当前位置:文档之家› 芯片封装结温计算方法

芯片封装结温计算方法

芯片封装结温计算方法
芯片封装结温计算方法

电子元件封装大全及封装常识

修改者:林子木 电子元件封装大全及封装常识 一、什么叫封装 封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连 接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、 密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线 连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连 接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空 气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也 更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与 之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比 值越接近1 越好。封装时主要考虑的因素: 1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1; 2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性 能; 3、基于散热的要求,封装越薄越好。 封装主要分为DIP 双列直插和SMD 贴片封装两种。从结构方面,封装经历了最 早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP 公司开发出了SOP 小外型封装,以后逐渐派生出SOJ(J 型引脚小外形封装)、 TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作 条件需求的电路如军工和宇航级别仍有大量的金属封装。 封装大致经过了如下发展进程: 结构方面:TO->DIP->PLCC->QFP->BGA ->CSP; 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装 二、具体的封装形式 1、SOP/SOIC 封装 SOP 是英文Small Outline Package 的缩写,即小外形封装。SOP 封装技术由 1968~1969 年菲利浦公司开发成功,以后逐渐派生出SOJ(J 型引脚小外形封 装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。 SOP(Small Out-Line package) 也叫SOIC,小外形封装。表面贴装型封装之一, 引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。SOP 除了用 于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距 1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配 高度不到1.27mm 的SOP 也称为TSOP。还有一种带有散热片的SOP。

灯珠结温和散热面积计算理论

灯珠结温和散热面积计算理论 灯珠结温和散热面积计算理论 一、基础理论 大功率LED的散热问题: LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是

150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。 另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。 K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1;TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了;TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。 大功率LED的散热路径. 大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。 大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,所示。这是一种最简单的散热结构。热是从温度高处向温度低5其正反面图形如图 处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜

常见芯片封装类型的汇总

常见芯片封装类型的汇总 芯片封装,简单点来讲就是把制造厂生产出来的集成电路裸片放到一块起承载作用的基板上,再把管脚引出来,然后固定包装成为一个整体。它可以起到保护芯片的作用,相当于是芯片的外壳,不仅能固定、密封芯片,还能增强其电热性能。所以,封装对CPU和其他大规模集成电路起着非常重要的作用。 今天,与非网小编来介绍一下几种常见的芯片封装类型。 DIP双列直插式 DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装结构形式有多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP (含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存储器和微机电路等。 DIP封装 特点: 适合在PCB(印刷电路板)上穿孔焊接,操作方便。 芯片面积与封装面积之间的比值较大,故体积也较大。 最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚可插到主板上的插槽或焊接在主板上。 在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。DIP还有一种派生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高六倍。 现状:但是由于其封装面积和厚度都比较大,而且引脚在插拔过程中很容易被损坏,可靠性较差。同时这种封装方式由于受工艺的影响,引脚一般都不超过100个。随着CPU内

芯片工作温度与表面温度

芯片工作温度与表面温度-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

芯片工作温度与表面温度 例如:一款芯片操作温度是0-70℃,表面温度已经达到85℃是否可以正常工作.表面温度与操作温度的关系,测试环境温度是35℃,温升50℃正常.如果不考虑芯片结温,怎证明温度达到85摄氏度不合理呢是不是芯片的表面温度要控制在70℃一下呢 我一直比较困惑,如芯片分为很多等级,例如一款芯片工作温度是这样的:民用级:0℃ to 80℃工业级 -40℃ to 80℃军品级 -40℃ to 125℃所有的芯片结温最大都是150℃.单通过结温判断就有些不合适了吧! 芯片描述的操作温度如果是说芯片的周围环境温度,例如当时气温是30℃,这样是比较好理解.我个人比较同意芯片表面温度不超过最大工作温度.表面温度不等于工作温度也看起来是合理的. 芯片的结温计算:不加散热器的情况下,是否就是Tc(表面温度)+芯片Rja(热阻)*芯片的功耗,还是芯片的Ta(环境温度,例如当时的气温)+芯片Rja(热阻)*芯片功耗 IC封装的热特性 摘要:IC封装的热特性对于IC应用的性能和可靠性来说是非常关键的。本文描述了标准封装的热特性:热阻(用“theta”或Θ表示),ΘJA、ΘJC、ΘCA,并提供了热计算、热参考等热管理技术的详细信息。 引言 为确保产品的高可靠性,在选择IC封装时应考虑其热管理指标。所有IC在有功耗时都会发热,为了保证器件的结温低于最大允许温度,经由封装进行的从IC 到周围环境的有效散热十分重要。本文有助于设计人员和客户理解IC热管理的基本概念。在讨论封装的热传导能力时,会从热阻和各“theta”值代表的含义入手,定义热特性的重要参数。本文还提供了热计算公式和数据,以便能够得到正确的结(管芯)温度、管壳(封装)温度和电路板温度。 热阻的重要性 半导体热管理技术涉及到热阻,热阻是描述物质热传导特性的一个重要指标。计算时,热阻用“Theta”表示,是由希腊语中“热”的拼写“thermos”衍生而来。热阻对我们来说特别重要。

电压法LED结温及热阻测试原理分析

电压法LED结温及热阻测试原理分析 发布日期:2010-08-01 来源: 关键字: 近年来,由于功率型LED 光效提高和价格下降使LED 应用于照明领域数量迅猛增长,从各种景观照明、户外照明到普通家庭照明,应用日益广泛。LED 应用于照明除了节能外,长寿命也是其十分重要的优势。目前由于LED 热性能原因,LED 及其灯具不能达到理想的使用寿命;LED 在工作状态时的结温直接关系到其寿命和光效;热阻则直接影响LED 在同等使用条件下 LED 的结温;LED 灯具的导热系统设计是否合理也直接影响灯具的寿命。因此功率型 LED 及其灯具的热性能测试 ,对于 LED 的生产和应用研发都有十分直接的意义。以下将简述LED 及其灯具的主要热性能指标,电压温度系数K、结温和热阻的测试原理、测试设备、测试内容和测试方法,以供LED 研发、生产和应用企业参考。 一、电压法测量 LED 结温的原理 LED 热性能的测试首先要测试 LED 的结温,即工作状态下 LED 的芯片的温度。关于LED 芯片温度的测试,理论上有多种方法,如红外光谱法、波长分析法和电压法等等。目前实际使用的是电压法。1995 年 12 月电子工业联合会/电子工程设计发展联合会议发布的> 标准对于电压法测量半导体结温的原理、方法和要求等都作了详细规范。 电压法测量LED 结温的主要思想是:特定电流下 LED 的正向压降 Vf 与 LED 芯片的温度成线性关系,所以只要测试到两个以上温度点的Vf 值,就可以确定该 LED 电压与温度的关系斜率,即电压温度系数 K 值,单位是 mV/°C 。K 值可由公式K=ㄓVf/ㄓTj 求得。K 值有了,就可以通过测量实时的 Vf 值,计算出芯片的温度(结温)Tj 。为了减小电压测量带来的误差,> 标准规定测量系数 K 时,两个温度点温差应该大于等于50 度。对于用电压法测量结温的仪器有几个基本的要求:A、电压法测量结温的基础是特定的测试电流下的 Vf 测量,而 LED 芯片由于温度变化带来的电压变化是毫伏级的,所以要求测试仪器对电压测量的稳定度必须足够高,连续测量的波动幅度应小于 1mV 。 B、这个测试电流必须足够小,以免在测试过程中引起芯片温度变化;但是太小时会引起电压测量不稳定,有些LED 存在匝流体效应会影响 Vf 测试的稳定性,所以要求测试电流不小于 IV 曲线的拐点位置的电流值。

(完整版)元器件封装大全

元器件封装大全 A. 名称Axial 描述轴状的封装 名称 AGP (Accelerate Graphical Port) 描述加速图形接口 名称 AMR (Audio/MODEM Riser) 描述声音/调制解调器插卡 B. 名称 BGA (Ball Grid Array) 描述 球形触点阵列,表面贴 装型封装之一。在印刷基板 的背面按阵列方式制作出 球形凸点用以代替引脚,在 印刷基板的正面装配LSI 芯片,然后用模压树脂或灌 封方法进行密封。也称为凸 点阵列载体(PAC) 名称 BQFP (quad flat package with bumper) 描述 带缓冲垫的四侧引脚扁 平封装。QFP封装之一,在 封装本体的四个角设置突 (缓冲垫)以防止在运送过 程中引脚发生弯曲变形。 C.陶瓷片式载体封装 名称 C- (ceramic) 描述 表示陶瓷封装的记号。 例如,CDIP 表示的是陶瓷 DIP。 名称C-BEND LEAD 描述名称CDFP 描述

名称Cerdip 描述 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。 名称CERAMIC CASE 描述 名称 CERQUAD (Ceramic Quad Flat Pack) 描述 表面贴装型封装之一, 即用下密封的陶瓷QFP,用 于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热 性比塑料QFP 好,在自然空 冷条件下可容许 1.5~2W 的功率 名称CFP127 描述 名称 CGA (Column Grid Array)描述 圆柱栅格阵列,又称柱栅阵列封装 名称 CCGA (Ceramic Column Grid Array) 描述陶瓷圆柱栅格阵列 名称CNR 描述CNR是继AMR之后作为INTEL的标准扩展接口 名称CLCC 描述 带引脚的陶瓷芯片载体,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G.

LED结温计算.doc

LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W 白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。 另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。 K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1; TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了。 :TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。 大功率LED的散热路径. 大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。 大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,其正反面图形如图5所示。这是一种最简单的散热结构。 热是从温度高处向温度低处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜层→印制板→环境空气。若LED的结温为TJ,环境空气的温度为TA,散热垫底部的温度为Tc(TJ>Tc>TA),散热路径如图6所示。 在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。若管芯传导到散热垫底面的热阻为RJC(LED的热阻)、散热垫传导到PCB面层敷铜层的热阻为RCB、PCB传导到环境空气的热阻为RBA,则从管芯的结温TJ传导到空气TA的总热阻RJA与各热阻关系为: RJA=RJC+RCB+RBA 各热阻的单位是℃/W。

集成电路使用常识

集成电路使用常识 费仲兴编译 前言 在多年的半导体器件的推广应用中了解到,很多整机厂的技术人员并不太了解集成电路使用的必要常识,即使是对于我公司的技术人员来说,关于这方面知识的掌握也不够全面,因此有必要把有关这方面的材料编译出来,供大家参考。 本材料主要根据日本东芝公司、三洋公司双极集成电路手册中的有关内容编译而成,有些地方加进了一些个人的理解。一共包含了以下三个方面的内容,一是有关集成电路最大额定值的物理意义以及和产品性能的关系;二是整机设计中功率集成电路的热设计方法;三是集成电路使用中的注意事项。其中最大额定值中的各种使用条件和环境温度的相互关系、关系集成电路功耗等的考虑方法还是值得参考的。 一、最大额定值 1、最大额定值的必要性和意义 根据半导体物理理论,半导体器件中载流子密度和温度成指数关系,因此温度对集成电路性能影响很大。 如果在集成电路内部器件的PN结上施加上足够的电压,载流子就会得到附加的能量,引起雪崩倍增,反向电流迅速增大,这时往往会发生击穿现象。 电流所引起的变化不像电压所引起的变化那样剧烈,但它会使半导体元件的性能缓慢地劣化,逐步地失去功能。此外,流过PN结的电流和施加电压的乘积变为功耗,引起温升,如果温度过高,也会引起热破坏。因此,温度、电压、电流和功耗就成为限制集成电路工作的四大因素。 据于上述理由,集成电路制造厂家往往对施加在集成电路上的电压、电流、功耗和温度规定最大容许值,要求用户遵照执行,这就是通常所说的最大额定值。 究竟什么是最大额定值,日本JIS7030(日本工业标准晶体管试验方法)中是这样定义的: 关于集成电路的最大额定值,JIS中没有明确定义过,但只要把上述定义中的晶体管换成集成电路的话,就成为集成电路最大额定值的定义。 集成电路最大额定值,就是为了保证集成电路的寿命和可靠性不可超越的额定值。这些额定值受结构材料、设计和生产条件等限制,因集成电路的种类不同其数值也不同。如果采用绝对最大额定值的概念,可以作如下表述。 所谓绝对最大额定值,就是在工作中即使瞬间也不能超过的值,如果定有两个以上项目的最大额定值时,其中的任何一个项目也不容许超过。 此外,最大额定值的大小不仅决定于半导体芯片内部的特征,同时还要考虑芯片以外的结构材料,如封装树指、芯片焊料等材料的特征。 超过最大额定值使用时,有时会不回复其特性。此外,应在设计时考虑电压的变化、零件特性的元件误差、环境温度的变化及输入信号的变化等,避免超过最大额定值中的任何一项。 2、电压的最大额定值 集成电路内部有许多PN结,当PN结上施加的电压一高,PN结空间电荷区内形成高电场强度,由于载流子的倍增作用,会引起电子雪崩,如果没有足够大的限流电阻,就会引起PN结的损坏。

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

【CN109946578A】一种基于磁纳米粒子的IGBT结温测量方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910127850.0 (22)申请日 2019.02.20 (71)申请人 华中科技大学 地址 430074 湖北省武汉市洪山区珞喻路 1037号 (72)发明人 刘文中 凌子文 杜中州 皮仕强  (74)专利代理机构 华中科技大学专利中心 42201 代理人 李智 曹葆青 (51)Int.Cl. G01R 31/26(2014.01) (54)发明名称 一种基于磁纳米粒子的IGBT结温测量方法 (57)摘要 本发明公开了一种基于磁纳米粒子的IGBT 结温测量方法,包括:将磁纳米粒子布置在IGBT 芯片外壳背部的中心区域,构建IGBT结、IGBT芯 片外壳与工作环境的二阶传热模型;构建均匀的 交流激励磁场,将带有磁纳米粒子的IGBT芯片放 置于所述磁场后,提取磁纳米粒子响应信号的一 次谐波幅值;根据一次谐波幅值,计算IGBT芯片 外壳背部温度;根据IGBT芯片外壳背部温度、工 作环境温度和二阶传热模型,计算IGBT结温。本 发明使磁纳米粒子接近IGBT结处,提高IGBT结温 测量的精度;利用磁纳米粒子磁化强度的温度敏 感特性,测量磁纳米粒子交流磁化强度的一次谐 波幅值,得到外壳背部温度,无需破坏IGBT芯片 的现有封装,实现非侵入式温度测量;通过二阶 热容热阻传热模型, 实现IGBT结温的实时测量。权利要求书2页 说明书7页 附图5页CN 109946578 A 2019.06.28 C N 109946578 A

1.一种基于磁纳米粒子的IGBT结温测量方法,其特征在于,所述方法包括如下步骤:S1.将磁纳米粒子布置在IGBT芯片外壳背部的中心区域,构建IGBT结、IGBT芯片外壳与工作环境的二阶传热模型; S2.构建均匀的交流激励磁场,将带有磁纳米粒子的IGBT芯片放置于所述磁场后,提取磁纳米粒子响应信号的一次谐波幅值; S3.根据提取到的一次谐波幅值,计算IGBT芯片外壳背部温度; S4.根据计算得到的IGBT芯片外壳背部温度、工作环境温度和二阶传热模型,计算IGBT 结温。 2.如权利要求1所述的IGBT结温测量方法,其特征在于,所述磁纳米粒子的粒径为5~30nm。 3.如权利要求1所述的IGBT结温测量方法,其特征在于,IGBT芯片的传热模型看作R1和C1组成的一阶RC网络,散热片看作R2和C2构成的一阶RC网络,从而构建二阶传热模型。 4.如权利要求3所述的IGBT结温测量方法,其特征在于, 所述二阶模型的状态方程为:其中,T j 为IGBT结温,T c 为外壳背部温度,T a 为工作环境温度,I为IGBT耗散功率,t为时间。 5.如权利要求3所述的IGBT结温测量方法,其特征在于,IGBT结温T j 的阶跃响应方程如 下: IGBT芯片外壳背部温度T c 的阶跃响应方程如下: 权 利 要 求 书1/2页2CN 109946578 A

IC的常见封装形式

IC的常见封装形式 常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 按封装体积大小排列分:最大为厚膜电路,其次分别为双列直插式,单列直插式,金属封装、双列扁平、四列扁平为最小。 封装的历程变化:TO->DIP->PLCC->QFP->BGA ->CSP 1、DIP(DualIn-line Package)双列直插式封装 D—dual两侧 双列直插式封装。插装型封装之一,引脚从封装两侧引出 2、SIP(single in-line package)单列直插式封装 引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状 3、SOP(Small Out-Line Package) 小外形封装双列表面安装式封装 以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路) 4、PQFP(Plastic Quad Flat Package)塑料方型扁平式封装 芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。适用于高频线路,一般采用SMT技术应用在PCB板上安装

5、BQFP(quad flat package with bumper)带缓冲垫的四侧引脚扁平封装 QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形 6、QFN(quad flat non-leaded package)四侧无引脚扁平封装 封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN 7、PGA(Pin Grid Array Package)插针网格阵列封装 插装型封装之一,其底面的垂直引脚呈阵列状排列,一般要通过插座与PCB板连接。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 8、BGA(Ball Grid Array Package)球栅阵列封装 其底面按阵列方式制作出球形凸点用以代替引脚。适应频率超过100MHz,I/O 引脚数大于208 Pin。电热性能好,信号传输延迟小,可靠性高。

LED结温热阻计算方法详解

LED结温热阻计算方法详解. Ta: 环境温度Rsa:铝基散热装置的热阻、散热器与环境间的热阻 Ts: 散热装置的温度. Rms:铝基板到铝散热装置的热阻 Tm: 铝基板的温度. Rcm:引脚到铝基板的热阻 Tc: 引脚的温度. Rjc:PN结到引脚的热阻、结壳间的热阻 Rja:PN结点到环境的热阻 Tj:晶体管的结温、芯片PN结最大能承受之温度( 100-130℃) P表示功耗 Rcs表示晶体管外壳与散热器间的热阻, L50: LED光源亮度降至50%的寿命 L70: LED光源亮度降至70%的寿命 结温计算的过程: 1.热阻与温度、功耗之间的关系为: Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja, 2.当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta 晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式 Ta=Tc=Tj-P*Rjc。厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。一般Pcm 是指在Tc=25℃或Ta=25℃时的最大允许功耗。当使用温度大于25℃时,会有一个降额指标。 3.以ON公司的为例三级管2N5551举个实例: 1)2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。 2)代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj为150度。一 般芯片最大允许结温是确定的。所以,2N5551的允许壳温与允许功耗之间的关系为: Tc=150-P*83.3。 3)比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。 4)注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。 规格书中给出的降额为12mW/度(0.012W/度)。 5)我们可以用公式来验证这个结论。假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。则此 时最大总功耗为1.5-0.012*(Tc-25)。把此时的条件代入公式Tc=Tj- P*Rjc得出: Tc=150-(1.5-0.012*(Tc-25))*83.3,公式成立。 4.一般情况下没办法测Tj,可以经过测Tc的方法来估算Tj。公式变为: Tj=Tc+P*Rjc

芯片工作温度与表面温度

芯片工作温度与表面温度 例如:一款芯片操作温度是0-70℃,表面温度已经达到85℃是否可以正常工作.表面温度与操作温度的关系,测试环境温度是35℃,温升50℃正常.如果不考虑芯片结温,怎证明温度达到85摄氏度不合理呢?是不是芯片的表面温度要控制在70℃一下呢? 我一直比较困惑,如芯片分为很多等级,例如一款芯片工作温度是这样的:民用级:0℃ to 80℃工业级 -40℃ to 80℃军品级 -40℃ to 125℃所有的芯片结温最大都是150℃.单通过结温判断就有些不合适了吧! 芯片描述的操作温度如果是说芯片的周围环境温度,例如当时气温是30℃,这样是比较好理解.我个 人比较同意芯片表面温度不超过最大工作温度.表面温度不等于工作温度也看起来是合理的. 芯片的结温计算:不加散热器的情况下,是否就是Tc(表面温度)+芯片Rja(热阻)*芯片的功耗,还是芯片的Ta(环境温度,例如当时的气温)+芯片Rja(热阻)*芯片功耗? IC封装的热特性 摘要:IC封装的热特性对于IC应用的性能和可靠性来说是非常关键的。本文描述了标准封装的热特性:热阻(用“theta”或Θ表示),ΘJA、ΘJC、ΘCA,并提供了热计算、热参考等热管理技术的详细信息。 引言 为确保产品的高可靠性,在选择IC封装时应考虑其热管理指标。所有IC在有功耗时都会发热,为了保证器件的结温低于最大允许温度,经由封装进行的从IC 到周围环境的有效散热十分重要。本文有助于设计人员和客户理解IC热管理的基本概念。在讨论封装的热传导能力时,会从热阻和各“theta”值代表的含义入手,定义热特性的重要参数。本文还提供了热计算公式和数据,以便能够得到正确的结(管芯)温度、管壳(封装)温度和电路板温度。 热阻的重要性 半导体热管理技术涉及到热阻,热阻是描述物质热传导特性的一个重要指标。计算时,热阻用“Theta”表示,是由希腊语中“热”的拼写“thermos”衍生而来。热阻对我们来说特别重要。

芯片封装形式

芯片封装形式 芯片封装形式主要以下几种:DIP,TSOP,PQFP,BGA,CLCC,LQFP,SMD,PGA,MCM,PLCC等。 DIP DIP封装(Dual In-line Package),也叫双列直插式封装技术,双入线封装,DRAM的一种元件封装形式。指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100。DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏管脚。DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP封装具有以下特点: ?适合在PCB(印刷电路板)上穿孔焊接,操作方便。 ?芯片面积与封装面积之间的比值较大,故体积也较大。 ?最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚 可插到主板上的插槽或焊接在主板上。 ?在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。DIP还有一种派 生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高6六倍。 DIP还是拨码开关的简称,其电气特性为 ●电器寿命:每个开关在电压24VDC与电流25mA之下测试,可来回拨动2000次; ●开关不常切换的额定电流:100mA,耐压50VDC ; ●开关经常切换的额定电流:25mA,耐压24VDC ; ●接触阻抗:(a)初始值最大50mΩ;(b)测试后最大值100mΩ; ●绝缘阻抗:最小100mΩ,500VDC ; ●耐压强度:500VAC/1分钟; ●极际电容:最大5pF ; ●回路:单接点单选择:DS(S),DP(L) 。 TSOP 到了上个世纪80年代,内存第二代的封装技术TSOP出现,得到了业界广泛的认可,时至今日仍旧是内存封装的主流技术。TSOP是“Thin Small Outline Package”的缩写,意思是薄型小尺寸封装。TSOP内存是在芯片的周围做出引脚,采用SMT技术(表面安装技术)直接附着在PCB板的表面。TSOP封装外形尺寸时,寄生参数(电流大幅度变化时,引起输出电压扰动)减小,适合高频应用,操作比较方便,可靠性也比较高。同时TSOP封装具有成品率高,价格便宜等优点,因此得到了极为广泛的应用。 TSOP封装方式中,内存芯片是通过芯片引脚焊接在PCB板上的,焊点和PCB板的接触面积较小,使得芯片向PCB办传热就相对困难。而且TSOP封装方式的内存在超过150MHz 后,会产品较大的信号干扰和电磁干扰。 PQFP PQFP: (Plastic Quad Flat Package,塑料方块平面封装)一种芯片封装形式。 BGA BGA封装内存 BGA封装(Ball Grid Array Package)的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

IC封装的热特性-热阻

IC封装的热特性 摘要:IC封装的热特性对于IC应用的性能和可靠性来说是非常关键的。本文描述了标准封装的热特性:热阻(用“theta”或Θ表示),ΘJA、ΘJC、ΘCA,并提供了热计算、热参考等热管理技术的详细信息。 引言 为确保产品的高可靠性,在选择IC封装时应考虑其热管理指标。所有IC在有功耗时都会发热,为了保证器件的结温低于最大允许温度,经由封装进行的从IC到周围环境的有效散热十分重要。本文有助于设计人员和客户理解IC热管理的基本概念。在讨论封装的热传导能力时,会从热阻和各―theta‖值代表的含义入手,定义热特性的重要参数。本文还提供了热计算公式和数据,以便能够得到正确的结(管芯)温度、管壳(封装)温度和电路板温度。结温-PN结度 热阻的重要性 半导体热管理技术涉及到热阻,热阻是描述物质热传导特性的一个重要指标。计算时,热阻用―Theta‖表示,是由希腊语中―热‖的拼写―thermos‖衍生而来。热阻对我们来说特别重要。 IC封装的热阻是衡量封装将管芯产生的热量传导至电路板或周围环境的能力的一个标准。给出不同两点的温度,则从其中一点到另外一点的热流量大小完全由热阻决定。如果已知一个IC封装的热阻,则根据给出的功耗和参考温度即可算出IC的结温。 Maxim网站(制造商、布线、产品、QA/可靠性、采购信息)中给出了常用的IC热阻值。 定义 以下章节给出了Theta (Θ)、Psi (Ψ)的定义,这些标准参数用来表示IC封装的热特性。 ΘJA是结到周围环境的热阻,单位是°C/W。周围环境通常被看作热―地‖点。ΘJA取决于IC封装、电路板、空气流通、辐射和系统特性,通常辐射的影响可以忽略。ΘJA专指自然条件下(没有加通风措施)的数值。 ΘJC是结到管壳的热阻,管壳可以看作是封装外表面的一个特定点。ΘJC取决于封装材料(引线框架、模塑材料、管芯粘接材料)和特定的封装设计(管芯厚度、裸焊盘、内部散热过孔、所用金属材料的热传导率)。 对带有引脚的封装来说,ΘJC在管壳上的参考点位于塑料外壳延伸出来的1管脚,在标准的塑料封装中,ΘJC的测量位置在1管脚处。对于带有裸焊盘的封装,ΘJC的测量位置在裸焊盘表面的中心点。ΘJC的测量是通过将封装直接放置于一个―无限吸热‖的装置上进行的,该装置通常是一个液冷却的铜片,能够在无热阻的情况下吸收任意多少的热量。这种测量方法设定从管芯到封装表面的热传递全部由传导的方式进行。 注意ΘJC表示的仅仅是散热通路到封装表面的电阻,因此ΘJC总是小于ΘJA。ΘJC表示是特定的、通过传导方式进行热传递的散热通路的热阻,而ΘJA则表示的是通过传导、对流、辐射等方式进行热传递的散热通路的热阻。 ΘCA是指从管壳到周围环境的热阻。ΘCA包括从封装外表面到周围环境的所有散热通路的热阻。 根据上面给出的定义,我们可以知道: ΘJA= ΘJC+ ΘCA ΘJB是指从结到电路板的热阻,它对结到电路板的热通路进行了量化。通常ΘJB的测量位置在电路板上靠近封装的1管脚处(与封装边沿的距离小于1mm)。ΘJB包括来自两个方面的热阻:从IC的结到封装底部参考点的热阻,以及贯穿封装底部的电路板的热阻。 测量ΘJB时,首先阻断封装表面的热对流,并且在电路板距封装位置较远的一侧安装一个散热片。如下图1所示:

大功率LED结温方法

大功率LED 结温方法 GaN 基白光LED 结温测试方法 1. 正向电压法(forward voltage method) 原理:初始电压与初始结温符合很强的线性关系 K V V T T t j 00-+= 其中T0是作为参考的环境温度,V0是在T0下的初始电压;Tj 和Vt 分别是稳定时的结温和正向电压。 系数K 可以通过测量两组不同的参考温度和电压得到K=(V1-V0) /(T1-T0),也可以通过测量多组参考温度和电压作线性拟合得到。 K 值测量 测量时将LED 放置在控温烤箱中,施加小电流(10mA ),分别在不同的烤箱温度下(Ta1,Ta2),每个温度阶段恒温30min (样品为1WLED 加散热片,如果未加散热片可另外考虑),使得结温与环境温度一致,测试过程中保持电流恒定。测量LED 的正向电压(Vf1,Vf2),这时可近似认为;K=(V1-V0) /(Ta2-Ta1) Rth 为热阻 Rth=(Tj-Tb )/P Tb 为测试得到的基板底部的温度,P 为L E D 的耗散功率,Tb 用热电偶实时测量LED 基板底部的温度。 2. 管脚法(Pin method) 原理:管脚温度法是利用LED 器件的热输运性质,通过测量管脚温度和芯片耗散的热功率,以及热阻系数来确定结温 p j j p j R P T T -+=* 其中Tp 是管脚温度,Tj 是结温;Pj 是LED 芯片耗散的热功率;R Θj-p 是从结到管脚的热阻系数,可以由厂家给出,或者由实验确定,本实验中结合电压法测量来确定热阻系数 文献中提到热阻系数由电压法测得,而电压法又会存在误差,所以此方法误差会较大一些。 3. 蓝白法(non-contactmethod for determining junction temperatur ) 原理:利用白光LED 的发光光谱分布(SPD)来测量结温,最大的优点是不需要破坏器件的整体性,是一种非接触的结温测量方法。 蓝白比R 与结温都有较好的线性关系,可通过测量光谱算得R 值,然后用下面的换 算公式得到结温: r j K R R T T 00-+= 其中T0为参考结温,Tj 是要测量的结温;R0和R 分别是结温为T0和Tj 时的蓝白比;Kr 是比

相关主题
文本预览
相关文档 最新文档