
=+++n a a a 21__________________。
12、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于
___________________。
13、数列1111
1,2,3,,,2482
n n +
+++……的前n 项和是___________________。
14、等比数列前n 项和为54,前2n 项和为60,则前3n 项和为
___________________。
15、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第100个图案中有白色地面砖_____________块,前100个图案共有白色地面砖_____________块。
攸县二中高二数学试题(答卷)
满分:150分 时间:120分钟
一、 选择题(本大题共8小题,每小题5 分,共 40分)
二、填空题(本大题共7小题,每小题 5 分,共35分)
9、 10、
11、 12、
13、 14、
15、
三、解答题(共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)
16、(本小题12分)
在等比数列
{}n a 中,5
162a
=,公比3q =,前n 项和242n S =,求
首项1a 和项数
n 。
姓名:
班级: 考 考室号 座位
==============密======================封======================线==============
17、(本小题12分)
在△ABC 中,角A,B,C 所对的边分别为,,a b c ,且满足sin cos c A a C =
(1) 求角C 的大小; (2)若b c ==解这个三角形。
18、(本小题12分) 在等比数列{}
n a 中,191
27,,243
a a ==求数列{}n a 前8项的和。
19、(本小题13分)
已知数列{}n a 中,1
1111
,,2n n n
a n a a a +==+求
20、(本小题13分)
求和:23135212222
n n -+++
+
21、(本小题13分)
在△ABC 中,角A,B,C 对应的边长分别为a 、b 、c ,
且3cos()cos 2
A C
B -+=
, 2,b ac B =求的大小。
==========================密==========================封========================线====================
密 封 线 内 不 要 作 答。