当前位置:文档之家› Direct searches for Dark Matter Particles WIMPs and axions

Direct searches for Dark Matter Particles WIMPs and axions

Direct searches for Dark Matter Particles WIMPs and axions
Direct searches for Dark Matter Particles WIMPs and axions

a r

X i

v

:h e

p

-

e x /

5

9

4

v

2

1

8

S

e

p

2

5

DIRECT SEARCHES FOR DARK MATTER PARTICLES:WIMPS AND AXIONS IGOR G.IRASTORZA CEA,Centre d’Etudes Nucl′e aires de Saclay,DSM/DAPNIA,91191Gif-sur-Yvette Cedex,France E-mail:Igor.Irastorza@cern.ch WIMPs and axions are the two best motivated candidates to compose the Dark Matter of the Universe.An important number of experimental groups are devel-oping and using di?erent techniques for their direct detection.An updated review of current searches is done,emphasizing latest results.1Introduction Since ?rst suggested by Zwicky in the 1930s,the existence of an invisible and unconventional matter as a dominant part of our Universe has been supported by an ever increasing body of observational data.The latest precision cosmol-ogy measurements 1further constrain the geometry of the Universe to be ?at (?~1±0.04),and its composition (to the level of a few %)to be mostly dark energy (?Λ~73%)and non-baryonic dark matter (?NB ~23%),leaving less than ~4%for ordinary baryonic matter.Dark energy is a theoretical concept related to Einstein’s cosmological constant,the nature of which is essentially unknown.Dark matter,on the contrary,could be composed by elementary particles with relatively known properties,and which could be searched for by a variety of means.These particles must have mass,be electrically neutral and interact very weakly with the rest of matter.They must provide a way of being copiously produced in the early stages of the Universe life,so they ?ll the above-mentioned ~23%of the Universe contents.Neutrinos are the only standard particles ?tting in that scheme,but the hypothesis of neutrinos being the sole component of dark matter fails to reproduce part of the cosmo-logical observations,in particular the current structure of the universe.The

dark matter problem is therefore solved only by going into models beyond the standard model of elementary particles,among which two generic categories emerge as the best motivated for the task:WIMPs and axions.

WIMP is a generic denomination for any Weakly Interacting Massive Particle.A typical example of WIMP is the lightest supersymmetric particle (LSP)of SUSY extensions of the standard model,usually the neutralino.They would have been thermally produced after the Big Bang,cooled down and then frozen out of equilibrium providing a relic density 2,3.The interesting

mass window for the WIMPs spans from a few GeV up to the~TeV scale, but can be further constrained for speci?c models and considerations.

Axions,on the contrary,are light pseudoscalar particles that are intro-duced in extensions of the Standard Model including the Peccei-Quinn symme-try as a solution to the strong CP problem4.This symmetry is spontaneously broken at some unknown scale f a,and the axion is the associated pseudo-Goldstone boson5,6.The axion framework provides several ways for them to

be produced copiously in the early stages of the Universe,which makes it a leading candidate to also solve the dark matter problem7,8.

The hypothesis of axions or WIMPS composing partially or totally the missing matter of the Universe is specially appealing because it comes as

an additional bonus to what these particles were originally thought for,i.e. they are not designed to solve the dark matter problem,but they may solve it.In addition,the existence of WIMPs or axions could be at reach of the

sensitivity of current or near future experiments,and this has triggered a very important experimental activity in the last years.In the following pages

a review is given of the current experimental e?orts to detect these particles by direct means,i.e.aiming at their direct interaction with terrestrial detectors. Indirect methods,like those looking for their decay products in astronomical

or cosmic rays observations may also put constraints on the properties of these particles9,10,although they su?er from extra degrees of uncertainties, like the phenomenology driving the accumulation of dark matter particles in astrophysical bodies and their decay into other particles,and they are left out

of the scope of the present review.

2WIMP searches

If WIMPs compose the missing matter of the universe,and are present at galactic scales to explain the observed rotation curves of the galaxies,the

space at Earth location is supposed to be permeated by a?ux of these parti-cles characterized by a density and velocity distribution that depend on the details of the galactic halo model11,12,13.A common estimate14(although probably not the best one)gives a local WIMP density of0.3GeV/cm3and a

maxwellian velocity distribution of width v rms?270km/s,truncated by the galactic escape velocity v esc?650km/s and shifted by the relative motion of the solar system through the galactic halo v0=230km/s.

The direct detection of WIMPs relies on measuring the nuclear recoil produced by their elastic scattering o?target nuclei in terrestrial–usually underground–detectors17.Due to the weakness of the interaction,the ex-

pected signal rates are very low(1?10?5c/kg/day).In addition,the kinemat-ics of the reaction tells us that the energy transferred to the recoiling nuclei is also small(keV range),which in ionization and scintillation detectors may be further quenched by the fact that only a fraction of the recoil energy goes to ionization.These generic properties determine the experimental strategies needed.In general,what makes these searches uniquely challenging is the combination of the following requirements:thresholds as low as possible,and at least in the keV range;ultra low backgrounds,which implies the applica-tion of techniques of radiopurity,shielding and event discrimination;target masses as large as possible;and a high control on the stability of operation over long times,as usually large exposures are needed.

Even if these strategies are thoroughly pursued,one extra important con-sideration is to be noted.The small WIMP signal falls in the low-energy re-gion of the spectrum,where the radioactive and environmental backgrounds accumulate at much faster rate and with similar spectral shape.That makes WIMP signal and background practically indistinguishable by looking at their spectral features.If a clear positive detection is aimed for,then more sophisti-cated discrimination techniques and specially more WIMP-speci?c signatures are needed.Several positive WIMP signatures have been proposed,although all of them pose additional experimental challenges.The?rst one is the an-nual modulation15of the WIMP signal,re?ecting the periodical change of relative WIMP velocity due to the motion of the Earth around the Sun.The variation is only of a few%over the total WIMP signal,so even larger target masses are needed16to be sensitive to it.This signal may identify a WIMP in the data,provided a very good control of systematic e?ects is available, as it is not di?cult to imagine annual cycles in sources of background.A second WIMP signature is the A-dependence signature17,based on the fact that WIMPs interact di?erently(in rate as well as in spectral shape)with di?erent target nuclei.This signature should be within reach of set-ups com-posed by sets of detectors of di?erent target materials,although the technique must face the very important question of how to assure the background con-ditions of all detectors are the same.Finally,the directionality signature18 is based on the possibility of measuring the nuclear recoil direction,which in galactic coordinates would be unmistakably distinguished from any terrestrial background.This option supposes an important experimental challenge and it is reserved to gaseous detectors,where the track left by a nuclear recoil, although small,may be measurable.

Most of the past and current experiments having given the most com-petitive results are not sensitive to any of these positive WIMP signatures,

Figure1.Exclusion plots of the IGEX-DM,ZEPLIN-I,CRESST,EDEL WEISS and CDMS experiments,as well as the positive region of the DAMA experiment(only?rst4annual cycles).Standard assumptions for the halo model and a pure spin-independent WIMP-nucleon interaction have been considered.See text for more details.

and their reported results are usually exclusion plots in the(σN,M)plane, obtained by comparing the total spectra measured directly with the nuclear recoil spectrum expected for a WIMP(whereσN is WIMP-nucleon cross sec-tion and M the the WIMP mass).For the sake of comparison between ex-periments,these exclusion plots,like the ones in?g.1,are usually calculated assuming the standard properties for the halo model previously mentioned, and a spin independent WIMP-nucleus interaction.For a discussion on how other halo models or the inclusion of spin-dependent interactions a?ects these exclusion plots see11,12,13.As will be discussed in the following pages,the DAMA experiment claims the detection of an annual modulation in their data,although the interpretation as a WIMP signal is controversial.Recent progress in the experimental techniques promises that experiments in the near future will have wider access to the three positive signatures previously men-tioned in case a WIMP is detected.

In the following a review of the current status of the experimental WIMP searches is done,focussing on the latest and most important results and de-velopments.For an exhaustive and historical listing of experiments we refer to19,20,21.

2.1Ionization detectors

Ionization germanium detectors represent the conventional approach of a well-known technology,where radiopurity,background reduction and shielding techniques have been optimized extraordinarily during the last two decades, in the context of double beta decay searches.The result released by the IGEX collaboration in200122,shown in?g.1exempli?es the state-of-the-art in raw background reduction techniques.The result was obtained with a setup in the Canfranc Underground Laboratory composed by an ultrapure germanium de-tector of2.1kg,surrounded by a shielding of ultrapure components,including an innermost core of2.5tons of2000-year-old archaeological lead forming a60 cm side cube,?ushed with clean N2to remove radon and followed by an extra 20cm of radiopure lead,a cadmium sheet,muon vetos and40cm of neutron moderator.The achieved threshold was4keV,and the background level was 0.21c/keV/kg/d between4-10keV(0.10in10-20keV,0.04in20-40keV), the lowest raw background level achieved up-to-date in this energy range.

Improved results using pure ionization detectors requires the important challenge of further re?ning the radiopurity and shielding techniques.The GEDEON21project proposes the conservative approach of following the same path of the successful IGEX technology,extended in mass,and further op-timized from the point of view of radiocleanness.More exotic ideas exist, like the one proposed within the GENIUS23project,of submerging the ger-manium crystals in liquid nitrogen,which may act as a very pure shielding. GENIUS-TF24is currently testing the concept.The GERDA25project,a high mass germanium experiment,proposed for double beta decay,has also joined the quest for WIMP searches.

2.2Scintillation detectors

Scintillation detectors have been extensively used for WIMP detection,spe-cially because they are the technique which provided the easiest way to large target masses.It was in fact a?rst setup of NaI scintillators which?rst looked for the annual modulation signature26.With no so good prospects concerning low background capabilities as germanium detectors,scintillation may how-ever provide a way–although limited–to discriminate between nuclear recoils and electron recoils,due to their slightly di?erent scintillation decay times.

Currently,the DAMA group gathers the expectation of the?eld with its claim of observation of an annual modulation signal of unexplained origin and perfectly compatible with a WIMP of~52GeV and~7.2×10?6pb(and standard assumptions for the halo model).The DAMA experiment in the

Gran Sasso Laboratory,now completed27,operated9radiopure NaI crystals of9.7kg each,viewed by two PMT in coincidence gathering107731kg day of statistics and obtaining evidence for the modulation along7annual cycles. The DAMA positive signal has been ruled out by other experiments in the standard scenario represented by the exclusion plots of?g. 1.However,in view of the important uncertainties in the underlying theoretical frameworks and in the galactic halo models,it is unclear,and a matter of hot discus-sion,whether all results are compatible once all uncertainties are taken into account.It seems that one can always concentrate on a speci?c theoretical framework that allows to accommodate both DAMA positive result and the other exclusion plots27.An additional result using the same target seems to be needed to solve the controversy.The same DAMA team is already running an enlarged set-up of~250kg of NaI(LIBRA28)and will soon de-liver the?rst set of data.An independent result will come from the ANAIS experiment29,currently in the way of instrumenting its~100kg of NaI in the Canfranc Underground Laboratory.

Other scintillating materials have been used in the past.Worth to be noted is the recent result obtained by the KIMS group,using CsI crystals30. This material o?ers a higher potential of discrimination between nuclear and electron recoils when compared with NaI,due to the enhanced di?erence be-tween the scintillation pulse time pattern.

Experiments using liquid noble gases,especially Xenon,should be classi-?ed half way between ionization and scintillation.The scintillation mechanism in noble gases is very di?erent than in the previous cases,and allows for an improved discrimination capability by exploiting the di?erent time patterns of the scintillation pulses of nuclear and electron recoils or,more e?ciently, by using the ratio charge/light when operating in hybrid mode.This second possibility is available in two-phase prototypes,where an electric?eld is ap-plied to prevent recombination and to drift the electrons to the gaseous phase where they are detected(via the secondary luminescence).

Several groups are developing and using noble liquid detectors for WIMP searches.They have proven that this technique provides good prospects of radiopurity and background discrimination and relatively easy scaling-up. DAMA/Xe31,32is among the pioneers of the technique,originally moti-vated for double beta decay searches.The Xenon program carried out by the ZEPLIN collaboration in the Boulby Mine Laboratory has produced sev-eral prototypes.The ZEPLIN-I33prototype,using6kg of Xenon in pure scintillation mode,has provided a very competitive result shown in?g. 1. Current e?ort focuses on the second phase of the experiment,ZEPLIN-II,

that will operate in the two-phase mode.In additon to ZEPLIN,the groups XENON34and X-MASS35work towards the design and construction of100 kg prototypes with position sensitivity.The key question beneath this is the self-shielding concept,consisting in performing?ducial cuts of the detector to achieve the maximum signal-to-background ratio,exploiting the fact that external background will interact primarily in the outer parts of the detec-tor volume.For future generation,larger scale detectors this concept may become very important,as discussed later.Let us mention?nally that large TPCs of liquid Argon have been also proposed,like for example the WARP36 collaboration which pro?ts from the experience of the ICARUS experiment in those techniques.

2.3Cryogenic detectors

Nuclear recoils can also be detected through the heat(phonons)created in the detector by the recoiling nucleus.This signal is detectable in calorime-ters operating at cryogenic temperatures,to which a suitable thermometer is attached.At those temperatures,the released heat produces a temperature raise that can be measurable.

The main advantage of this technique is that most of the energy of the interaction is visible and therefore no quenching factor must be applied.Be-sides,the phonon signal potentially provides the best energy resolution and thresholds.On the other hand,however,the operation of cryogenic detectors is a relatively complex technique facing many challenges when going for larger exposure times and masses.For the same reason,radiopurity techniques are also more di?cult to apply.

A reference point in pure cryogenics detectors is the pioneering work of the Milano group,now leading the CUORE/CUORICINO experiment37,38 in the Gran Sasso Laboratory.The CUORE project,designed to search for the neutrinoless double beta decay of130Te,intends the construction of an array of988TeO2cryogenic crystals,summing up~750kg of bolometric mass.A?rst step of the project,CUORICINO,is already in operation and involves62(~40.7kg)crystals,by far the largest cryogenic mass in opera-tion underground.Although background levels are still too high to provide competitive limits in WIMP detection,important progress is being made and CUORE may have very good sensitivity to WIMP annual modulation39.

However,cryogenic detectors have taken the lead on WIMP searches be-cause of the possibility of operating in hybrid mode.Due to the large choice of target materials available to the cryogenic techniques,and when the material in question is a semiconductor or a scintillator,the detector could in principle

be operated in hybrid mode,measuring simultaneously the heat and charge or the heat and light respectively.This strategy has proven to be the most com-petitive and e?cient in discriminating nuclear recoils from electron recoils.In fact,cryogenic ionization experiments,like CDMS40in the Soudan Under-ground Laboratory and EDELWEISS41in the Modane Underground Labo-ratory,have provided the best WIMPs exclusion plots up-to-date a,shown in ?gure1.Both experiments presently operate prototypes at~1kg scale,and although their raw backgrounds are relatively high with respect with pure ionization experiments,they reject more than~99.9%of the electron recoils (by comparing heat and charge signals),reducing the background to only a few counts,compatible with the expected neutron background or the misiden-ti?cation event rate).Both groups currently work toward increasing the mass of their set-ups and therefore the available exposure.

Although currently less competitive than heat and charge,the simulta-neous measurement of heat and light is recently presenting very interesting prospects.The ROSEBUD group?rst applied it underground43and recently the CRESST collaboration has presented a very competitive exclusion plot obtained with two300g CaWO4prototypes44(dashed line in?g.1).A very relevant feature of this result is that tungsten recoils can be distinguished -with some e?ciency-from O or Ca recoils by virtue of their di?erent ratio heat/light.This improves substantially the sensitivity of the experiment,as neutrons are expected to interact more with lighter nuclei,unlike WIMPs. In addition,recent scintillation studies45have shown that a large variety of scintillating crystals are available.This opens the way to use sets of dif-ferent crystals operating in this mode to look for the A-dependence WIMP signature.While the use of this signal in conventional detectors su?ers from large uncontrolled systematics derived from the fact that one cannot assure the background to be the same for di?erent crystals,light/heat hybrid detec-tors,sensitive only to neutrons,may overcome this di?culty.In this line,the ROSEBUD collaboration has successfully operated underground a set of3dif-ferent bolometers in the same setup46,sharing similar external background conditions.

2.4New approaches and strategies for the future

Some techniques that fall out of the above classi?cation have been proposed and some of them are being developed with some degree of success.They

intent to solve some of the problems of the conventional previous techniques in new,original ways,to?nd identi?cative WIMP signatures or to explore possibilities less favoured by the most standard theoretical scenarios(like,for example,cases where the WIMP interacts primarily via spin-dependent cross sections).Without entering into details,worth to mention are the superheated droplets detectors,like SIMPLE47,PICASSO48,or detectors based on super-?uid He3,like MACHe349.New ideas appear continuously,for example the spherical TPC concept50,51,proposed in the context of neutrino physics,and which applicability to WIMP detection is under study.

An important category are the techniques aiming at the detection of the nuclear recoil direction.As mentioned before,such signal would suppose a de?nitive positive signature of a WIMP and would in addition give informa-tion about how they are distributed in the halo.While being an important technical challenge this measurement might be performed in gaseous detec-tors,where nuclei of~10?100keV could leave tracks in the mm–cm range (depending on the pressure and nature of the gas).The DRIFT52experiment is proving the technique of low pressure negative ion TPC53.Low pressure (40Torr)makes the tracks to be relatively long(few cm),and the addition of electronegative gas(CS2)makes the electrons to be captured,so the negative ions drift to the avalanche region(a multiwire proportional chamber)with much smaller di?usion and no magnetic?eld is needed.A?rst prototype DRIFT-I has already worked successfully,and its extension to DRIFT-II and DRIFT-III are envisaged.Recently another group,NEWAGE54,has joined the development of TPCs for WIMP detection,with a micro-TPC where the readout is performed by a microdots structure.

The?eld of WIMP direct detection is going through a phase in which a great diversity of techniques are being developed and tested.This diversity is important,as it must clarify which techniques will prevail in the next genera-tion of experiments.Currently the best exclusions are obtained by cryogenic hybrid detectors,whose success is based on a powerful separation between electron and nuclear recoils,keeping on a second plane the more conventional strategies based on radiopurity and shielding.But if the WIMP lies relatively far from the present sensitivity levels(say,more than3orders of magnitude, for example)an important scaling up from the present prototypes is required, which seems a bigger challenge for cryogenic detectors than,for instance, Xenon ones.At those larger exposures,neutron background will limit the sensitivity and again shielding techniques will become important in any case. The strategy of self-shielding,at reach for large,position sensitive detectors may well be the successful next step.In addition,in case a WIMP appears,as

an irreducible background,in these kind of detectors,strategies to positively identify it must be prepared.Any of the three signatures being pursued will be useful,and specially the directionality one.

3Axions searches

Axion phenomenology7,8depends mainly on the scale of the PQ symmetry breaking,f a.In fact,the axion mass is inversely proportional to f a,as well as all axion couplings.The proportionality constants depend on particular details of the axion model considered and in general they can be even zero.An interesting exception is the coupling axion-photon,which arises in every axion model from the necessary Peccei-Quinn axion-gluon term.This interaction is phenomenologically described by:

L aγγ=?g aγγφa E·B(1) whereφa is the axions?eld,E and B the electric and magnetic?elds,and g aγγ=αCγ/πf a the axion-photon coupling,beingαthe?ne structure con-stant and Cγis a model dependent constant,usually of order unity(for exam-ple,Cγ~0.97for the KSVZ55,56model and Cγ~?0.36for the DFSZ57,58

model).

The only axion phenomenology assumed in all experiments presented in the next paragraphs is this axion-photon coupling.This coupling allows for the conversion of axion into photons in the presence of(electro)magnetic?elds, a process usually called Primako?e?ect and that is beneath all the detection techniques described in the following.

3.1Galactic axions

Axions could be produced at early stages of the Universe by the so-called mis-alignment(or realignment)e?ect8.Extra contributions to the relic density of non-relativistic axions might come from the decay of primordial topolog-ical defects(like axion strings or walls).There is not a consensus on how much these contributions account for,so the axion mass window which may give the right amount of primordial axion density(to solve the dark mat-ter problem)spans from10?6eV to10?3eV.For higher masses,the axion production via these channels is normally too low to account for the missing mass,although its production via standard thermal process increases.Ther-mal production yields relativistic axions(hot dark matter)and is therefore less interesting from the point of view of solving the dark matter problem,but

in principle axion masses up to~1eV,are not in con?ict with cosmological observations59.

The best technique to search for low mass axions composing the galactic dark matter is the microwave cavity originally proposed in60.In a static back-ground magnetic?eld,axions will decay into single photons via the Primako?e?ect.The energy of the photons is equal to the rest mass of the axion with a small contribution from its kinetic energy,hence their frequency is given by hf=m a c2(1+O(10?6)).At the lower end of the axion mass window of interest,the frequency of the photons lies in the microwave regime.A high-Q resonant cavity,tuned to the axion mass serves as high sensitivity detector for the converted photons.

The Axion Dark Matter Experiment(ADMX)61,62has implemented the concept using a cylindrical cavity of50cm in diameter and1m long.The Q is approximately2×105and the resonant frequency(460MHz when empty)can be changed by moving a combination of metal and dielectric rods.The cavity is permeated by a8T magnetic?eld to trigger the axion-photon conversion, produced by a superconducting NbTi solenoid.

So far the ADMX experiment has scanned a small axion mass energy, from1.9to3.3μeV62with a sensitivity enough to exclude a KSVZ axion, assuming that thermalized axions compose a major fraction of our galactic halo(ρa=450MeV/c2).An independent,high-resolution search channel operates in parallel to explore the possibility of?ne-structure in the axion signal63.The detailed exclusion is shown in?g.2.

Current work focuses on the upgrade of the experimental set-up,which means basically to reduce the noise temperature of the ampli?cation stage. This is being done by newly developed SQUID ampli?ers and in a later stage by reducing the temperature of the cavity from the present1.5K down to below100mK by using a dilution refrigerator.These improvements will allow ADMX to increase the sensitivity to lower axion-photon coupling constants and also to larger axion masses.

3.2Solar axions

Axions or other hypothetical axion-like particles with a two-photon interaction can also be produced in the interiors of stars by Primako?conversion of the plasma photons.This axion emission would open new channels of stellar energy drain.Therefore,energy loss arguments constrain considerable axion properties in order not to be in con?ict with our knowledge of solar physics or stellar evolution69.

In particular,the Sun would o?er the strongest source of axions being a

Figure2.Upper limit on axion-to-photon conversion power and coupling g aγγ,excluded at greater than90%con?dence,assuming axion halo density0.45GeV/cm3.

unique opportunity to actually detect these particles.The solar axion?ux can be estimated64,65within the standard solar model.The expected num-ber of solar axions at the Earth surface isΦa=(g aγ/10?10GeV?1)23.54×1011cm?2s?1(being g aγthe axion-photon coupling)and their energies fol-low a broad spectral distribution around~4keV,determined by solar physics (Sun’s core temperature).Solar axions,unlike galactic ones,are therefore relativistic particles.

These particles can be converted back into photons in a laboratory electro-magnetic?eld.Crystalline detectors may provide such?elds66,72,giving rise to very characteristic Bragg patterns that have been looked for as byproducts of dark matter underground experiments73,74,75.However,the prospects of this technique have been proved to be rather limited67,an do not compete with the experiments called”axion helioscopes”68,64,which use magnets to trigger the axion conversion.This technique was?rst experimentally applied in70and later on by the Tokyo helioscope71,which provided the?rst limit to solar axions which is”self-consistent”,i.e,compatible with solar physics. Currently,the same basic concept is being used by the CAST collaboration at CERN76,77with some original additions that provide a considerable step forward in sensitivity to solar axions.

The CAST experiment is making use of a decommissioned LHC test mag-

net that provides a magnetic?eld of9Tesla along its two parallel pipes of

2×14.5cm2area and10m long.These numbers mean that the axion-photon conversion probability is a factor100higher than in the previous best helio-

scope at Tokyo.The CAST magnet has been mounted on a platform that

allows to point it to the Sun and track it during~3h per day in average.The rest of the day is devoted to measure the background experimentally.CAST

adds up expertise in low background techniques to operate three di?erent X-ray detectors with complementary approaches:a TPC,a MICROMEGAS

and a CCD.A relevant component of the experiment is the X-ray focussing

mirror system,designed and built as a spare system for the X-ray astronomy mission ABRIXAS,and now recovered for CAST.It provides a focussing of

the X-rays coming out of the magnet down to a spot of a few mm2on the

CCD,further increasing the signal-to-noise ratio and therefore the sensitivity of the experiment.

CAST has been running in2003and,in improved conditions,in2004. The results of the analysis of the2003data have been recently released77. No signal above background was observed,implying an upper limit to the

axion-photon coupling g aγ<1.16×10?10GeV?1at95%CL for the low mass

(coherence)region m a<~0.02eV.As can be seen in?gure3this limit is a factor5more restrictive than the limit from the Tokyo axion helioscope and

already comparable to the one derived from stellar energy-loss arguments.

The2004data will allow to improve the sensitivity of the experiment close to the expectation of the experiment proposal.Currently the experiment is being adapted for the second phase which consist in data taking with a bu?er gas(He4and/or He3)inside the magnet pipes.Varying the pressure of the gas allows to match the coherence condition for a range of higher axion masses up to~eV.As can be seen in?gure3,CAST phase II sensitivity will enter for the?rst time the region of the axion parameter space where the most theoretically motivated axion models lie.

3.3Laboratory axions

The existence of axions or other axion-like particles may produce measurable e?ects in the laboratory.A typical example is the”light through wall”exper-iments,in which a photon beam is converted into axions inside a magnetic ?eld and,after crossing an optical barrier,are converted back into photons by another magnetic?eld.As a result,light seems to have gone through an opaque wall.This technique was used to derive some early limits on the axion properties78.

A more subtle e?ect is the magnetic-induced birefringence of the vacuum.

Figure3.95%CL exclusion line obtained from the analysis referred to in the present paper (line labeled”CAST2003”),compared with other limits.

When a polarized photon beam traverses an empty space permeated with a magnetic?eld,the polarization component parallel to the magnetic?eld gets out-of-phase with respect the perpendicular one,producing an ellipticity on the?nal polarization of the beam.Such an e?ect is predicted by standard QED by virtue of four-legged fermion loops,although its magnitude is ex-tremely small.Experiments with ultra-precise optical equipment may look for such an e?ect.The PVLAS experiment79,designed to measure the QED-predicted magnetic-induced birefringence has been systematically detecting such a signal,however4orders of magnitude larger than expected.After several years of tests to rule-out possible systematic e?ects,the collaboration has o?cially announced that they are indeed detecting an unusually large unexplained ellipticity in their laser beam79connected with the presence of the magnetic?eld.One tentative explanation might be the presence of an photon-axion oscillation.Such scenario predicts a second e?ect which would distinguish it from the standard QED e?ect.It consists of a rotation of the polarization(or dichroism)due to the reduction of one the polarization com-

ponents,produced by real photon-axion conversion.The presence of such additional e?ect has been recently con?rmed also by PVLAS.However,the interpretation of PVLAS observation in terms of axions needs an axion mass of~1meV and an axion-photon coupling of~10?6GeV?1,far larger than present experimental and solar limits79(although exotic extensions of the standard axion scenario may allow to reconcile all experimental results80).In any case,the nature of the PVLAS e?ect is still an open question.

4Conclusions

A review of the current status of the experimental searches for WIMPs and axions has been given.The?eld lives a moment of great activity,triggered by the fact that very well motivated theoretical candidates could be within reach of present technologies.The presence of intriguing positive signals both in WIMPS and axion detection has at least enhanced the interest and excitation of the research.The next years will witness the results of many very interesting developments currently ongoing to de?ne and operate a new generation of experiments,well into the region of interest for both WIMPs and axions.

5Acknowledgements

I would like to dedicate the present review to the memory of prof.A.Morales.

I am indebted to him for many years of collaboration and tutoring in the?eld of direct searches for dark matter.He used to give very detailed and thorough reviews on dark matter in the most important international conferences.His last review,in the TAUP2003at Seattle21has been particularly useful in the WIMP section of the present review.

References

1. D.N.Spergel et al.[WMAP Collaboration],Astrophys.J.Suppl.148(2003)

175[arXiv:astro-ph/0302209].

2.J.R.Primack,D.Seckel and B.Sadoulet,Ann.Rev.Nucl.Part.Sci.38(1988)

751.

3.G.Jungman,M.Kamionkowski and K.Griest,Phys.Rept.267(1996)195

[arXiv:hep-ph/9506380].

4.R.D.Peccei and H.R.Quinn,Phys.Rev.Lett.38(1977)1440.

5.S.Weinberg,Phys.Rev.Lett.40(1978)223.

6. F.Wilczek,Phys.Rev.Lett.40(1978)279.

7.G.G.Ra?elt,Phys.Rept.198(1990)1.

8.M.S.Turner,Phys.Rept.197(1990)67.

9.J.Edsjo,Nucl.Phys.Proc.Suppl.143(2005)435.

10.L.Bergstrom,Rept.Prog.Phys.63(2000)793[arXiv:hep-ph/0002126].

11.P.Belli,R.Cerulli,N.Fornengo and S.Scopel,Phys.Rev.D66(2002)043503

[arXiv:hep-ph/0203242].

12.Phys.Rev.D67(2003)103507[arXiv:astro-ph/0208010].

13. A.M.Green,Phys.Rev.D68(2003)023004[Erratum-ibid.D69(2004)

109902][arXiv:astro-ph/0304446].

14.J.D.Lewin and P.F.Smith,Astropart.Phys.6(1996)87.

15. A.K.Drukier,K.Freese and D.N.Spergel,Phys.Rev.D33(1986)3495.

16.S.Cebrian et al.,Astropart.Phys.14(2001)339[arXiv:hep-ph/9912394].

17.P.F.Smith and J.D.Lewin,Phys.Rept.187(1990)203.

18. D.N.Spergel,Phys.Rev.D37(1988)1353.

19. A.Morales,Nucl.Phys.Proc.Suppl.110(2002)39[arXiv:astro-ph/0112550].

20. A.Morales,Nucl.Phys.Proc.Suppl.114(2003)39[arXiv:astro-ph/0211446].

21. A.Morales,Nucl.Phys.Proc.Suppl.138(2005)135.

22. A.Morales et al.,Phys.Lett.B532(2002)8[arXiv:hep-ex/0110061].

23.L.Baudis et al.,Phys.Rept.307(1998)301.

24.H.Klapdor-Kleingrothaus[Heidelberg-Moscow and GENIUS Collaborations],

Eur.Phys.J.C33(2004)S962.

25.S.Schonert et al.[GERDA Collaboration],Nucl.Phys.Proc.Suppl.145

(2005)242.

26.M.L.Sarsa et al.,Phys.Lett.B386(1996)458.

27.R.Bernabei et al.,Riv.Nuovo Cim.26N1(2003)1[arXiv:astro-ph/0307403].

28.R.Bernabei et al.,Nucl.Phys.Proc.Suppl.138(2005)48.

29.S.Cebrian et al.,Nucl.Phys.Proc.Suppl.138(2005)147.

30.J.W.Kwak et al.,to appear in the Proceedings of the Workshop for the Iden-

ti?cation of Dark Matter(IDM04),Edinburgh,september2004.

31.R.Bernabei et al.,Phys.Lett.B436(1998)379.

32.R.Bernabei et al.,New J.Phys.2(2000)15.

33.G.J.Alner et al.[UK Dark Matter Collaboration],Astropart.Phys.23(2005)

444.

34. E.Aprile et al.,New Astron.Rev.49(2005)289.

35.S.Moriyama et al.,to appear in the Proceedings of the Workshop for the

Identi?cation of Dark Matter(IDM04),Edinburgh,september2004.

36.R.Brunetti et al.,arXiv:astro-ph/0411491.

37. C.Arnaboldi et al.[CUORE Collaboration],Nucl.Instrum.Meth.A518

(2004)775[arXiv:hep-ex/0212053].

38. C.Arnaboldi et al.,Phys.Lett.B584(2004)260.

39. C.Arnaboldi et al.[CUORE Collaboration],Astropart.Phys.20(2003)91

[arXiv:hep-ex/0302021].

40. D.S.Akerib et al.[CDMS Collaboration],Phys.Rev.Lett.93(2004)211301

[arXiv:astro-ph/0405033].

41.V.Sanglard et al.[The EDEL WEISS Collaboration],Phys.Rev.D71(2005)

122002[arXiv:astro-ph/0503265].

42.J.H.Yoo,talk given at the workshop”The Dark Side of Universe”,22-26

May2005,Seoul,Korea(http://newton.kias.re.kr/dm/).

43.S.Cebrian et al.,Phys.Lett.B563(2003)48.

44.G.Angloher et al.,Astropart.Phys.23(2005)325[arXiv:astro-ph/0408006].

45.N.Coron,G.Dambier, E.Leblanc,J.Leblanc,P.de Marcillac and

J.P.Moalic,Nucl.Instrum.Meth.A520(2004)159.

46.S.Cebrian et al.,Astropart.Phys.21(2004)23.

47.T.Girard et al.,arXiv:hep-ex/0505053.

48.M.Barnabe-Heider et al.[PICASSO Collaboration],arXiv:hep-ex/0502028.

49. C.Winkelmann et al.,arXiv:astro-ph/0504629.

50.I.Giomataris and J.D.Vergados,Phys.Atom.Nucl.67(2004)1097[Yad.

Fiz.67(2004)1125].

51.S.Aune et al.,arXiv:hep-ex/0503031.

52.R.Ayad et al.,Nucl.Phys.Proc.Suppl.124(2003)225.

53. C.J.Marto?,D.P.Snowden-I?t,T.Ohnuki,N.Spooner and M.Lehner,

Nucl.Instrum.Meth.A440(2000)355.

54.K.Miuchi et al.,to appear in the Proceedings of the Workshop for the Iden-

ti?cation of Dark Matter(IDM04),Edinburgh,september2004.

55.J.E.Kim,Phys.Rev.Lett.43(1979)103.

56.M.A.Shifman,A.I.Vainshtein and V.I.Zakharov,Nucl.Phys.B166(1980)

493.

57.M.Dine,W.Fischler and M.Srednicki,Phys.Lett.B104(1981)199.

58. A.R.Zhitnitsky,Sov.J.Nucl.Phys.31(1980)260[Yad.Fiz.31(1980)497].

59.S.Hannestad,A.Mirizzi and G.Ra?elt,arXiv:hep-ph/0504059.

60.P.Sikivie,Phys.Rev.Lett.51(1983)1415[Erratum-ibid.52(1984)695].

61.S.Asztalos et al.,Phys.Rev.D64(2001)092003.

62.S.J.Asztalos et al.,Phys.Rev.D69(2004)011101[arXiv:astro-ph/0310042].

63.L.Du?y et al.,arXiv:astro-ph/0505237.

64.K.van Bibber,P.M.McIntyre,D.E.Morris and G.G.Ra?elt,Phys.Rev.D

39(1989)2089.

65.R.J.Creswick,F.T.Avignone,H.A.Farach,J.I.Collar,A.O.Gattone,

S.Nussinov and K.Zioutas,Phys.Lett.B427(1998)235[hep-ph/9708210].

66. E.A.Paschos and K.Zioutas,Phys.Lett.B323(1994)367.

67.S.Cebrian et al.,Astropart.Phys.10(1999)397[arXiv:astro-ph/9811359].

68.P.Sikivie,Phys.Rev.Lett.51,1415(1983)Erratum ibid.52,695(1984).

69.G.G.Ra?elt,Ann.Rev.Nucl.Part.Sci.49,163(1999)[hep-ph/9903472].

70. https://www.doczj.com/doc/fa18614620.html,zarus,G. C.Smith,R.Cameron, A. C.Melissinos,G.Ruoso,

Y.K.Semertzidis and F.A.Nezrick,Phys.Rev.Lett.69(1992)2333.

71.S.Moriyama et al.,Phys.Lett.B434,147(1998)[hep-ex/9805026].

72.R.J.Creswick,F.T..Avignone,H.A.Farach,J.I.Collar, A.O.Gat-

tone,S.Nussinov and K.Zioutas,Phys.Lett.B427(1998)235

[arXiv:hep-ph/9708210].

73. F.T..Avignone et al.[SOLAX Collaboration],Phys.Rev.Lett.81(1998)

5068[arXiv:astro-ph/9708008].

74. A.Morales et al.[COSME Collaboration],Astropart.Phys.16,325(2002)

[hep-ex/0101037].

75.R.Bernabei et al.,Phys.Lett.B515(2001)6.

76.K.Zioutas et al.,Nucl.Instrum.Meth.A425(1999)480

[arXiv:astro-ph/9801176].

77.K.Zioutas et al.[CAST Collaboration]Phys.Rev.Lett.94(2005)121301

[arXiv:hep-ex/0411033].

78.S.Eidelman et al.[Particle Data Group Collaboration],Phys.Lett.B592

(2004)1.

79.G.Cantatore et al.,to appear in the Proceedings of the Workshop for the

Identi?cation of Dark Matter(IDM04),Edinburgh,september2004.

80. E.Masso and J.Redondo,arXiv:hep-ph/0504202.

sciencedirect检索方法

一、进入全文库 直接输入网址 二、检索方法 用户可以通过检索和浏览两条途径获取论文。 (一)检索途径 1.简单检索 (Simple Search) 单击页面左侧的“Search” 按钮,进入简单检索界面。 简单检索界面分为上下两个区,即检索策略输入区和检索结果的限定区。检索策略可在输入区中选择“Search in any field(所有字段)"、“Search in title only(文章标题)”、“Search in abstract field(文摘)”、“Author`s Name(作者)”、“Journal Title(期刊名)”等字段输入,再利用限定区,限定检索结果的出版时间、命中结果数及排序方式,而后点击“Search the Collections”按钮,开始检索。 检索结果有两类信息。一类是期刊题名,在题名下有该刊目次页(table of contents)的超链接和搜寻相关文件按钮;另一类是期刊论文题录,排在靠后的部分,显示论文标题、出处、作者、相关性排序分(“Score”)和搜寻相关文件按钮,通过搜寻相关文件按钮可检索到与该文内容类似的文章。 单击期刊题名下的“table of contents”按钮,可浏览目次信息;单击论文题录下的“Abstract”,按钮,可浏览该文章的标题、作者、作者单位、关键词、文摘等进一步信息;单击Article Full Text PDF ”按钮,即可看到论文全文(PDF格式)。 说明: 系统默认各检索字段间为“AND(与)”的关系。系统默认的显示结果数为50个,且按相关性排列,用户也可以自选。 作者姓名的输入方法为:姓,名例:Smith m。 在论文的文摘页下方,有一个“Get Citation Export”按钮,输出的数据主要供图书馆员参考。 2.高级检索(Expanded Search) 如果需要进行更详细的检索,在简单检索的界面或检索结果的界面中,点击左侧的“Expanded” 或“Expanded search Form”进入高级检索界面。 高级检索除增加了“ISSN(国际标准刊号)”、“PII(Published Item Identifier,出版物识别码)”、“Search in author keywords(作者关键词)”、“Search in text only(正文检索)”等检索字段外,还增加了学科分类、文章类型、语种等限定条件,可进行更精确的检索。 说明:“正文检索”字段指的是在正文中检索而不是在参考文献中进行检索。 论文类型(article type)的限定中,“Article”表示只显示论文;“Contents”表示只显示期刊题名;“Miscellaneous”表示只显示其他题材的论文。 3.检索式的构成: 在同一检索字段中,可以用布尔逻辑算符AND(与)、OR(或)、NOT(非)来确定检索词之间的关系。系统默认各检索词之间的逻辑算符为“AND”。

安全监测管理数据平台

安全监测管理数据平台 第一部分系统简介 一、系统介绍 远程监控系统组态平台可将数据、图像、声音共一个平台集中监控,C/S+B/S 结构,可同时采用RS485技术及LONWORKS技术等多种技术,该组态平台软件可用于机房集中监控、变电站远程监控、楼宇控制、动力环境集中监控、安全防范监控、智能小区监控管理、智能大厦监控管理、工业控制、远程数据图像声音监控,已在海关、电力、保险、银行、政府机关、工厂、电信及移动等各行业大量使用。 整个监控系统均为模块化结构,组建十分灵活,扩展十分方便。可实现机房设备运行管理的无人值守,极大的提高了资源利用率和设备运行管理水平。二、系统主要特点 ◆系统采用分布集中监控方式,适合多层多级部门建立分布集中管理模式。 ◆报警方式包括屏幕报警、电话语音报警、modem语音报警、短信息及电子邮件. ◆强大的报警处理功能。可区分多级的报警级别,报警事件发生时系统自动按事件级别排 队报警,显示,处理,并将画面切换报警画面。 ◆系统支持各式各样的UPS、空调、电量仪、门禁、消防监控主机等设备直接监控,对新 设备新通讯协议的监控不需编程。 ◆界面:令操作人员一目了然。参数实时动态显示,界面完全汉化,场地布局,设备照片 或图片直接显示屏幕上,场景逼真,鼠标控制,操作简单。

第二部分服务器操作说明 一、启动运行服务端 A、运行“安装目录:\“:集中监控系统\服务端”目录下的“SERVER.EXE”. B、“开始”-》“程序”-》“集中监控系统”-》“监控服务器”。 C、桌面上点击“集中监控系统服务端”。 以上三种方式均可运行监控系统服务端程序,运行后界面如下: 用户名:登录系统的用户名称。系统默认:admin。 密码:此用户的密码,系统默认为空密码。 二、系统菜单说明 1)日常操作 启动:启动数据采集。 停止:停止数据采集。 退出:退出本系统。 2)系统配置 时间调度设置报警时间段及拨打报警电话、发送报警短信及报警EMAIL的时间调度。

轻松进入sciencedirect的方法

轻松进入sciencedirect的方法(有问题联系:wmwman306@https://www.doczj.com/doc/fa18614620.html,) 这种方法很好进入sciencedirect,也无须验证代理的有效性。步骤如下: 1.代理 查找及设置 https://www.doczj.com/doc/fa18614620.html,/codeen/ (1)页面如图: (2)点击“status”,代理自动按照状态排序,选择“summary failed”的代理,如下图的第一个代理“139.19.142.3”,复制它.

(3)点击网页的“工具”--“internet 选项”--“连接”--“局域网设置”,选上“代理服务器”复选框,在“地址栏”输入刚才的代理“139.19.142.3”,在“端口”输入“3124”或“3127”或者“3128”,如下图我就输入“3128”。点击“确定”--“确定”,代理就这样设置完成了.

2.进入sciencedirect开始了,很关键,关键是网址变了 (1)在网页地址栏里的输入有三种选择好(呵呵,我只知道三种): https://www.doczj.com/doc/fa18614620.html,/ 或者 https://www.doczj.com/doc/fa18614620.html,/ 或者 https://www.doczj.com/doc/fa18614620.html,/ (2)注意:初次进入可能进的不是sciencedirect主页,而是codeen介绍主页,这是你再输入刚才的网址刷新一下就好了 (3)进入主页如下图,有“Advanced Search ”字样的说明现在你能查阅它里边的文献了。点击“Advanced Search ”,就可以按照你的要求查阅相关文献了。

注射用生长抑素

注射用生长抑素 【药品名称】 通用名称:注射用生长抑素 英文名称:Recombinant Human Interferon α2b Vaginal Effervescent Tablets 【成份】 主要成份为生长抑素,为人工合成的环状十四肽 【适应症】 本品主要用于:严重急性食道静脉曲张出血;严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎;胰腺外科手术后并发症的预防和治疗;胰、胆和肠瘘的辅助治疗;糖尿病酮症酸中毒的辅助治疗。 【用法用量】 静脉给药(静脉注射或静脉滴注)。 通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg的速度连续静脉滴注给药(一般是每小时每公斤体重用药量为0.0035mg)。 临使用前,每支冻干剂用1ml生理盐水溶液溶解。 对于连续静脉滴注给药,须用本品3mg配备够使用12小时的药液(溶剂可为生理盐水或5%葡萄糖注射液),输液量调节在每小时0.25mg。 1 严重急性上消化道出血包括食道静脉曲张出血的治疗:首先缓慢静脉推注0.25mg(用1ml生理盐水配制)作为负荷 【不良反应】 少数病例用药后出现恶心、眩晕、面部潮红。当注射速度超过每分钟0.05mg时,病人会发生恶心和呕吐现象。

【禁忌】 对本品过敏者禁用。 【注意事项】 1 由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会导致血糖水平短暂的下降; 2 胰岛素依赖型糖尿病患者使用本品后,每隔3-4小时应测试1次血糖浓度,同时给药中,尽可能避免使用葡萄糖。必要的情况下应同时使用胰岛素。 3 在连续给药过程中,应不间断地注入,换药间隔最好不超过3分钟。有可能时,可通过输液泵给药。 4 本品必须在医生指导下使用。 【特殊人群用药】 儿童注意事项: 儿童使用本品的安全性资料尚未建立。 妊娠与哺乳期注意事项: 避免孕妇使用本品,除非无其它安全替代措施。 老人注意事项: 老年患者使用本品的安全性资料尚未建立。 【药物相互作用】 本品可延长环已烯巴比妥导致的睡眠时间,而且加剧戊烯四唑的作用,所以不应与这类药物或产生同样作用的药物同时使用。 由于生长抑素与其他药物的相互作用未建立,所以建议应单独给药。 【药理作用】 生长抑素是人工合成的环状十四氨基酸肽,其与天然生长抑素在化学结构和作用机理上完全

常用国外数据库及检索介绍

常用国外数据库详细介绍(按国家分类) 一、美国 (1) Wiley InterScience(英文文献期刊) 主页:https://www.doczj.com/doc/fa18614620.html,/ 简介:Wiley InterScience是John Wiely & Sons 公司创建的动态在线内容服务,1997年开始在网上开通。通过InterScience,Wiley公司以许可协议形式向用户提供在线访问全文内容的服务。Wiley InterScience收录了360多种科学、工程技术、医疗领域及相关专业期刊、30多种大型专业参考书、13种实验室手册的全文和500多个题目的Wiley学术图书的全文。其中被SCI收录的核心期刊近200种。期刊具体学科划分为:Business, Finance & Management (商业、金融和管理)、Chemistry (化学)、Computer Science (计算机科学)、Earth Science (地球科学)、Education (教育学)、Engineering (工程学)、Law (法律)、Life and Medical Sciences (生命科学与医学)、Mathematics and Statistics (数学统计学)、Physics (物理)、Psychology (心理学)。 (2)美国IEEE (英文文献期刊) 主页:https://www.doczj.com/doc/fa18614620.html,/ 简介:IEEE(Institute of Electrical & Electronics Engineers)是电子信息领域最著名的跨国性学术团体,其会员分布在世界150多个国家和地区。据IEEE统计,IEEE会员总数2001年比2000年增加3.1%,达到377342人,其中学生会员为65669人,增长12.6%。 随着人们的信息越来越多地来自Internet,IEEE需要为会员提供更加完善和全面的电子信息产品和服务。IEEE应成为IEEE会员获得信息的首选之地。IEEE必须识别正确的信息,并提供对它们的访问方法。实现这个目标的重要一步是通过IEEE Xplore与IEEE/IEE Electronic Library (IEL)连接。IEL包括了1988年以来IEEE和IEE的所有期刊杂志和会议录,以及IEEE的标准,可以通过题目、关键词和摘要进行查阅。 (3)美国EBSCO(英文文献期刊) 主页:https://www.doczj.com/doc/fa18614620.html, 简介:EBSCO公司从1986年开始出版电子出版物,共收集了4000多种索引和文摘型期刊和2000多种全文电子期刊。该公司含有Business Source Premier (商业资源电子文献库)、Academic Search Elite(学术期刊全文数据库)等多个数据库。 Business Source Premier收录了三千多种索引、文摘型期刊和报纸,其中近三千种全文刊。数据库涉及国际商务、经济学、经济管理、金融、会计、劳动人事、银行等的主题范围,适合经济学、工商管理、金融银行、劳动人事管理等专业人员使用。数据库中有较著名"华尔街日报"(The Walls Street Journal)、"哈佛商业评论"(Harvard Business Review)、"每周商务"(Business Week)、"财富"(Fortune)、"经济学家智囊团国家报告" (EIU Country Reports)、American Banker、Forbes、The Economist等报刊。该数据库从1990年开始提供全文,题录和文摘则可回溯检索到1984年,数据库每日更新。 学术期刊集成全文数据库(Academic Search Premier,简称ASP):包括有关生物科学、工商经济、资讯科技、通讯传播、工程、教育、艺术、文学、医药学等领域的七千多种期刊,其中近四千种全文刊。 EBSCO内含有两个免费数据库:

VOC在线监测管理系统

VOC在线监测管理系统 背景介绍 1、项目背景 随着经济的快速发展,污染源的种类日益增多,特别是化工区、工业集中区及周边环境,污染方式与生态破坏类型日趋复杂,环境污染负荷逐渐增加,环境污染事故时有发生。同时,随着公众环境意识逐渐增强,各类环境污染投诉纠纷日益频繁,因此对环境监测的种类、要求越来越高。 在“十二五”期间,政府着力打造以空气环境监测,水质监测,污染源监测为主体的国家环境监测网络,形成了我国环境监测的基本框架。“十三五”规划建议中已经明确“以提高环境质量为核心”,从目前环保部力推的“气,水,土三大战役”的初步效果来看,下一步对于环境质量的改善则是对于现有治理设施和治理手段的检验。而对于三个领域治理效果的检验,依赖于全面有效的环境监测网络。 国务院印发的《生态环境监测网络建设方案的通知》提出建设主要目标:到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络。 根据调研大部分企业具备简单治理技术,即将生产车间内生产工艺所产生的VOCs污染物通过管道集气罩收集后通过活性炭吸附装置处理以后进行排放,但园区内存在着有组织排放超标和无组织排放的问题,为督促企业改进生产工艺和治理装置,减少无组织排放,建议园区部署网格化区域监控系统。 系统部署可提高各工业工园区污染源准确定位能力,同时快速直观的分析出污染源周边的相关信息,通过整合各类地理信息资源和环境保护业务资源,建立统一的环境信息资源数据库,将空间数据与动态监测数据、动态监管数据、政策法规数据等业务数据进行无缝衔接。为管理者提供直观、高效、便捷的管理手段,提高环保业务管理能力,综合管理与分析的决策能力。同时根据业务应用的不同,对数据进行横向的层次划分,通过应用人员层次的不同,对数据进行纵向的层次划分,明晰信息的脉络,方便数据的管理。 2、建设依据 2.1相关政策、规划和工作意见 《国务院关于印发国家环境保护“十二五”规划的通知》(国发〔2011〕42号)

思他宁(注射用生长抑素)

思他宁(注射用生长抑素) 【药品名称】 商品名称:思他宁 通用名称:注射用生长抑素 英文名称:Somatostatin for Injection 【成份】 本品主要成份及其化学名称为:生长抑素醋酸盐 分子式:C76H104N18O19 S2 分子量:1638。 【适应症】 严重急性食道静脉曲张出血。严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎。胰、胆和肠瘘的辅助治疗。胰腺术后并发症的预防和治疗。糖尿病酮症酸中毒的辅助治疗。 【用法用量】 药物冻干粉须在使用前用生理盐水溶解。思他宁采用静脉给药,通过慢速冲击注射(3至5分钟)250微克或以每小时250微克的速度连续滴注(约相当于每公斤体重,每小时3.5微克)给药。对于连续滴注给药,须用1支3毫克的思他宁配制足够使用12小时的药液,溶剂既可以是生理盐水,也可以是5%的葡萄糖溶液,输液量应调节为每小时250微克,并建议使用输液注射器。对严重急性上消化道出血(包括食道静脉曲张出血) 的治疗:建议首先缓慢静脉注射250微克思他宁,作为负荷剂量,而后立即进行每小时250微克的静脉点滴给药。当两次输液给药间隔大于3至5分钟时,应重新静脉注射250微克思他宁,以确保给药的连续性。当大出血被止住后(一般在12至24小时内),治疗应继续48 至72小

时,以防止再次出血。对于上述病例,通常的治疗时间是120小时。对胰瘘、胆瘘、肠瘘的辅助治疗:应采用每小时250微克的速度静脉连续点滴给药,直到瘘管闭合(2至20天),这种治疗可作为全胃肠外营养的辅助措施。当瘘管闭合后,思他宁静脉点滴应继续进行1至3天,而后逐渐停药,以防反跳作用。对胰腺外科手术后并发症的预防和治疗:手术开始时,作为辅助治疗,以每小时250微克速度点滴思他宁;手术后,持续点滴给药5天。对糖尿病酮症酸中毒的辅助治疗:对酮症酸中毒的患者,以每小时100至500微克的速度静脉点滴思他宁同时配合胰岛素治疗,3小时内可缓解酮症酸中毒,4小时内可使血糖恢复正常。 【不良反应】 少数病例用药后产生恶心、眩晕、脸红等反应。当滴注思他宁的速度高于每分钟50微克时,病人会发生恶心和呕吐现象。 【禁忌】 已证实对于思他宁药物过敏的病人,不得使用此药。避免孕妇使用本品,除非无其它安全替代措施。 【注意事项】 1 由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会引起短暂的血糖水平下降。特别是胰岛素依赖型糖尿病患者,使用本品后每隔3-4小时应测试一次血糖浓度。同时,给药期间应避免给予胰岛素所要求的葡萄糖。在必要情况下,应同时使用胰岛素; 2 本品必须在医生指导下使用。 【特殊人群用药】 妊娠与哺乳期注意事项: 避免孕妇使用本品,除非无其它安全替代措施。

生长抑素

注射用生长抑素 【适应症】 1.严重急性食道静脉曲张出血; 2.严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎;3.胰腺外科手术后并发症的预防和治疗; 4.胰、胆和肠瘘的辅助治疗; 5.糖尿病酮症酸中毒的辅助治疗。 【用法与用量】 静脉给药。 通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg的速度连续滴注给药(一般每小时每公斤体重用药量为0.0035mg)。 临使用前,每支冻干剂用1ml生理盐水溶解。 对于连续滴注给药,须用本品3mg配备够使用12小时的药液(溶剂可为生理盐水或5%的葡萄糖注射液),输液量调节在每小时0.25mg。 1.严重急性上消化道出血包括食道静脉曲张出血的治疗:首先缓慢静脉推注0.25mg(用1ml生理盐水配制)作为负荷量,而后立即进行以每小时0.25mg的速度持续静脉滴注给药。当两次输液给药间隔大于3-5分钟的情况下,应重新静脉注射本品0.25mg,以确保给药的连续性。当出血停止后(一般在12-24小时内),继续用药48-72小时,以防再次出血。通常常的治疗时间是120小时。 2.胰瘘、胆瘘和肠瘘的辅助治疗:以每小时0.25mg的速度静脉连续滴注,直到瘘管闭合(2~20天),这种治疗可以用作全胃肠外营养的辅助措施。当瘘管闭合后,应继续用药1~3天,而后逐渐停药,以防反跳作用。 3.胰腺外科手术后并发症的治疗:在手术开始时,以每小时0.25mg的速度静脉滴注,术后持续静滴5天。 4.糖尿病酮症酸中毒的辅助治疗:以每小时0.1~0.5mg的速度静脉滴注,作为胰岛素治疗(10单位冲击后每小时1~4.8单位静滴)的辅助措施,在4小时内可以使血糖恢复正常,在3小时之内缓解酮症酸中毒。 【不良反应】 少数病例用药后出现恶心、眩晕、面部潮红。当注射速度超过每分钟0.05mg时,病人会发生恶心和呕吐现象。 【禁忌症】对本品过敏者禁用。 【注意事项】 (1)由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会导致血糖水平短暂的下降;

项目管理复习资料完整版

第一讲: 项目的定义:某一主体(个人或组织)为了完成特定的目标,在一定的资源约束下,有组织地开展由一系列基本活动构成的非重复性的有独特成果的活动。 项目的特征:总体性,一次性,物别性,组织的开放性和临时性。 项目质量:质量是反映实体(产出物和工作过程)满足用户明确的或隐含的需要的能力特性总和。主要为功能的实现程度和寿命长度。 项目成本:项目所消耗的资源的货币体现。 项目时间(周期):项目从开始到结束所经历的时间段。这个时间段也被定义为项目的生命周期,它分为项目启动、计划、实施和收尾四个阶段。 P= f (C,T,S) Performance: 绩效,所完成工作的质量。 Cost: 成本,项目工作的成本,与项目使用的人力资源和自然资源直接相关。 Time: 时间,项目必须满足的进度要求。 Scope:范围,要执行的任务的幅度。 时间、成本和质量是一个项目的3个主要变量,三者是相互制约的。如果其中一个或两个变量发生变化,那么其他的变量也会随之变化。 项目资源需求度:项目在各个阶段对各种资源的需求程度。 项目风险度:项目的成功概率和不确定程度。 项目干系人影响力:项目干系人对项目目标、质量、进度等的影响程度;项目资源需求随着项目周期阶段的推进呈现低-高-低的状态;项目面临风险程度随时间推移下降;项目干系人影响力随时间沿着项目阶段下降。

第二讲: 项目管理的概念:项目管理是通过运用知识、技能、工具和技术等资源,以满足项目干系人对项目的需求和期望为目的,对项目活动所开展的各项管理职能活动的总称。 项目管理的特征:(1)普遍性(2)创新性(3)独特性(4)复杂性(5)目的性 项目生命周期:项目从开始到结束可以划分为若干阶段,这些不同的阶段先后衔接起来便构成了项目的生命周期。 项目生命周期一般划分为四个阶段:1、启动阶段(或定义阶段)2、规划阶段(或计划阶段)3、实施阶段(或执行阶段)4、收尾阶段(或交付阶段) 项目管理过程:为了更好地完成项目实施过程中每个阶段的各项工作和活动,需要开展一系列有关项目计划、决策、组织、沟通、协调和控制等方面的管理活动。 内容:(1)输入:这是一个项目管理具体工作过程从上一个管理具体工作过程所获得

生长抑素说明书

生长抑素说明书

【药品名称】 通用名:注射用生长抑素 英文名:Somatostatin for Injection 汉语拼音:Zhusheyong Shenzhangyisu 【成分】 本品主要成分为生长抑素,为人工合成的环状十四肽。 【性状】 本品为白色疏松块状物或粉末。 【药理毒理】 生长抑素是人工合成的环状十四氨基酸肽,其与天然生长抑素在化学结构和作用机理上完全相同。生理性生长抑素主要存在于丘脑下部和胃肠道。通过静脉注射生长抑素可抑制生长激素、甲状腺刺激激素、胰岛素和胰高血糖素的分泌,并抑制胃酸的分泌。它还影响胃肠道的吸收、动力、内脏血流和营养功能。生长抑素可抑制胃泌素和胃酸以及胃蛋白酶的分泌,从而治疗上消化道出血,可以明显减少内脏器官的血流量,而又不引

【适应症】 本品主要用于: 1.严重急性食道静脉曲张出血; 2.严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎; 3.胰腺外科术后并发症的预防和治疗; 4.胰、胆和肠瘘的辅助治疗; 5.糖尿病酮症酸中毒的辅助治疗。 【用法用量】 静脉给药(静脉注射或静脉滴注)。通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg 的速度连续滴注给药(一般是每小时每公斤体重用药量为0.0035mg)。临使用前,每支冻干剂用1ml生理盐水溶液溶解。对于连续滴注给药,须用本品3mg配备够使用12小时的药液(溶剂既可为生理盐水或5%的葡萄糖溶液),输液量调节在每小时0.25mg。 1.严重急性上消化道出血包括食道静脉曲张出血的治疗:首先缓慢静脉推注0.25mg(用1ml生理盐水配制)作为负荷量,而后立即进行以每小

数据资源管理平台

1 数据资源管理平台设计 1.1 需求分析 1.1.1 数据需求 1.1.1.1 数据分析 XX省水资源管理系统业务涉及的信息资源包括信息采集和信息共享。信息采集按获取方式应分为仪器自动在线监测和非在线监测两种采集范畴。以共享方式获取的其他信息获取(包括水文、水资源保护部门负责采集的实时水雨情、水质监测数据),属于信息共享范畴。 信息采集传输应充分利用现代化科技成果,通过对信息采集和传输基础设施设备的改造和建设,配置适合当地水资源特性的仪器设备。信息采集传输的设备选型与配置应充分考虑当地的水文、气候特征、供电条件和环境安全等因素。 (1)在线监测信息对象 在线监测信息对象包括:水源地、取用水、行政边界河流控制断面、地下水超采区以及水功能区水量水质信息。监测规模、监测手段和监测代价的衡量要应充分考虑当地的经济发展水平、经济承受能力、设站技术可行性和运行维护便捷性。 水源地监测:包括地表水水源地(水库、江河、湖泊等水体)和地下水水源地。应按照先列入水利部公布的全国重要饮用水水源地名录的水源地、大中型水库水源地,后其它饮用水水源地的顺序安

排布设。 取用水监测:包括重点取水口水量水质监测。按照先取水环节后排水环节、先集中用水户后分散用水户顺序安排;取水量级考虑先重点用水户后一般用水户、同等取水量级先第二、三产业用水户后第一产业用水户顺序安排;同时兼顾设站条件通盘考虑。 水资源管理单元出入断面监测:包括省际、地市际以及县际边界河流控制断面。按照先地市际边界河流控制断面监测后县际边界河流控制断面的监测,水资源管理单元逐级细化、控制能力逐步加强的思路顺序建设。 水功能区监测:按照《XX省水功能区规划》的部署,按照先保护、保留、缓冲、饮用水源等重要水功能区水质监测、后其余水功能区水质监测、入河排污口监测的原则布设。 地下水超采区监测:包括地下水水位、水质监测。按照先禁采区限采区、后地下水集中开采区、先平原区后山丘区的顺序安排布设。 水生态监测:重点区域和水域水生态监测。按照先水利部水生态系统保护与修复试点后其它区域的顺序安排布设。 社会用水户、水源地、水资源管理单元出入断面、水功能区、地下水水量水质监测点的布设应在充分利用既有水文观测站网络的基础上统筹规划,有些观测面监测可通过上下游监测点观测数据内插方式满足,有些可通过既有测站增加观测项的方式满足。 (2)新设监测点的工作方式

生长抑素的使用方法

严重急性食道静脉曲张出血严重急性胃或十二指肠溃疡出血或并发急性糜烂性胃炎或出血性胃炎胰胆和肠瘘的辅助治疗胰腺术后并发症的预防和治疗糖尿病酮症酸 药物冻干粉须在使用前用生理盐水溶解思他宁采用静脉给药通过慢速冲击注射(3至5分钟)250微克或以每小时250微克的速度连续滴注(约相当于每公斤体重每小时3.5微克)给药对于连续滴注给药须用1支3毫克的思他宁配制足够使用12小时的药液溶剂既可以是生理盐水也可以是5%的葡萄糖溶液输液量应调节为每小时250微克并建议使用输液注射器对严重急性上消化道出血(包括食道静脉曲张出血) 的治疗:建议首先缓慢静脉注射250微克思他宁作为负荷剂量而后立即进行每小时250微克的静脉点滴给药当两次输液给药间隔大于3至5分钟时应重新静脉注射250微克思他宁以确保给药的连续性当大出血被止住后(一般在12至24小时内)治疗应继续48 至72小时以防止再次出血对于上述病例通常的治疗时间是120小时对胰瘘胆瘘肠瘘的辅助治疗:应采用每小时250微克的速度静脉连续点滴给药直到瘘管闭合(2至20天)这种治疗可作为全胃肠外营养的辅助措施当瘘管闭合后思他宁静脉点滴应继续进行1至3天而后逐渐停药以防反跳作用对胰腺外科手术后并发症的预防和治疗:手术开始时作为辅助治疗以每小时250微克速度点滴思他宁;手术后持续点滴给药5天对糖尿病酮症酸中毒的辅助治疗:对酮症酸中毒的患者以每小时100至500微克的速度静脉点滴思他宁同时配合胰岛素治疗3小时内可缓解酮症酸中 少数病例用药后产生恶心眩晕脸红等反应当滴注思他宁的速度高于每分钟50微克 已证实对于思他宁药物过敏的病人不得使用此药避免孕妇使用本品除非无其它安全

数据库管理系统的设计与实现

数据库管理系统的设计与实现 1.DBMS的目标 (1)用户界面友好对一个实用DBMS来说,用户界面的质量直接影响其生命力。DBMS的用户接口应面向应用,采用适合最终用户的交互式、表格式、菜单式、窗口式等界面形式,以方便使用和保持灵活性。一般地说,用户界面应具有可靠性、简单性、灵活性和立即反馈等特性。 (2)功能完备DBMS功能随系统的规模的大小而异。大型DBMS功能齐全,小型DBMS功能弱一些。DBMS主要功能包括数据定义、数据库数据存取、事务控制、数据库组织和存储管理、数据库安全保护等等。我们在下面讨论这些功能的内容。 (3)效率高系统效率包括三个方面:一是计算机系统内部资源的使用效率。能充分利用资源(包括存储空间、设备、CPU等),并注意使各种资源负载均衡以提高整个系统的效率,二是DBMS本身的运行效率。三是用户的生产率。这是指用户学习、使用DBMS和在DBMS基础上开发的应用系统的效率。 2.DBMS的基本功能 (1)数据库定义对数据库的结构进行描述,包括外模式、模式、内模式的定义;数据库完整性的定义;安全保密定义(如用户口令、级别、存取权限);存取路径(如索引)的定义。这些定义存储在数据

字典(亦称为系统目录)中,是DBMS运行的基本依据。为此,提供数据定义语言DDL。 (2)数据存取提供用户对数据的操纵功能,实现对数据库数据的检索、插入、修改和删除。一个好的DBMS应该提供功能强易学易用的数据操纵语言(DML)、方便的操作方式和较高的数据存取效率。DML有两类:一类是宿主型语言,一类是自含型语言。前者的语句不能独立使用而必须嵌入某种主语言,如C语言、COBOL语言中使用。而后者可以独立使用,通常以供终端用户交互使用和批处理方式两种形式使用。 (3)数据库运行管理这是指DBMS运行控制、管理功能。包括多用户环境下的并发控制、安全性检查和存取权限控制、完整性检查和执行、数据加密、运行日志的组织管理、事务的管理和自动恢复(保证事务的正确性),这些功能保证了数据库系统的正常运行。 (4)数据组织、存储和管理DBMS要分门别类地组织、存储各类数据,包括数据字典(亦称系统目录)、用户数据、存取路径等等。要确定以何种文件结构和存取方式在存储级上组织这些数据,如何实现数据之间的联系。数据组织和存储的基本目标是提高存储空间利用率,选择合适的存取方法确保较高存取(如随机查找、顺序查找、增、删、改)效率。 (5)数据库的建立和维护包括数据库的初始建立、数据的转换、数据库的转储和恢复、数据库的重组织和重构造以及有性能监测分析等功能。

企业的设备状态监控和数据库管理系统

企业的设备状态监控和数据库管理系统 项目简介: 现代工业生产和企业管理过程中,由于生产过程控制要求的高环境适应性、高实时性、和高可靠性等特点,远程实时监控系统及大数据量的数据库管理系统成为必然发展趋势。基于GPRS所具有的实时数据传输高速性和使用成本低廉性,当前对其在无线监控方面的开发和应用已经成为业内研究热点。基于.NET框架构建网络数据库管理系统是解决当前大型生产企业数据量庞大、数据关系复杂、各独立部门缺乏联系等存在问题的最佳途径。以上两种技术相结合,必然使企业生产过程监控和数据管理水平上一个全新的水平。 技术背景: 前期已完成多个企业的设备状态监控系统和数据库管理系统的研发工作,包括:“生产设备实时监测与故障诊断系统”、“水泥生产数据库管理系统”,工程机械集团“振动压路机运行综合测试系统”,矿务局“煤矿皮带输送系统实时监测与保护系统”等。以上系统均采用局域网等手段将不同监测点的数据传输到总控制机,利用分布式数据库完成数据的保存和管理。通过以上项目的开发工作,已经掌握了针对大型工业企业生产过程实时监控及数据库管理的基本实施办法和系统搭建方案。 系统功能: 通过计算机技术、网络技术、多媒体技术,实现全厂生产过程和设备运行状态实时信息共享,在任一个允许的站点都能实时监视各个设备现场运行状况(如温度、压力、振动、电流、流量等参数)及整个生产过程状态(如投入、产出、有无异常现象等)并能回顾前段时间(几小时,甚至几天前)各生产单元和机组运行情况。这样,通过对生产过程的实时、连续监测,可及时发现生产过程中的异常现象,为生产管理和调度指挥提供决策依据。 其主要的功能如下: 1)数据采集:各数据采集站自动从各种常规仪表、传感器等现场控制设备实时采集工况参数,并进行规范化处理。 2)数据通讯及存储:通过网络等技术将采集的实时数据传输到总机,并存入数据库,并根据需要传送到监测的客户端。 3)调度监测管理:监测端用户可通过良好的人机界面实现各种监测画面的快速查询和组态。 4)实时数据的监测:以流程图、仪表指示棒图、报警指示、实时曲线、数据列表等多种显示画面监测实时数据。以历史趋势图、记录报表等方式显示历史记录数据和统计数据。 5)生产报表管理:具有日报、周报、旬报、月报处理功能。数据来源有自动采集的数据和手工输入数据。 6)故障监测和报警:当某些点的采集值超过了参数的正常范围时,监测系统应该及时做出报警反映,通知监测者及时采取措施排除故障。 另外,还可以在以上基本功能外添加其他管理信息系统的功能,如投入产出分析、优化控制和生产管理等等。技术要求及特点: 1)要求有高实时性与良好的时间确定性; 2)传送信息多为短信息,且信息交换频繁; 3)容错能力强,可靠性、安全性好;4)网络结构分散(监测点、采集点位于全厂各个角落)

生长抑素说明书

【药品名称】 通用名:注射用生长抑素 英文名:Somatostatin for Injection 汉语拼音:Zhusheyong Shenzhangyisu 【成分】 本品主要成分为生长抑素,为人工合成的环状十四肽。 【性状】 本品为白色疏松块状物或粉末。 【药理毒理】 生长抑素是人工合成的环状十四氨基酸肽,其与天然生长抑素在化学结构和作用机理上完全相同。生理性生长抑素主要存在于丘脑下部和胃肠道。通过静脉注射生长抑素可抑制生长激素、甲状腺刺激激素、胰岛素和胰高血糖素的分泌,并抑制胃酸的分泌。它还影响胃肠道的吸收、动力、内脏血流和营养功能。生长抑素可抑制胃泌素和胃酸以及胃蛋白酶的分泌,从而治疗上消化道出血,可以明显减少内脏器官的血流量,而又不引起体循环动脉血压的显著变化,因而在治疗食道静脉曲张出血方面有一定的临床价值。生长抑素可减少胰腺的内分泌和外分泌,用以预防和治疗胰腺外科手术后并发症。生长抑素还可以抑制胰高血糖素的分泌,从而有效地治疗糖尿病酮症酸中毒。 【药代动力学】 健康人内源性生长抑素在血浆中的浓度很低,一般在175ng/L以下。在静脉注射给药后,生长抑素显示出非常短的血浆半衰期,依据放射性免疫测定结果,其半衰期一般大约在1.1分钟至3分钟之间;对于肝脏病人,其半衰期在1.2分钟至4.8分钟之间;对于慢性肾衰病人,其半衰期大约在2.6分钟至4.9分钟之间。以每小时75μg的速度静脉滴注生长抑素之后,在15分钟内浓度达峰为1250ng/L,代谢清除率为每分钟1L,半衰期为2.7分钟左右。静脉注射2μg的125Ⅰ甲状腺素生长抑素之后,4小时后40%经尿排出,24小时后排泄70%。生长抑素在肝脏中通过肽链内切酶和氨基肽酶裂解分子中的N-末端和环化部分,迅速在肝内代谢。 【适应症】 本品主要用于: 1.严重急性食道静脉曲张出血; 2.严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎; 3.胰腺外科术后并发症的预防和治疗; 4.胰、胆和肠瘘的辅助治疗; 5.糖尿病酮症酸中毒的辅助治疗。 【用法用量】 静脉给药(静脉注射或静脉滴注)。通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg 的速度连续滴注给药(一般是每小时每公斤体重用药量为0.0035mg)。临使用前,每支冻干剂用1ml生理盐水溶液溶解。对于连续滴注给药,须用本品3mg配备够使用12小时的药液(溶剂既可为生理盐水或5%的葡萄糖溶液),输液量调节在每小时0.25mg。

环境监测总站数据管理系统软件

环境监测总站数据管理系统软件 1、技术要求: 1.1软件设计满足国家有关标准和规范要求; 1.2软件基于环境监测站统一的网络环境和数据库服务器运行,并且不受节点限制; 2、功能要求 2.1业务范围 2.1.1空气监测:大气监测、降水监测、降尘监测 2.1.2水质监测:河流监测、湖库监测、饮用水监测 2.1.3噪声监测:区域噪声、功能区噪声、道路交通噪声 2.1.4污染源监测:工业污染源(废水、废气)、污水处理厂 2.2功能要求 2.2.1监测数据录入 2.2.1.1数据录入 在选择点位信息后,录入手工监测数据。要求系统在录入过程中对录入的数据进行检查和核对,确保数据的合理性、逻辑性、一致性。 2.2.1.2数据修改 系统可以对已经录入的监测数据进行检查修改,确保录入数据的准确性、完整性。 2.2.1.3审核未通过的数据 可以对未能通过审核退回的数据进行查询、修改,确认无误后再次提交审核。 2.2.1.4审核提交 对录入的数据进行审核,在审核过程中可以通过超标检查、突变检查等方式对数据的正确性、逻辑性进行检查,通过审核的数据提交至上级监测站审核。 2.2.1.5审核日志 系统自动记录每次录入审核提交的内容、审核时间等,并可查询历史审核记录。 2.2.2数据导入

2.2.2.1监测数据导入 2.2.2.2污染源数据导入 跟国家总站污染源监测信息管理系统的接口,可以与国家总站的污染源系统进行数据的交互。 2.2.2.3审核提交 对导入的数据进行审核,在审核过程中可以通过超标检查、突变检查等方式对数据的正确性、逻辑性进行检查,通过审核的数据保存至数据库中。 2.2.2.4审核日志 系统自动记录每次导入审核提交的内容、审核时间等,并可查询历史审核记录。 2.2.3数据查询 系统提供以模板方式对数据进行查询,查询结果可以以文件方式导出。 2.2.4统计评价 监测数据统计评价是按照专业要求和格式,对监测数据进行统计分析,形成监测成果表及特征值统计表,提供给管理部门或向社会发布,统计分析是本系统重要组成部分,各环境要素和污染源都需要对监测信息进行分析与对比,分析的结果可以按表格、统计直方图、柱形图、饼图等形式直观地输出显示,使管理者对专业信息有直观的了解,便于决策使用。 2.2.5标准管理 对污染源系统的企业污染源和污水处理厂的标准进行编辑维护,包括国标、地标等信息。 2.2.6系统管理 2.2.6.1数据维护 系统能够对基础信息和监测数据提供统一的管理,保持基础信息的一致性和完整性。在此模块中能够方便各类基础信息的维护和管理,例如能够进行标准和监测项目的录入,修改,删除和查询。 2.2.6.2空间分组 系统能够对针对点位或者断面,实现自定义空间分组功能。 2.2.6.3城市管理 系统能够对本市所辖各区县信息进行添加、编辑。

腹部外科术后使用生长抑素类药物的护理体会

腹部外科术后使用生长抑素类药物的护理体会 发表时间:2015-11-04T16:07:15.073Z 来源:《医师在线》2015年8月第16期供稿作者:王光爱 [导读] 山东省平邑县平邑卫生院针对腹部外科术后使用生长抑素类药物的护理工作需从用药前、用药中和用药后三个阶段采取合理的护理措施,从而有效避免患者不良反应的产生。 王光爱 ( 山东省平邑县平邑卫生院 273300) 【摘要】目的:总结生长抑素类药物在腹部外科术后的应用效果及护理体会。方法:对我院普外科胃肠病区2014年3月-2015年3月间术后使用生长抑素类药物的235例患者进行护理并观察分析其效果与不良反应。结果:针对腹部外科术后使用生长抑素类药物的护理工作需从用药前、用药中和用药后三个阶段采取合理的护理措施,从而有效避免患者不良反应的产生。 【关键词】腹部外科手术;生长抑素类药物;护理 【中图分类号】 R2 【文献标号】 A 【文章编号】 2095-7165(2015)16-091-01 生长抑素的应用能够有效地治疗消化道的大出血、防止胰腺损伤和急性胰腺炎,在胰腺手术后使用生长抑素可抑制应激性胰酶分泌及肠瘘肠液丢失[1]。针对我院腹部外科术后应用生长抑素药物的护理体会作出分析,现将结果报道如下。 1 临床资料 我院普外科胃肠病区于2014年3月-2015年3月期间腹部外科术后使用生长抑素的患者为235例,男性134例,女性101例,年龄范围为28-79岁。肠瘘、消化道出血、肝脓肿和其他患者各为54例、116例、25 例和40例。一过性呕吐和恶心反应共64例,占据27.2%;一过性血糖升高为32例,占据13.6%;低血糖反应共21例,占据8.9%,且其中有9例为指尖血糖0.8-1.5mmol/L的严重低血糖。 2 护理方法 2.1 用药前护理 2.1.1 管理取回药物在从药房取回生长抑素类药物之后按照遗嘱于药盒上备注使用患者姓名、床号等信息以便于专人专用和妥善保管。 2.1.2 护患沟通 考虑到生长抑素类药物的价格较为昂贵,在用药前应当对患者极其家属的经济情况做出了解并向其仔细交待病情和用药原因;长时间的连续输液会让患者出现不适,须通过向患者耐心讲解治疗过程、注意事项等来获得患者的主动配合;给药时应当让患者了解大汗、乏力和心慌等反应有可能是由于低血糖,并通知该床位的护理人员以便于及时处理。 2.1.3 药物知识 作为一种白色冻干粉,生长抑素须在25℃的温度下进行避光干燥贮存,宜在其溶解于生理盐水24h内进行使用;生长抑素在对多种胃肠道激素分泌、胃肠道运动及吸收功能进行抑制的同时还可通过对葡萄糖、电解质、甘油三酯吸收的抑制来促使血糖向组织内的转运,实现血糖水平的有效降低;床位护理人员必须在用药前备好相应的血糖仪与抢救用物。 2.2 用药中护理 2.2.1 安全用药 相__________关护理人员需先转抄好患者的治疗卡和输液贴并将输液贴在注射管上贴好;操作前后必须严格做好三查,认真核对患者的姓名、年龄、床号以及药物名称、用法、剂量、用药时间、浓度等信息;在生长抑素浓度过高或注射速度过快的情况下患者可能出现眩晕、恶心、面部发热发红等不良反应,护理人员需做好实时观察。 2.2.2 给药护理 生长抑素的血浆半衰期很短,根据相关放射性免疫测定得出其半衰期约为1-3min,故用药连续性的保证十分关键[2]。给药中需确保药液的连续不间断输入且换药间隔应保持在3min以内;注射泵发出余量警报时及时配置好所需药液,在保证药液输入不间断的前提下进行现配先用;静脉回血情况下不可简单地按快进键进行处理,而应当在针头上接入装有生理盐水的针管并缓慢推入回血,针对多至延长管的较多回血现象应立即更换泵管,不可在泵管上直接推入高浓度的生长抑素类药液;药物注射过程中要做好病房的经常性巡视,通过对患者注射部位的实时观察以避免肿胀和渗出等现象的出现。 2.2.3 不良反应 ①低血糖反应。鉴于生长抑素类药物能够抑制胰岛素、胰高血糖素的分泌进而造成血糖水平的短暂下降,因此在用药过程中需对患者的指尖血糖每2-3h进行一次测试;由于夜间患者处于睡眠状态且生长激素和皮质醇等升糖激素的分泌较低,因此需高度重视夜间巡视与血糖检测以免发生夜间低血糖。②肠道蠕动观察。使用生长抑素后腹部外科术后患者会因肠道蠕动功能弱化而出现腹胀等不适感,此时需做好患者的心理护理并告知其通过适当的活动、翻身等来加速肠道的运动。③药物的配伍禁忌。注射时应尽量单独开辟弹性好、粗直、远离关节且易固定的静脉通道以避免和其他药物配伍;通过输液泵对滴速的调节使给药的速度保持在设定范围内,从而确保血药浓度的稳定性,防止因患者姿势变化等给输液速度、有效浓度带来影响。 3 用药后总结 一方面,需制定药物不良反应的处理方案,记录并采集多次使用生长抑素类药物、屡次出现低血糖反应的患者的临床病史资料,护理人员必须做好对规范的学习和对不同药物并发症应对方法的掌握;另一方面,应建立药物说明书的查询活页夹以方便医护人员了解近期常用的药物,通过对药物说明书的仔细阅读、理解来给安全治疗奠定必要的基础。 参考文献 [1] 葛琳俐,钱海泳,唐蕾等.腹部外科术后使用生长抑素类药物的护理体会[J].江苏医药,2011,37(7):867-868. [2] 毕晓飞,张俊文.不同时期使用生长抑素对预防ERCP术后胰腺炎及高淀粉酶血症的作用[J].重庆医学,2014,(29):3885-3886,3889.

相关主题
相关文档 最新文档