07电介质的极化和介质中的高斯定理
- 格式:ppt
- 大小:989.00 KB
- 文档页数:36
第 2 章静电场2.4 介质中的静电场方程2.4.2 介质中的高斯定律1.介质中高斯定律的微分形式ερ=∙∇E 0ερρp+=∙∇E (真空中)(电介质中)定义电位移矢量(Displacement )∙D 线从正的自由电荷发出而终止于负的自由电荷。
D ——辅助矢量,又称电通密度,C /m 2代入P∙-∇=p ρ)(1P E 0∙∇-=∙∇ρερε=+∙∇)(0P E PE D +=0ε则有ρ=⋅∇D 电介质中高斯定律的微分形式为自由电荷体密度ρ2. 介质中高斯定律的积分形式⎰∑=∙SqS D d 介质中高斯定律的积分形式⎰∑∑+=∙Sq q )(S E p 01dε代入⎰∙-=S p q SP d ⎰⎰∑∙-=∙S S q SP S E d d 0ε⎰∑⎰=∙+∙SSqS P S E d d 0ε⎰∑=∙+SqS P E d )(0εq 为闭合面包围的自由电荷• D 线由正的自由电荷出发,终止于负的自由电荷;• P 线由负的极化电荷出发,终止于正的极化电荷。
• E 线由正电荷出发,终止于负电荷;D 线E 线P 线D 、E 与P三者之间的关系图示平行板电容器中放入介质板后,其D 线、E 线和P 线的分布。
3.D 和E 的关系D = ε0E + P P = χe ε0E⇒⎭⎬⎫D = ε0E +χe ε0E = ε0(1+χe ) E= ε0εr E = εED = εE介质的本构关系或组成关系er 1χεεε+==ε——介质的电容率(介电常数)F/mεr ——介质的相对电容率(相对介电常数)无量纲χe 、εr 和ε的取值取决于媒质的特性4. 介质特性电场中,介质的特性由其介电常数确定。
E D ε=r ε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z y x E E E D D D 333231232221131211εεεεεεεεε均匀、线性、各向同性介质的介电常数是常量--简单介质。
有电介质时的高斯定理
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。
此定理的公式表述为:电场穿过一个封闭曲面的通量等于该曲面内部的电荷总量的比例,即ΦE=Q/ε0,其中ΦE为电场的通量,Q为曲面内部的电荷总量,ε0为真空中的电介质常数。
在有电介质时,电场的分布受到电介质的影响。
电介质的存在会使电场强度发生改变,这是因为电介质的分子会被电场极化,从而产生极化电荷。
这些极化电荷会改变电场的分布,使电场在电介质中的强度比在真空中的强度小。
因此,在有电介质时,要考虑电介质对电场的影响,才能准确地计算电荷的分布。
在应用高斯定理时,通常需要选择一个适当的曲面来计算电场的通量。
曲面的选择应当考虑到电荷分布的对称性,以便简化计算。
在有电介质时,曲面的选择也需要考虑到电介质的影响。
如果曲面穿过电介质,那么在计算电荷总量时,需要将电介质中的极化电荷也计算在内。
高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。
在电场的计算中,高斯定理可以用来求解各种电场分布,例如电偶极子、均匀带电球面等。
在电容器的设计中,高斯定理可以用来计算电容器的电容量,从而确定电容器的电荷储存能
力。
在电荷分布的测量中,高斯定理可以用来测量电荷的总量,从而确定电荷的分布情况。
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。
在应用该定理时,需要考虑到电介质的影响,并选择适当的曲面来计算电场的通量。
高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。
有介质时的高斯定理公式有介质时的高斯定理公式是物理学中的基本定理之一,它描述了电场、重力场等物理场在有介质的情况下的分布规律。
本文将介绍有介质时的高斯定理公式及其应用。
高斯定理公式指出,电场的通量与电荷量成正比,与介质极化强度成反比。
在有介质的情况下,电荷会在介质中引起电极化,从而影响电场的分布。
因此,高斯定理公式在描述有介质中电场分布时变得更加复杂。
在有介质时,高斯定理公式可以表示为:$$ \oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\epsilon_0}\int_V \rho dV - \oint_S \mathbf{P} \cdot d\mathbf{S} $$其中,S是一个封闭曲面,V是该曲面所围成的空间区域,$\mathbf{E}$表示电场强度,$\rho$表示电荷密度,$\mathbf{P}$表示介质的极化强度,$\epsilon_0$为真空介电常数。
公式右边第一项表示电荷在该区域内总共产生的电场通量,第二项表示介质极化所产生的电场通量。
公式左边的积分表示电场穿过曲面S的总通量。
在应用高斯定理公式时,需要注意几个关键点。
首先,曲面S需要是一个封闭曲面,而不是一个任意的曲面。
其次,积分中包含的介质极化强度需要根据具体情况进行计算。
最后,公式只适用于稳态电场的情况,不适用于变化的电场。
高斯定理公式在物理学中有着广泛的应用,特别是在电学、磁学、地球物理学等领域。
在电学中,高斯定理公式可以用于计算电容器的电容量;在磁学中,可以用于计算磁通量;在地球物理学中,可以用于计算地球重力场分布。
有介质时的高斯定理公式是物理学中一个非常基础和重要的定理,描述了物理场在有介质时的分布规律。
在实际应用中,需要注意公式的条件和具体计算方法,才能得到准确的结果。