当前位置:文档之家› 热力学统计物理统计热力学课件第九章

热力学统计物理统计热力学课件第九章

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

第九章统计热力学初步学习指导

第九章统计热力学初步8+2学时 本章从最可几分布引出配分函数的概念,得出配分函数与热力学函数的关系。由配分函数的分离与计算可求得简单分子的热力学函数与理想气体简单反应的平衡常数。使学生了解系统的热力学宏观性质可以通过微观性质计算出来。基本要求: 1、理解统计热力学中涉及的一些基本概念如(定域子系统与非定位系统、独立粒子系统与相依粒子系统、微观状态、分布、最可几分布与平衡分布、配分函数) 2、理解统计力学的三个基本假定。理解麦克斯韦–玻尔兹曼分布公式的不同表示形式及其适用条件。 3、理解粒子配分函数的物理意义和析因子性质。 4、明确配分函数与热力学函数间的关系 5、了解平动、转动、振动对热力学函数的贡献,了解公式的推导过程。 6、学会利用物质的吉布斯自由能函数、焓函数计算化学反应的平衡常数与热效应。 7、学会由配分函数直接求平衡常数的方法 重点:1.平衡分布和玻耳兹曼分布公式; 2.粒子配分函数的定义、物理意义及析因子性质; 3.双原子分子的平动、转动和振动配分函数的计算; 4.热力学能与配分函数的关系式; 5.熵与配分函数的关系式;玻耳兹曼熵定理。 难点:1. 粒子配分函数的定义、物理意义及析因子性质; 2. 双原子分子的平动、转动和振动配分函数的计算。 第九章统计热力学初步 主要公式及其适用条件 1. 分子能级为各种独立运动能级之和

2. 粒子各运动形式的能级及能级的简并度 (1)三维平动子 简并度:当a = b = c时有简并,()相等的能级为简并的。(2)刚性转子(双原子分子): 其中 。 简并度为:g r,J = 2J +1。 (3)一维谐振子 其中分子振动基频为 ,k为力常数,μ为分子折合质量。 简并度为1,即g v,ν = 1。 (4)电子及原子核 全部粒子的电子运动及核运动均处于基态。电子运动及核运动基态的简并度为常数。 3.能级分布微态数 定域子系统:

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 ~ 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 。 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义: 5.热容量:等容热容量和等压热容量及比值<

定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.。 8.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G ( 定义态函数:自由能F,F=U-TS 定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1 定律及推论

第五版物理化学第九章习题答案

第九章 统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为2RT 。现有1 mol CO 气体于0 oC、101.325 kPa 条件下置于立方容器中,试求: (1)每个CO 分子的平动能ε; (2)能量与此ε相当的CO 分子的平动量子数平方和( ) 222x y y n n n ++ 解:(1)CO 分子有三个自由度,因此, 2123 338.314273.15 5.65710 J 22 6.02210RT L ε-??= ==??? (2)由三维势箱中粒子的能级公式 ()(){}22222 23 223222 22 2221 23342620 8888828.0104 5.6571018.314273.15101.325106.626110 6.02210 3.81110x y z x y z h n n n ma ma mV m nRT n n n h h h p εεεε-=++??∴++=== ??? ??????? = ???????=? 2.2.某平动能级的()452 22 =++z y x n n n ,使球该能级的统计权重。 解:根据计算可知,x n 、 y n 和z n 只有分别取2,4,5时上式成立。因此,该能级的统计权重 为g = 3! = 6,对应于状态452245425254245,,,,ψψψψψ542ψ。 3.气体CO 分子的转动惯量2 46m kg 1045.1??=-I ,试求转动量子数J 为4与3两能级的能量 差ε?,并求K 300=T 时的kT ε?。 解:假设该分子可用刚性转子描述,其能级公式为 ()()J 10077.31045.1810626.61220 ,8122 46 23422 ---?=????-=?+=πεπεI h J J J 222 10429.710233807.130010077.3--?=???=?kT ε 4.三维谐振子的能级公式为 ()ν εh s s ?? ? ?? +=23,式中s 为量子数,即

热力学与统计物理第三章知识总结

§3.1 热动平衡判据 当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。 oisd一、平衡判据 1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。 因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有 d因此孤立系统处在稳定平衡态的充分必要条件为 既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。 如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。 熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。 2、自由能判据

表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。 按照数学上的极大值条件,自由能判据可以表示为: ; 由此可以确定平衡条件和平衡的稳定性条件。 所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据 在等温等压过程中,系统的吉布斯函数永不增加。可以得到吉布斯函数判据:系统在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。 数学表达式为 , 等温等压系统处在稳定平衡状态的必要和充分条件为 除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。 二、平衡条件 做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。 1.平衡条件 现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的 熵为S,热源的熵为因为熵是一个广延量,具有可加性,则孤立系统的总熵(用) 为: (1) 当达到平衡态时,根据极值条件可得: (2)

热力学统计物理精彩试题

简述题 1. 写出系统处在平衡态的自由能判据。 一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。即0F ?>。 2. 写出系统处在平衡态的吉布斯函数判据。 一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。即0G ?>。 3. 写出系统处在平衡态的熵判据。 一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。即 0S ?< 4. 熵的统计解释。 由波耳兹曼关系ln S k =Ω 可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。故,熵是系统内部混乱度的量度。 5. 为什么在常温或低温下原子内部的电子对热容量没有贡献? 不考虑能级的精细结构时,原子内的电子激发态与基态的能量差为1~10eV ,相应的特征温度为4 5 K 10~10。在常温或低温下,电子通过热运动获得如此大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。 6. 为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略? 因为双原子分子的振动特征温度3 K θ~10v ,在常温或低温下 kT <

2020年热力学统计物理各章重点总结

热力学统计物理各章重点总结第一章概念系统孤立系统、闭系、开系与其他物体既没有 物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 平衡态平衡态的特点系统的各种宏观性质都不随时间变化; 热力学的平衡状态是一种动的平衡,常称为热动平衡; 在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态 的概念推断系统是否处在平衡状态。 准静态过程和非准静态过程准静态过程进行得非常缓慢的过程,系统在过程汇总经历的每 一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏内能、焓和熵内能是状态函数。当系统的初态A 和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等 压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性克劳修斯 引进态函数熵。定义: 热容量等容热容量和等压热容量及比值定容热容量: 定压热容量: 循环过程和卡诺循环循环过程(简称循环)如果一系统由某个状 态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历 一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循 环过程。 可逆过程和不可逆过程不可逆过程如果一个过程发生后,不论用任何曲折复杂的方法都不 可能使它产生的后果完全消除而使一切恢复原状。 可逆过程如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 自由能F和G 定义态函数自由能F,F=U-TS 定义态函数吉布斯函数G,G=U-TS+PV, 可得GA-GB3-W1 定律及推论热力学第零定律-温标如果物体A和物体B各自与外在 同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。 三要素 (1)选择测温质; (2)选取固定点;

热力学与统计物理学基础

热力学与统计物理学基础 Classical Thermodynamics and Statistical Physics 课程编号:课程属性:学科基础课课时/学分:50/2.5 预修课程:高等数学 教学目的和要求: 本课程为力学学科博士研究生的学科基础课,也可为物理学以及其它应用科学研究生的选修课。 通过本课程的学习,学生不仅能掌握热力学和统计物理学的一般知识并熟练运用,而且还能系统地学习到从宏观上和微观上描述热力学系统热现象和热性质的方法。这些有助于学习和掌握其它课程,并大大开拓学生的研究思路。 内容提要: 引言 第一章热力学的基本规律 热力学系统的平衡状态及其描述,热平衡定律和温度,物态方程,热力学第一定律,热容量、焓、内能,卡诺循环,热力学第二定律,热力学第三定律。 第二章热力学基本微分方程 熵,自由能、吉布斯函数,基本热力学函数的确定,特性函数 第三章单元系的相变 热动平衡判据,开系的热力学基本方程,复相平衡条件,单元复相系的平衡性质,临界点和气液两相的转变。 第四章多元系的复相平衡和化学平衡 多元系的热力学函数和热力学方程,多元系的复相平衡条件,吉布斯相律,化学平衡条件,混合理想气体的性质,理想气体的化学平衡。 第五章统计物理学基本理论 统计规律性,概率分布,统计平均值,等概率原理,近独立粒子系统的经典统计理论。 第六章平衡态统计物理学 系统微观状态的描述,统计系综,刘维尔定律,微正则系综,正则系综,巨正则系综,正则分布对近独立粒子系统的应用,能量均分定律和理想气体比热容,实际气体的物态方程。 第七章涨落理论 涨落的准热力学方法,涨落的空间关联与时间关联,布朗运动,仪器的灵敏度,电路中的热噪声。 第八章非平衡态热力学与统计物理简介 不可逆过程与偏离平衡态的物质,昂萨格关系,波尔兹曼积分微分方程,H定理与细致平衡原理,气体的黏滞性,输运过程的动理论。 主要参考书: 1. Ashley H. Carter, Classical and Statistical Thermodynamics(热力学与统计物

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

物理化学答案 第九章 统计热力学初步

第九章统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。现有1 mol CO气体于0 oC、101.325 kPa条件下置于立方容器中,试求: (1)每个CO分子的平动能; (2)能量与此相当的CO分子的平动量子数平方和 解:(1)CO分子有三个自由度,因此, (2)由三维势箱中粒子的能级公式 2.某平动能级的,使球该能级的统计权重。 解:根据计算可知,、和只有分别取2,4,5时上式成立。因此,该能级的统计权重为g = 3! = 6,对应于状态。 3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级的 能量差,并求时的。 解:假设该分子可用刚性转子描述,其能级公式为 4.三维谐振子的能级公式为,式中s为量子数,即

。试证明能级的统计权重为 解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。 x盒中放置球数0,y, z中的放置数s + 1 x盒中放置球数1,y, z中的放置数s ………………………………………. x盒中放置球数s,y, z中的放置数1 方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。该平面上为整数的点的总数即为所求问题的解。这些点为平面在平面上的交点: 由图可知, 5.某系统由3个一维谐振子组成,分别围绕着 A, B, C三个定点做振动,总能量为。试 列出该系统各种可能的能级分布方式。 解:由题意可知方程组 的解即为系统可能的分布方式。 方程组化简为,其解为 3

6 3 3 6.计算上题中各种能级分布拥有的微态数及系统的总微态数。 解:对应于分布的微态数为 所以 3 6 3 3 15 10.在体积为V的立方形容器中有极大数目的三维平动子,其,式计算该系统在平衡情况下,的平动能级上粒子的分布数n与基态能级 的分布数之比。 解:根据Boltzmann分布 基态的统计权重,能级的统计权重(量子数1,2,3),因此 11.若将双原子分子看作一维谐振子,则气体HCl分子与I2分子的振动能级间隔分别是 和。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即

热力学统计物理各章重点总结..教学提纲

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义:

5.热容量:等容热容量和等压热容量及比值定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G 定义态函数:自由能F,F=U-TS

热力学统计物理试题

.填空题 1.设一多元复相系有个「相,每相有个k组元,组元之间不起化学反应。此系统平 衡时必同时满足条件:________ 、________ 、__________ 。 2.热力学第三定律的两种表述分别叫做:________ 和______ 。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能 的微观态数为:_______ 。 5.均匀系的平衡条件是_______ ;平衡稳定性条件是_______ 。 7.玻色分布表为___ ;费米分布表为______ ;玻耳兹曼分布表为______ 。当满足条 件________ .时,玻色分布和费米分布均过渡到玻耳兹曼分布。 8.热力学系统的四个状态量S、V、P、T所满足的麦克斯韦关系 为________ ,_________ ,__________ ,_________ 。 9?玻耳兹曼系统粒子配分函数用乙表示,内能统计表达式为____________ ,广义力统计表达式为________ ,熵的统计表达式为________ ,自由能的统计表达式 为________ 。 11.单元开系的内能、自由能、焓和吉布斯函数所满足的全微分 ^是:_____ , ___ ,_____ ,_____。 12?均匀开系的克劳修斯方程组包含如下四个微分方 程:________ ,________ ,________,_______ 。 13.等温等压条件下系统中发生的自发过程,总是朝着_________ 方向进行,当_______ 时,系统达到平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝 着____ , ____ 方向进行,当________ 时,系统达到平衡态。 14.对于含N个分子的双原子分子理想气体,在一般温度下,原子内部电子的运动 对热容量_______ ;温度大大于振动特征温度时,热容量为__________ ;温度小小于转动特征温度时,热容量为__________ 。温度大大于转动特征温度而小小于振动特征温度时,热容量为__________ 。 15.玻耳兹曼系统的特点是:系统由______ 粒子组成;粒子运动状态用_______ 来描写; 确定______ 即可确定系统的微观态;粒子所处的状态_________ 的约束。

热力学统计物理

热力学与统计物理学(Thermodynamics and Statistical Physics)

课程内容第0章导论 热力学 第一章热力学的基本规律 第二章均匀物质的热力学性质 *第三章单元系的相变 第四章多元系的复相平衡和化学平衡 *第五章不可逆过程热力学简介 统计物理学 第六章统计规律性与概率统计分布 第七章近独立粒子系统的最概然分布 第八章玻耳兹曼统计理论 第九章费米统计和玻色统计理论 *第十章系综理论 *第十一章涨落理论 *第十二章非平衡态统计理论初步

教材与参考书 教材: 1. 汪志诚,《热力学·统计物理》(第三版),高等教育出版社,2003年(兰州大学) 参考书: 1. 汪志诚,《热力学·统计物理(第3版)学习辅导书》,高等教育出版社,2004年 2. 马本堃,《热力学与统计物理学》(第二版),高等教育出版社,1995年(北京师范大学) 3. 钟云霄,《热力学与统计物理学》,科学出版社,1988年(北京大学) 4. 苏汝铿,《统计物理学》(第二版),高等教育出版社,2004年(复旦大学) 5. 龚昌德,热力学与统计物理学,(南京大学) 6. 王诚泰,统计物理学,(清华大学) 7. [美]L.E.雷克,《统计物理现代教程(上)》,北京大学出版社,1983年 8. L. E. Reichl, A Modern Course in Statistical Physics (2nd Edition), 1998,University of Texas 9. R. K. Pathria, Statistical Mechanics (2nd Edition), 2003, University of Waterloo, Canada 10. 中国科技大学物理班,《美国物理试题与解答第五卷热力学与统计物理学》,中国科技大学出版社,1986年 11. 李湘如、彭匡鼎,《热力学与统计物理学例题和习题(热力学分册)》,高等教育出版社,1988年 12. 彭匡鼎、李湘如,《热力学与统计物理学例题和习题(统计物理学分册)》,高等教育出版社,1988年

热力学与统计物理答案第二章

第二章 均匀物质的热力学性质 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关.

解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ??????=- ? ??????? (3) 所以 ()0.T U Tf V p V ??? =-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2)

内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ???=> ???? (4) 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ???? ?????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明: (, )(, )(,)(,)(, )(,) T U U T p p T U T V T V T p T ????= ? ??????= ??

热力学统计物理试题

1. 写出系统处在平衡态的自由能判据。 一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。即0F ?>。 2. 写出系统处在平衡态的吉布斯函数判据。 一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。即0G ?>。 3. 写出系统处在平衡态的熵判据。 一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。即 0S ?< 4. 熵的统计解释。 由波耳兹曼关系ln S k =Ω 可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。故,熵是系统内部混乱度的量度。 5. 为什么在常温或低温下原子内部的电子对热容量没有贡献 不考虑能级的精细结构时,原子内的电子激发态与基态的能量差为1~10eV ,相应的特征温度为4 5 K 10~10。在常温或低温下,电子通过热运动获得如此大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。 6. 为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略 因为双原子分子的振动特征温度3 K θ~10v ,在常温或低温下 kT <

(完整word版)第9章统计热力学练习题练习题及答案

第九章统计热力学练习题 一、是非题 1、由理想气体组成的系统是独立子系统。( ) 2、由非理想气体组成的系统是非独立子系统。( ) 3、由气体组成的统计系统是离域子系统。( ) 4、由晶体组成的统计系统是定域子系统。( ) 5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。( ) 6、独立子系统必须遵守∑∑==i i i i i N N N εε的关系,式中ε为系统的总能量, εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。( ) 7、平动配分函数与体积无关。( ) 8、振动配分函数与体积无关。( ) 9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。( ) 10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln N U q S Nk Nk T N =++。( ) 二、选择题 1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:( ) (1)由压力趋于零的氧气组成的系统。 (2)由高压下的氧气组成的系统。 (3)由氯化钠晶体组成的系统。 2. 对定域子系统,某种分布所拥有的微观状态数W D 为:( )。 (1)D !i N i i i g W N =∏ (2) D !! i g i i i N W N N =∏ (3)D !i g i i i N W N =∏ (4) D !! i n i i i g W N n =∏ 3、玻耳兹曼分布:( ) (1)就是最概然分布,也是平衡分布; (2)不是最概然分布,也不是平衡分布;

热力学与统计物理答案

第一章 热力学的基本规律 习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。 解:由得: nRT PV = V nRT P P nRT V = =; 所以, T P nR V T V V P 1 1)(1==??=α T PV Rn T P P V /1)(1==??=β P P nRT V P V V T T /11 1)(12=--=??-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T , ,其物态方程可由实验测得的体胀系数α 及等温 压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1 T α= 1 T p κ= ,试求物态方程。 解: 因为 0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()( ??+??=, 因为T T p p V V T V V )(1,)(1??-=??=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T καln ,当p T T /1,/1==κα. CT pV p dp T dT V =-=? :,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为 1 510*85.4--=K α和 1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。问(1压强要增加多少n p 才能 使铜块体积不变?(2若压强增加100 n p ,铜块的体积改多少 解:分别设为V xp n ?;,由定义得: 74410*8.7*10010*85.4;10*858.4----=?=V x T κ 所以,410*07.4,622-=?=V p x n 习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通 常在n p 1下进行,其体积变化可忽略。线胀系数定义为ηα)(1T L L ??= 等杨氏摸量定义为T L A L Y )(??=η 其中 A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范

热力学统计物理各章总结归纳

第一章 1、 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 2、 与外界没有物质交换,但有能量交换的系统称为闭系; 3、 与外界既有物质交换,又有能量交换的系统称为开系; 4、 平衡态的特点:1.系统的各种宏观性质都不随时间变化; 2.热力学的平衡状态是一种动的平衡,常称为热动平衡; 3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 5、 参量分类:几何参量、力学参量、化学参量、电磁参量 6、 温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度 7、 第零定律:如果物体A 和物体B 各自与处在同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律 8、 t= 9、 体胀系数α=1V ?(?V ?T ?)p 、压强系数β=1p ?(?p ?T ?)v 、等温压缩系数K t =?1V ?(?V ?p ?)T 、三者关系α=k T βp 10、 理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压

11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 12、广义功dd=∑d d d d d d 13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。 14、等容过程的热容量;等压过程的热容量;状态函数H;P21 15、焦耳定律:气体的内能只是温度的函数,与体积无关。P23 16、理想气体准静态绝热过程的微分方程P24 17、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程 18、热功转化效率η=1?T2/T1 19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成 20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程

统计热力学初步

第九章 统计热力学初步 引言: 统计热力学:研究微观粒子运动规律与热力学宏观性质(体系中大量微观粒子行为的统计结果或总体表现)之间联系的科学。因为在研究中运用了普遍的力学运动定律,也称“统计力学”。 Boltzmann 统计:适用粒子间相互作用可以忽略的体系 经典统计 Gibbs 统计:考虑粒子间的相互作用 统计方法 Bose-Einstein 统计 量子统计 Fermi-Dirac 统计 (1)统计物系分类 1、独立子物系与相依子物系 独立子物系:粒子的相互作用可以忽略的物系,也称“独立子系”,如理想 气体。 内能: ∑==N j j U 1 ε N — 物系中粒子的个数 j ε — 第j 个粒子的各种运动能 相依子物系:粒子的相互作用不能忽略的物系,也称“非独立子系”,如真 实气体、液体。 内能: p N j j U U +∑==1 ε P U — 粒子相互作用的总位能 注意:以上是根据粒子的相互作用情况不同来划分粒子物系。 2、离域子物系与定域子物系 离域子物系:粒子运动状态混乱,无固定位置,也称“等同粒子物系”。由 于各粒子彼此无法分辨,可视为“等同”。理想气体可视为“独立离域子物系”。 定域子物系:粒子运动定域化的物系,也称“可别粒子物系”,因为粒子由 于定域而可分辨。如晶体中的各粒子是在固定的点阵点附近振动,可以认为晶体就是“定域子物系”。 若将晶体中各粒子看成彼此独立作简谐运动,则晶体就属于

“独立定域子物系”。 注意:以上是根据粒子运动情况不同来划分粒子物系。 (2)粒子的运动形式及能级公式 1、粒子的运动形式(分子视为粒子) 移动(称平动) 分子围绕通过质心的轴的转动 粒子运动 原子在平衡位置附近的振动 原子内部的电子运动 核运动等等 假定粒子只有以上五种运动形式,且彼此独立,则: 核电振转平εεεεεε++++=j 即:n e v r t j εεεεεε++++= 这里只介绍Boltzmann 统计方法。 §9.1 粒子各种运动形式的能级及能级的简并度 1.分子的平动 根据量子理论,粒子的各运动形式的能量都是量子化的,即能量是不连续的。由量子力学可得到: 长度为a 的直线区间内自由运动的“一维平动子”,有 m a h n x t 82 2 2=ε 长、宽各为a 、b 的平面上自由运动的“二维平动子”,有 m h b n a n y x t 822222?? ?? ??+=ε 长、宽、高各为a 、b 、c 空间内自由运动的“三维平动子”,有 m h c n b n a n z y x t 82222222??? ? ??++=ε m — 粒子(分子)的质量 h — 普朗克(Plank )常数,h = 6.626×10-34 J.s -1 z y x n n n 、、 — 平动量子数,可取1,2,3,… 等整数。 注意:量子数不是粒子的个数

热力学统计物理各章重点总结

第一章 概念 1.系统:孤立系统、闭系、开系 与其她物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 平衡态的特点:1、系统的各种宏观性质都不随时间变化;2、热力学的平衡状态就是一种动的平衡,常称为热动平衡;3、在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4、对于非孤立系,可以把系统与外界合起来瞧做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统就是否处在平衡状态。 3.准静态过程与非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以瞧做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓与熵 内能就是状态函数。当系统的初态A与终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这就是态函数焓的重要特性 克劳修斯引进态函数熵。定义: 5.热容量:等容热容量与等压热容量及比值 定容热容量: 定压热容量: 6.循环过程与卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到

原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环就是以理想气体为工作物质、由两个等温过程与两个绝热过程构成的可逆循环过程。 7.可逆过程与不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F与G 定义态函数:自由能F,F=U-TS 定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1 定律及推论 1.热力学第零定律-温标 如果物体A与物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。 三要素: (1)选择测温质; (2)选取固定点; (3)测温质的性质与温度的关系。(如线性关系) 由此得的温标为经验温标。 2.热力学第一定律-第一类永动机、内能、焓热力学第一定律:系统在终态B与初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之与,热力学第一定律就就是能量守恒定律、 UB-UA=W+Q、能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,

相关主题
文本预览
相关文档 最新文档