当前位置:文档之家› 现代检测技术及仪表现代检测理论与技术

现代检测技术及仪表现代检测理论与技术

现代检测技术及仪表现代检测理论与技术
现代检测技术及仪表现代检测理论与技术

现代检测技术及仪表现代检测理论与技术现代检测理论与技术检测技术是将自动化、电子、计算机、控制工程、处理、机械等多种学科、多种技术融合为一体并综合运用的符合技术,广泛应用于交通、电力、冶金、化工、建材等各领域自动化装备及生产自动化过程。

1. 常用算法

在现代检测理论与技术这门学科中介绍了几种经典的算法,其中遗传算法是最常应用到的。遗传算法(Geic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan 大学J.Holland 教授于1975年首先提出来的。

遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,

逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:

①首先组成一组候选解;

②依据某些适应性条件测算这些候选解的适应度;

③根据适应度保留某些候选解,放弃其他候选解;

④对保留的候选解进行某些操作,生成新的候选解。

在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:

(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。

(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性。在函数优化、组合优化、生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

2. 现在检测技术的发展:

随着半导体和计算机技术的发展,新型或具有特殊功能的传感器出现,检测装置也向小型化、固体化及智能化发展,应用领域更加宽广。

(1)不断提高监测系统的测量精度、量程范围、延长使用寿命、提高可靠性科学技术的发展要求测量系统有更高的精度。近年来,人们研制出许多高精度的检测仪器以满足各种需求。例如,用直线光栅测量直线位移时,测量范围可达二三十米,而分辨率可达到微米级;人们已经研制出测量低至几个帕的微压力和高达几千兆帕高压的;力传感器;开发了能够测出极微弱磁场的磁敏传感器等。

(2)应用新技术和新的物理效应,扩大检测领域

检测原理大多以各种物理效应为基础,近代物理学的进展如纳米技术、激光、红外、超声波、微波、光纤、放射性同位素等新成就为检测技术的发展提供了更多的依据。如图像识别、激光测距、红外测温、C 型超声波无损探伤。放射性测厚。中子探测爆炸物等非接触测量得到迅速发展。

如今,检测领域正扩大到整个社会需要的各个方面,不仅包括工程、海洋开发、航空航天等尖端科技和新兴工业领域,而且已涉及生物、医疗、环境污染监测、危险品和毒品的侦查、安全检测等方面,并且已经开始渗入到人们的日常生活设施之中。

(3)发展集成化、功能化的传感器

随着半导体集成电路技术的发展,硅和砷化镓电子元件的高度集成化大量向传感器领域渗透。人们将传感技术与信号处理电路制作在同一块硅片上,从而研制体积更小、性能更好、功能更强的传感器。例如,高精度的PN 结测温集成电路;又如,将排成阵列的上千万个光敏元件及扫描放大电路制作在一块芯片上,制成彩色CCD 数码照相机、摄像机以及可摄像的手机等。今后还将在光、磁、温度、压力等领域开发出新型的集成度很高的传感器。

(4)采用计算机技术,使检测技术智能化

自20世纪70年代微处理器问世以来,人们迅速将计算机技术应用到测量技术领域中来,使检测仪器智能化,从而扩展了功能,提高了精度和可靠性,目前研制的测量系统大多带有微处理器。

(5)发展网络化传感器及检测系统

随着微电子技术的发展,现在已经可以将十分复杂的信号处理和控制电路集成到单块的芯片中去。传感器的输出不再是模拟量,而是符合某种协议(如可即插即用)的数字信号。从而可以通过企业内部网络,也可以通过网络实现多个系统之间的数据交换和共享,从而构成网络化的检测系统。还可以远在千里之外,随时随地浏览现场工况,实现远程调试、远程故障诊断。远程数据采集和实时操作。

3. 现在检测的趋势:

(1)软测量技术

的进步和生产规模的扩大以及工艺的日渐复杂,给自动检测和控制提出了更高的要求,人们迫切需要找到一种新的技术来满足生产过程的检测和优化控制的需要。软测量技术(Soft SensingTechniques)被认为是目前最具吸引力和卓有成效的新方法。其主要包括三部分内

容:第一,根据某种最优化原则研究建立软测量数学模型的方法,这是软测量技术的核心。主要方法有机理建模方法和辨识建模方法。辨识建模方法包括动态模型的间接辨识,静态模型的回归分析法辨识,采用模糊逻辑和神经网络以及二者结合的非线性建模。第二,模型实时运算的工程化实施技术,这是软测量技术的关键。包括现场数据的采集和处理,软测量模型结构的选择,模型参数的估计等。第三,模型自校正技术,这是提高软测量准确度的有效方法,包括在线自校正和模型的离线更新技术等。

(2)模糊传感器

模糊逻辑控制作为一种新颖的高级控制方式,成为智能控制的一

个重要分支。模糊控制技术的理论基础是模糊数学和模糊逻辑理论。模糊理论是建立在人类思维的基础上,能很好的表达事物的模糊性质。传统的传感器虽然有高精度、无冗余的优点,但也存在提供的信息简单,难于描述涉及人类感觉信息和某些高层逻辑信息的问题。模糊传感器可以说在传感器数值测量的基础上具有经过模糊推理和知识集成、以自然语言符号的描述形式输出的传感器,能够对模糊事物进行识别和判断,可以应用在传统传感器无法处理的场合。

(3)仿生传感器

检测技术与自动化装置

method 线性系统理论Linear system theory 362秋 机器人控制与自主系统Robotic contr ol and autono mous system 543春 计算机控制理论与应用Computer con trol system th eory and its application 543春 自动测试理论Automatic me asurement the ory 543春 运筹学Operation res earch 543秋 系统工程理论与应用System engin eering theory and its appli cations 543春 复杂系统建模与仿真Modeling and simulation o f complex sy stems 543秋 非 学位课现代控制理论 专题 Special topic of modern co ntrol theory 362 鲁棒控制系统Robust contro l systems 362春 最优控制Optimal contr ol 362春 自适应控制Adaptive Con trol 362春

最优估计与系统辨识Optimal estim ate and syste m identificati on 362春 过程控制Process contr ol 362秋 非线性控制系统Nonlinear con trol systems 362春 离散事件动态系统Discrete event dynamic syst ems 362春 PETRI网Petri net362秋 人工智能原理及应用Artificial intel ligence theory and its appli cations 362春 智能化方法与技术Intelligent me thod and tech nology 362 模糊理论与应用Fuzzy theory and applicatio ns 362春 模糊逻辑控制系统Fuzzy logic c ontrol system 362春 人工神经网络Artificial neur al network 362秋 遗传算法与进化算法Genetic and e volutional alg orithm 362春 实时控制系统Real-time con trol systems 362秋 机器人视觉Robotic visio362春

浅谈智能仪表的前景和特点

龙源期刊网 https://www.doczj.com/doc/ff6156061.html, 浅谈智能仪表的前景和特点 作者:闫森 来源:《中国科技博览》2015年第24期 [摘要]智能仪器仪表技术是一门集电子技术、单片机技术、自动化仪表、自动控制技术、计算机应用等于一体的跨学科的专业技术。随着微电子和计算机技术的快速发展,智能测量与控制仪表的发展,在不同的总线和网络相关的产业前景和百老汇显示,越来越成为一个重要的问题,最关注的行业和专业人士。因此,知识和理解的智能仪表的特点、发展趋势和应用前景是非常重要和必要的。 [关键词]智能仪表;前景;特点;数控自动化 中图分类号:TP216 文献标识码:A 文章编号:1009-914X(2015)24-0301-01 微电子技术和计算机技术的发展,引发了仪器结构的根本改变以单片机为主体,将计算机与检测技术,形成了新一代“智能仪表在测量过程自动化,测量数据的处理,和功能的多样性与常规测量电路的传统方法相比,有了很大的进步。传统仪器不能轻易或智能电表不仅可以解决需要解决的问题,它还简化了硬件电路,提高了仪器的可靠性更容易实现高精度的目标,高性能和多功能。随着科学技术的发展,智能仪器的程度越高。智能仪表不仅能完成各种物理量显示在发送输出,继电器控制输出,如通信、数据的多功能。近年来,智能测量控制仪表的发展尤为迅速。国内市场上出现了各种各样的智能测量控制仪表,如智能化的自动压差补偿节流式流量计,开展智能温度控制仪表程序,对各种复杂的智能调节器的数字PID控制法,以及用于光谱分析和智能气相色谱数据处理。 一.智能仪表的特点 1.1 测量数据的存储和处理,是智能测试系统的主要优点。比较数据的分析和处理传统的测试系统,为实时处理和测量结果修正智能测试系统软件,不仅使人们从繁重的手工数据处理操作,大大提高了精度,而且信号数字滤波器的采集,时域和频域分析,以获取更多的信息。此外,由于采用单片机或微控制器的智能仪表,使许多原来的硬件逻辑难以解决或无法使用的软件解决方案,在一个非常灵活的方式解决问题。 1.2 对测量过程的控制和数据处理功能的软件的智能化仪器,这使得它可以一机多用。智能电力需求分析应用于电力系统,例如,不仅可以测量不同功率,功率,电源电压,电流,功率因数,频率,也可以预设电源计划,并结合自动测量,打印,警告和许多其他功能。 1.3 测量过程是在软件的控制下,系统CPU的指挥下,按照软件程序,常数值处理,各种转换,逻辑,驱动执行机构完成一个特定的动作,使系统工作按一定的顺序。例如:键盘扫描和测量范围的选择,开关闭合,数据采集,传输和处理,以及显示和打印或是单片微控制器控

现代检测技术及仪表习题解答

严正声明:孙传友是高等教育出版社出版的《现代检测技术及仪表》第1版和第2版教材及其习题解答的唯一著作权人。该教材的习题解答仅供读者和网友下载阅读。任何其他人将该习题解答的内容冠以其他文档名称以自的己名义在任何网站发布,都侵犯了作者的著作权,如不自行删除,必将承担侵权的后果和法律责任。 《现代检测技术及仪表》第2版习题解答 孙传友编 第1章 1-1答: 钱学森院士对新技术革命的论述中说:“新技术革命的关键技术是信息技术。信息技术由测量技术、计算机技术、通讯技术三部分组成。测量技术则是关键和基础”。如果没有仪器仪表作为测量的工具,就不能获取生产、科学、环境、社会等领域中全方位的信息,进入信息时代将是不可能的。因此可以说,仪器技术是信息的源头技术。仪器工业是信息工业的重要组成部分。 1-2答: 同非电的方法相比,电测法具有无可比拟的优越性: 1、便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器的测量幅值范围(量程)。 2、电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,因此采用电测技术将具有很宽的测量频率范围(频带)。 3、把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。 4、把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。 1-3答: 各类仪器仪表都是人类获取信息的手段和工具。尽管各种仪器仪表的型号、原理和用途不同,但都由三大必要的部分组成:信息获取部分、信息处理部分、信息显示部分。从“硬件”方面来看,如果把常见的各类仪器仪表“化整为零”地解剖开来,我们会发现它们内部组成模块大多是相同的。从“软件”方面来看,如果把各个模块“化零为整”地组装起来,我们会发现它们的整机原理、总体设计思想、主要的软件算法也是大体相近的。这就是说,常见的各类仪器仪表尽管用途、名称型号、性能各不相同,但它们有很多的共性,而且共性和个性相比,共性是主要的,它们共同的理论基础和技术基础实质就是“检测技术”。常见的各类仪器仪表只不过是作为其“共同基础”的“检测技术”与各个具体应用领域的“特殊要求”相结合的产物。 1-4答: “能把外界非电信息转换成电信号输出的器件或装置”或“能把非电量转换成电量的器件或装置”叫做传感器。能把被测非电量转换为传感器能够接受和转换的非电量(即可用非电量)的装置或器件,叫做敏感器。如果把传感器称为变换器,那么敏感器则可称作预变换器。敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。 1-5答: 目前,国内常规(常用)的检测仪表与系统按照终端部分的不同,可分为以下三种类型: 1、普通模拟式检测仪表

2020年智慧树知道网课《现代检测技术》课后章节测试满分答案

第一章测试 1 【单选题】(1分) 用以标定的仪器,直接的测量出某一待测未知量的量值称为()。 A. 直接测量 B. 间接测量 C. 动态测量 D. 接触式测量 2 【单选题】(1分) 下列哪项不是闭环控制型现代测试系统的优点()。 A. 实时控制 B. 实时数据采集 C. 实时判断决策 D. 远距离传输

3 【多选题】(1分) 下列属于测量过程的是()。 A. 数值和计量单位 B. 被测对象 C. 测试方法 D. 测量误差 4 【判断题】(1分) 水银温度计测量体温属于直接式测量。 A. 错 B. 对

5 【单选题】(1分) 测试技术与传感技术被称为信息技术系统的()。 A. 感官 B. 神经 C. 大脑 第二章测试 1 【单选题】(1分) 下列非线性补偿方法中属于软件补偿的是()。 A. 闭环式 B. 差动式 C. 开环式

D. 拟合法 2 【判断题】(1分) A类标准不确定度是用非统计方法得到的不确定度。 A. 错 B. 对 3 【判断题】(1分) 真值在实际测量中是可以确切获知的。 A. 对 B. 错

4 【判断题】(1分) 相对误差是绝对误差与测量仪表量程之比。 A. 错 B. 对 5 【单选题】(1分) 将63.73501四舍五入,保留两位小数为()。 A. 64.00 B. 63.74 C. 63.00 D. 63.73

第三章测试 1 【判断题】(1分) 直流电桥可以测量电容的变化。 A. 错 B. 对 2 【单选题】(1分) 全桥接法的灵敏度是半桥双臂接法的几倍()。 A. 8 B. 4 C. 2 D. 1

《现代检测技术及仪表》孙传友高教电子教案第1章

第1章绪论 1.1检测技术及仪表的地位与作用 1.1.1检测仪表的地位与作用 一、检测仪表 检测――对研究对象进行测量和试验,取得定量信息和定性信息的过程。 检测仪表――专门用于“测试”或“检测”的仪表。 二、地位与作用: 1、科学研究的手段诺贝尔物理和化学奖中有1/4是属于测试方法和仪器创新。 2、促进生产的主流环节 3、国民经济的“倍增器” 4、军事上的战斗力 5、现代生活的好帮手 6、信息产业的源头 1.1.2 检测技术是仪器仪表的技术基础 一、非电量的电测法――把非电量转换为电量来测量 优越性:1)便于扩展测量的幅值范围(量程) 2)便于扩宽的测量的频率范围(频带) 3)便于实现远距离的自动测量 4) 便于与计算机技术相结合, 实现测量的智能化和网络化 二、现代检测技术的组成:电量测量技术、 传感器技术 非电量电测技术。 三、仪器仪表的理论基础和技术基础――实质就是“检测技术”。 “检测技术”+“应用要求”=仪器仪表 1.2 传感器概述 1.2.1传感器的基本概念 一、传感器的定义 国家标准定义――“能感受(或响应)规定的被测量并按照一定规律转换成可用信 号输出的器件或装置。”(当今电信号最易于处理和便于传输)通常定义――“能把外界非电信息转换成电信号输出的器件或装置” 或“能把非电量转换成电量的器件或装置”。 二、敏感器的定义――把被测非电量转换为可用非电量的器件或装置 X=即被测非电量X正是传感器所能接受和转换的非电量(即可用非电1、当Z 量)Z时,可直接用传感器将被测非电量X转换成电量Y。 X≠即被测非电量X不是传感器所能接受和转换的非电量(即可用非电2、当Z 量)Z时,就需要在传感器前面增加一个敏感器,把被测非电量X转换为该传 感器能够接受和转换的非电量(即可用非电量)Z。

智能检测技术及仪表习题参考答案

智能检测技术及仪表习题答案 1.1什么是测量的绝对误差、相对误差、引用误差? 被测量的测量值x与被测量的真值A0之间的代数差Δ,称为绝对误差(Δ=x- A0)。 相对误差是指绝对误差Δ与被测量X百分比。有实际相对误差和公称相对误差两种表示方式。实际相对误差是指绝对误差Δ与被测量的约定真值(实际值)X0之比(δA=Δ/ X0×100%);公称相对误差是指绝对误差Δ与仪表公称值(示值)X之比(δx=Δ/ X×100%)。 引用误差是指绝对误差Δ与测量范围上限值、量程或表度盘满刻度B之比(δm=Δ/B×100%)。 1.2 什么是测量误差?测量误差有几种表示方法?他们通常应用在什么场合? 测量误差是指被测量与其真值之间存在的差异。测量误差有绝对误差、相对误差、引用误差三种表示方法。绝对误差通常用于对单一个体的单一被测量的多次测量分析,相对误差通常用于不同个体的同一被测量的比较分析,引用误差用于用具体仪表测量。 1.3 用测量范围为-50~+150kPa的压力传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差和引用误差。 Δ=142-140=2kPa; δA=2/140=1.43%;δx=2/142=1.41%;δm=2/(50+150)=1% 1.7 什么是直接测量、间接测量和组合测量? 通常测量仪表已标定好,用它对某个未知量进行测量时,就能直接读出测量值称为直接测量;首先确定被测量的函数关系式,然后用标定好的仪器测量函数关系式中的有关量,最后代入函数式中进行计算得到被测量,称为将间接测量。在一个测量过程中既有直接测量又有间接测量称为组合测量。 1.9 什么是测量部确定度?有哪几种评定方法? 测量不确定度:表征合理地赋予被测量真值的分散性与测量结果相联系的参数。 通常评定方法有两种:A类和B类评定方法。 不确定度的A类评定:用对观测列进行统计分析的方法来评定不确定度。 不确定度的B类评定:用不同于对观测列进行统计分析的方法来评定不确定度。 1.10检定一块精度为1.0级100mA的电流表,发现最大误差在50mA处为1.4mA,试判定该表是否合格?它实际的精度等级是多少? 解:δm=1.4/100=1.4%,它实际的精度为1.5,低于标称精度等级所以不合格。 1.11某节流元件(孔板)开孔直径d20尺寸进行15次测量,测量数据如下(单位:mm): 120.42 ,120.43,120.40,120.42,120,43,120.39,120.30,120.40,120.43,120.41,120.43,120.42,120.39,120.39,120.40试检查其中有无粗大误差?并写出测量结果。 解:首先求出测量烈的算术平均值: X =120.40mm 根据贝塞尔公式计算出标准差 ?=(∑v i2/(15-1))1/2=0.0289 3 ?=0.0868 所以,120.30是坏值,存在粗大误差。 去除坏值后X =120.41mm,?=(∑v i2/(14-1))1/2=0.011 3 ?=0.033 再无坏值 求出算术平均值的标准偏差?x= ?/(n)1/2=0.011/3.87=0.003 写出最后结果:(Pc=0.95,Kt=2.33) 120.41±Kt?x=120.41±0.01mm 2.3 什么是热电效应?热电势有哪几部分组成的?热电偶产生热电势的必要条件是什么? 在两种不同金属所组成的闭合回路中,当两接触的温度不同时,回路中就要产生热电势,这种物理现象称为热电效应。热电势由接触电势和温差电势两部分组成。热电偶产生热电势的必要条件是:两种不同金属和两个端点温度不同。 2.5什么是热电偶的中间温度定律。说明该定律在热电偶实际测温中的意义。 热电偶在接点温度为T、T0时的热电势等于该热电偶在接点温度为T,Tn和Tn、T0时相应的热电势的代数和。 E AB(T、T0)= E AB(T、Tn)+ E AB(Tn、T0)。这主要用于冷端温度补偿。 2.9热电偶的补偿导线的作用是什么?选择使用补偿导线的原则是什么?

《现代检测技术及仪表》第2版习题解答(孙传友编)第6章

第6章 6-1 答:有三条码道。码盘上最外圈码道上只有一条透光的狭缝,它作为码盘的基准位置,所产生的脉冲将给计数系统提供一个初始的零位(清零)信号;中间一圈码道称为增量码道,最内一圈码道称为辨向码道。这两圈码道都等角距地分布着m 个透光与不透光的扇形区,但彼此错开半个扇形区即90°/m 。所以增量码道产生的增量脉冲与辨向码道产生的辨向脉冲在时间上相差四分之一个周期,即相位上相差90°。增量码道产生的增量脉冲的个数用于确定码盘的转动角度,辨向脉冲与增量脉冲的相位关系用于确定码盘的转动方向。 6-2 答:因为主光栅沿栅线垂直方向(即x 轴方向)移动一个光栅栅距W ,莫尔条纹沿y 轴正好移动一个条纹间距H (H>>W ),光电元件的输出电压变化一个周期,光栅辩向电路产生一个脉冲计数,采用电子细分技术后,主光栅移动一个光栅栅距W ,细分电路将产生m 个计数脉冲,光栅的分辨率即一个脉冲计数代表的位移就从W 变成W/m 。光栅的栅距一般为0.01~0.1mm ,电子细分数在12~60甚至更多,因此光栅传感器能测量很微小的位移。 光栅传感器中有两个相距四分之一莫尔条纹间距的光电元件,这两个光电元件的输出信号u 1和u 2的相位差正好等于π/2。当位移反方向时,正向位移时原来相位超前的那个光电元件的输出信号的相位,就从相对超前变为相对迟后,这就会使相关的辨向电路控制计数器从脉冲加计数变成脉冲减计数,因此计数器的计数结果反映位移正负两抵后的净位移。 6-3 答:长光栅所允许的移动速度V 受光敏二极管响应时间τ的限制τ≥V W 故s m s m W V /2010501063=?=≤--τ 6-4 解:六位循环码码盘测量角位移的最小分辨率为: rad 098.06.52 3606=== α。 码盘半径应为: mm mm l R 1.0098 .001.0===α 循环码101101的二进制码为110110,十进制数为54; 循环码110100的二进制码为100111,十进制数为39。 码盘实际转过的角度为: 846.515)3954(=?=?-=αθ。 6-5 答:莫尔条纹宽度为mm mm W H 73.522.0sin 210202sin 23=?==- β 因为标尺光栅每移动一个栅距W ,莫尔条纹就移动一个条纹宽度H 的距离,所以当标尺光栅移动100微米时,莫尔条纹移动的距离为

现代检测技术及仪表 考试题

第一章 1. 5大热功量:温度、压力、物位、流量、成分 2.传感器:能把外界非电信息转换成电信号输出的装置。能把被测非电量转换为可用非电量的装置为敏感器。异同:敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。理论上讲,M 种敏感器,N 种传感器和3种仪表电路的排列组合可产生出(M*N*3)种非电量检测仪表。 3. 非电量电测法有哪些优越性。 答:1)便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器量程。2)电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,具有很宽的频带。3)把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。4)把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。 4. 常见的检测仪表有哪几种类型?画出其框图,简述其工作原理。 答:普通模拟式检测仪表、普通数字式检测仪表、微机化 在整个测量过程中,只是模拟量之间发生转换。测量结果用指针相对标尺的位置来表示。 二、普通数字式检测仪表 (a )模数转换式――模拟测量电路把传感器输出的电量转换成直流电压信号,A/D 转换器把直流电压转换成数字,最后由数字显示器显示出来 (b) 脉冲计数式――信号放大整形后,由计数器进行计数最后由数字显示器显示出来 三、微机化检测系统 传感器将被测非电量转换成电量,测量通道对传感器信号进行调理和数据采集,转换成数字信号,送入微机进行必要处理后,由显示器显示出来并记录下来。 第4章 2、有源电桥―电桥输出电压U0与传感器电阻相对变化R R ?成线性关系02E R U R ?=- ? 4、为什么线绕式电位器容易实现各种非线性特性而且分辨力比非线绕式电位器低? 答:由线绕式电位器可见,只有当电刷的位移大于相邻两匝线圈的间距时,线绕式电位器的电阻才会变化一个台阶。而非线绕式电位器电刷是在电阻膜上滑动,电阻呈连续变化,因此线绕式电位器分辨力比非线绕式电位器低。 5、电阻应变片的灵敏系数比应变电阻材料本身的灵敏系数小吗?为什么? 答:应变片的灵敏系数k 是指应变片的阻值相对变化与试件表面上安装应变片区域的轴向应变之比称为,而应变电阻材料的应变灵敏系数k0是指应变电阻材料的阻值的相对变化与应变电阻材料的应变之比。实验表明:k <k0,除了黏结层传递应变有损失外,另一重要原因是存在横向效应的缘故。 6、热电阻与热敏电阻的电阻—温度特性有什么不同? 答:热电阻:金属的电阻率随温度的升高而升高,从而使金属的电阻也随温度的升高而升高,金属热电阻的电阻温度系数为正值。热敏电阻的电阻温度系数分为三类:(1)负温度系数 (2)正温度系数 (3)临界温度系数 7、为什么气敏电阻都附有加热器? 答:气敏电阻都附有加热器,以便烧掉附着在探测部位处的油雾、尘埃,同时加速气体的吸附,从而提高元件的灵敏度和响应速度。半导瓷气敏电阻元件一般要加热到200℃~400℃。 8、自感式传感器有哪些类型?各有何优缺点? 答:自感传感器有三种类型:变气隙式、变面积式和螺管式。变气隙式灵敏度最高,但非线性严重,示值范围只能较小,自由行程受铁心限制,制造装配困难。变面积式和螺管式的优点是具有较好的线性,示值范围大些,自由行程可按需安排,制造装配也较方便。此外,螺管式与变面积式相比,批量生产中的互换性好。 9、试比较差动自感式传感器与差动变压器式传感器的异同? 答:差动自感式传感器与差动变压器式传感器的相同点是都有一对对称的线圈铁心和一个共用的活动衔铁,而且也都有变气隙式、变面积式、螺管式三种类型。不同点是,差动自感式传感器的一对对称线圈是作为一对差动自感接入交流电桥或差动脉冲 调宽电路,将衔铁位移转换成电压。而差动变压器式传感器的是作为变压器的次级线圈,此外,差动变压器式传感器还有初级线圈(差动自感式传感器没有)。 10、试说明图4-3-11电路为什么能辨别衔铁移动方向和大小?为什么能调整零点输出电压? 答:图(a)和图(b)的输出电流为Iab=I1-I2,图(c)和图(d)的输出电压为Uab=Uac-Ubc 。当衔铁位于零位时,I1=I2,Uac=Ubc ,故Iab=0,Uab=0;当衔铁位于零位以上时,I1>I2,Uac>Ubc ,故Iab>0,Uab>0;当衔铁位于零位以下时,I1θc 即满足全反射条件,这样,光线就能在纤芯和包层的界面上不断地产生全反射,呈锯齿形路线在纤芯内向前传播,从光纤的一端以光速传播到另一端,这就是光纤传光原理。 2、红外探测器有哪两种类型?二者有何区别? 答:按其所依据的物理效应可分为光敏和热敏两大类型,光敏红外探测器是采用电真空光电器件或半导体光电器件,通过红外辐射的光电效应,把红外辐射的光量变化转换为电量变化。热敏红外探测器是采用热敏电阻、热电偶和热电堆,通过红外辐射的热电效应,把红外辐射的热量变化转换为电量变化。 3、压电式超声波探头的工作原理是什么? 答:超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等。压电式超声波探头是利用压电材料的压电效应来工作的。逆压电效应将高频电振动转换成机械振动,以产生超声波。正压电效应将接收的超声振动转换成电信号。由于压电效应的可逆性,实际应用中的超声探头大多是发射与接收兼用,既能发射超声波信号又能接收发射出去的超声波的回波,并把它转换成电信号。 4、传感器发展的新趋向是什么? 答:传感器发展的新趋向是:1)探索具有新效应的敏感功能材料,并以此研制出具有新原理的新型物性型传感器;2)传感器的集成化和多功能化;3)传感器的智能化;4)研究生物感官,开发仿生传感器。 第8章 1、气体摆式―――图8-2-7 气体摆式倾角传感器的工作原理如图所示,传感器壳体平行于水平面时,密封盒内两几何对称的热敏电阻丝R1和R2说产生的热气流均垂直向上,二者互不影响,电桥平衡,输出为零。若传感器壳体相对于地球重心方向产生倾角Q,由于重力的作用,两个热敏电阻产生的热气流仍保持在铅垂方向,但两束热气流对彼此的热源(R1和R2)产生作用。若倾角Q 为正,R2产生的热气流作用到R1上,电桥失去平衡,输出跟Q 大小成正比的的正模式电压,若倾角Q 为负,R1产生的热气流作用到R2上,电桥失去平衡,输出跟Q 大小成正比的模拟

青岛理工现代检测技术与仪表部分答案

第1章 1、为什么说仪器仪表是信息的源头技术?答:钱学森院士对新技术革命的论述中说:“新技术革命的关键技术是信息技术。信息技术由测量技术、计算机技术、通讯技术三部分组成。测量技术则是关键和基础”。如果没有仪器仪表作为测量的工具,就不能获取生产、科学、环境、社会等领域中全方位的信息,进入信息时代将是不可能的。因此可以说,仪器技术是信息的源头技术。仪器工业是信息工业的重要组成部分。 2、非电量电测法有哪些优越性? 答:同非电的方法相比,电测法具有无可比拟的优越性: (1)、便于采用电子技术,用放大和衰减的办法灵活地改变测量仪器的灵敏度,从而大大扩展仪器的测量幅值范围(量程)。(2)、电子测量仪器具有极小的惯性,既能测量缓慢变化的量,也可测量快速变化的量,因此采用电测技术将具有很宽的测量频率范围(频带)。 (3)、把非电量变成电信号后,便于远距离传送和控制,这样就可实现远距离的自动测量。 (4)、把非电量转换为数字电信号,不仅能实现测量结果的数字显示,而且更重要的是能与计算机技术相结合,便于用计算机对测量数据进行处理,实现测量的微机化和智能化。 3、各类仪器仪表有哪些共性? 答:各类仪器仪表都是人类获取信息的手段和工具。尽管各种仪器仪表的型号、原理和用途不同,但都由三大必要的部分组成:信息获取部分、信息处理部分、信息显示部分。从“硬件”方面来看,如果把常见的各类仪器仪表“化整为零”地解剖开来,我们会发现它们内部组成模块大多是相同的。从“软件”方面来看,如果把各个模块“化零为整”地组装起来,我们会发现它们的整机原理、总体设计思想、主要的软件算法也是大体相近的。这就是说,常见的各类仪器仪表尽管用途、名称型号、性能各不相同,但它们有很多的共性,而且共性和个性相比,共性是主要的,它们共同的理论基础和技术基础实质就是“检测技术”。常见的各类仪器仪表只不过是作为其“共同基础”的“检测技术”与各个具体应用领域的“特殊要求”相结合的产物。 4、什么叫传感器?什么叫敏感器?二者有何异同? 答:“能把外界非电信息转换成电信号输出的器件或装置”或“能把非电量转换成电量的器件或装置”叫做传感器。能把被测非电量转换为传感器能够接受和转换的非电量(即可用非电量)的装置或器件,叫做敏感器。如果把传感器称为变换器,那么敏感器则可称作预变换器。敏感器与传感器虽然都是对被测非电量进行转换,但敏感器是把被测非电量转换为可用非电量,而不是象传感器那样把非电量转换成电量。 5、常见检测仪表有哪几种类型?画出其框图,简述其工作原理。 答:目前,国内常规(常用)的检测仪表与系统按照终端部分的不同,可分为以下三种类型:1、普通模拟式检测仪表 基本上由模拟传感器、模拟测量电路、和模拟显示器三部分组成,如题1-5图1所示。 2、普通数字式检测仪表 基本上由模拟传感器、模拟测量电路、和数字显示器三部分组成,如题1-5图2所示。 按照显示数字产生的方式,普通数字式检测仪表又可分为模数转换式和脉冲计数式两种类型。 3、微机化检测仪表 其简化框图题1-5图3所示。微机化检测仪表通常为多路数据采集系统,能巡回检测多个测量点或多种被测参数的静态量或动态量。每个测量对象都通过一路传感器和测量通道与微机相连,测量通道由模拟测量电路(又称信号调理电路)和数字测量电路(又称数据采集电路)组成。传感器将被测非电量转换成电量,测量通道对传感器信号进行信号调理和数据采集,转换成数字信号,送入微机进行必要的处理后,由显示器显示出来,并由记录器记录下来。在某些对生产过程进行监测的场合,如果被测参数超过规定的限度时,微机还将及时地起动报警器发出报警信号。

检测技术及海洋智能仪器实验

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 检测技术及海洋智能仪器实验是自动化专业本科生的一门重要专业必修实验课程。该课程与本科生的许多专业课(自动化仪表与过程控制、现场总线技术、海洋自动观测技术)有着较强的联系。检测技术及海洋智能仪器实验课是通过实验手段,使学生获得检测技术及海洋智能仪器的基本知识和基本技能,并运用所学理论来分析和解决实际问题,提高分析解决实际问题的能力和实际工作能力。培养学生实事求是的科学作风,严肃的科学态度,严谨的科学思维习惯,进而增强创新意识。 检测技术及海洋智能仪器实验分两个层次进行: (1)验证性实验。它主要是以单个传感器和基本测量电路为主。根据实验目的,实验电路,仪器设备和较详细的实验步骤,通过实验来验证传感器的有关理论,从而进一步巩固学生的基本知识和基本理论。 (2)综合性实验。学生根据给定的实验题目、内容和要求,自行设计实验电路,拟定出测试方案,搭建基本测量系统,最后达到设计要求。通过这个过程,培养学生综合运用所学知识解决实际问题的独立工作能力。 - 6 -

2.设计思路: 在内容安排上,除安排常用传感器实验外,还要把常用电子仪器的使用贯穿于每个 实验内容中。因为培养学生正确使用常用电子仪器是检测技术及海洋智能仪器实验教 学的基本要求。在实验所使用的传感器的选用方面,要适应现代科学技术发展的要求。 整个教学环节中,采用了由浅到深,由易到难的原则。在具体实施时,重点放在使用 方法和功能上。对内部结构和原理不去详细分析。实验教学基本要求: (1) 掌握常用电子仪器的正确使用 (2) 掌握基本传感器和测量电路的原理 (3) 掌握测量误差的基本分类,来源,误差处理方法 (4) 掌握测量系统的组成和初步设计 本课程的内容编排顺序为:(1)箔式应变片性能—应变电桥;(2)移相器及相敏检 波器实验;(3)热电式传感器—热电偶;(4)P-N结温度传感器;(5)热敏式温度传感 器测温实验;(6)差动螺管式电感传感器位移、振幅测量;(7)霍尔传感器;(8)电涡流 式传感器的静态标定;(9)扩散硅压力传感器;(10)电容式传感器特性;(11)光纤传感 器位移测量、转速测量;(12)光电传感器转速测量;(13)数据采集处理。 3.课程与其他课程的关系: 本课程是自动化专业的一门专业必修课,先修课程有模拟电子技术基础,后置课程有自动化仪表与过程控制、现场总线技术、海洋自动观测技术。 二、课程目标 学习和掌握常用电子仪器:示波器、稳压电源、信号发生器、万用表等的使用方法。 掌握检测技术的理论基础;掌握各种常用传感器(箔式应变片、电感传感器、电容 传感器、光电传感器、光纤传感器、热电偶、半导体温度传感器、热敏电阻温度传感器、磁电传感器、压电传感器、霍尔传感器)的结构、工作原理、技术性能、特点、 - 6 -

现代分析检测技术

现代分析检测技术课程 论文(报告、案例分析) 液态奶黑白膜包装重点卫生性能检测 商品学专业学生王伊萌学号1221251011 一、导语 液态奶黑白膜主要是以PE类树脂、黑白色母料为主要原料,并根据需要加入阻隔性树脂共挤而成的复合膜,其在使用过程中采用油墨表印工艺,因此由制膜过程及印刷过程引入的不溶物等有害成分在酸性、油脂性环境中极易迁移至液态奶中,进而危害消费者健康。所以,需及时采用蒸发残渣等测试设备监测包装接触材料的重点卫生性能。本文介绍了鲜牛奶黑白膜中高锰酸钾消耗量、蒸发残渣、重金属、脱色试验这四项重点卫生性能,并详细介绍了蒸发残渣仪的检测原理、试验步骤及应用,可为行业内包装材料蒸发残渣的测试提供参考。 二、检测标准 ·BB/T 0052-2009 《液态奶共挤包装膜、袋》 ·GB 9687-1988《食品包装用聚乙烯成型品卫生标准》 ·GB/T 5009.60-2003《食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生

标准的分析方法》 三、测试意义 液态奶黑白膜是采用LDPE、LLDPE为主要树脂原料,再加入黑、白色母料,采用共挤工艺吹制而成的复合膜,一般为三层或三层以上结构。液态奶黑白膜又分为阻隔类与非阻隔类,非阻隔类即不再添加任何具有较高阻隔性的树脂原料,而阻隔类的黑白膜会另外加入EVOH、PA等阻隔性树脂共挤成膜,高阻隔类的液态奶黑白膜在低温环境下的氧气透过率可达到2.0 cm3/(m2?24h?0.1MPa)。另外,为了获得良好柔韧性及热封口效果,有些种类的液态奶黑白膜会加入mLLDPE树脂。因此,鉴于PE类液态奶黑白膜可具有优异的阻隔性、热封性、 避光性以及柔韧性,是目前液态奶生产行业广为采用的一种包装材料。 液态奶黑白膜多采用表面印刷工艺,即利用专用耐水耐高温的表印油墨印刷在黑白膜包装外表面,因此油墨层是直接暴露在外部。鉴于液态奶黑白膜的制造工艺及印刷工艺,树脂原料及油墨极易出现有害的小分子物质或有机溶剂残留,而这些残留物质采用何种手段进行严格监控,则需要进行相关卫生化学性能指标的检测。BB/T 0052-2009 《液态奶共挤包装膜、袋》产品标准中规定了PE类液态奶黑白膜中相关卫生性能参考GB 9687-1988《食品包装用聚乙烯 成型品卫生标准》,即严格检测“蒸发残渣”、“高锰酸钾消耗量”、“重金属”、“脱色试验”这四项重点卫生性能指标。这些指标可准确反映包装材料中有机小分子成分或重金属等有害物质的含量,有效降低在制膜或印刷过程中因工艺参数控制不当或油墨成分使用不当而产生的有害物质,最大程度的减轻因包装材料引起的液态奶污染。 四、检测指标 液态奶黑白膜重点卫生性能指标均按照GB/T 5009.60-2003《食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法》中规定的相应检测方法,这四项指标在试验前需在特定的温度下在特殊的溶液中浸泡2 h,再按照不同的测试方法进行各指标的检测。 蒸发残渣:将试样分别经由不同溶液浸泡后,将浸泡液分别放置在水浴上蒸干,于100℃左右的环境下干燥2 h后,冷却称重。该指标即表示在不同浸泡液中的溶出量。不同浸泡液可分别模拟接触水、酸、酒、油不同性质食品的情况。 高锰酸钾消耗量:将浸泡后的试样,用高锰酸钾标准滴定溶液进行滴定,通过测定其高锰酸钾消耗量,再计算出可溶出有机物质的含量。该指标是表征包装材料中小分子有机物及制膜过程中高温分解的小分子有机物质的总含量。

现代检测技术作业

现代检测技术 学院: 专业: 姓名: 学号: 指导教师: 2014年12月30日

一现代检测技术的技术特点和系统的构成 1、现代检测技术特点 (1)测量过程软件控制 智能检测系统可以是新建自稳零放大,自动极性判断,自动量程切换,自动报警,过载保护,非线性补偿,多功能测试和自动巡回检测。由于有了计算机,上述过程可采用软件控制。测量过程的软件控制可以简化系统的硬件结构,缩小体积,降低功耗,提高检测系统的可靠性和自动化程度。 (2)智能化数据处理 智能化数据处理是智能检测系统最突出的特点。计算机可以方便、快捷地实现各种算法。因此,智能检测系统可用软件对测量结果进行及时、在线处理,提高测量精度。另一方面,智能检测系统可以对测量结果再加工,获得并提高更多更可靠的高质量信息。 智能检测系统中的计算机可以方便地用软件实现线性化处理、算术平均值处理、数据融合计算、快速的傅里叶变换(FFT)、相关分析等各种信息处理功能。(3)高度的灵活性 智能检测系统已以软件工作为核心,生产、修改、复制都比较容易,功能和性能指标更加方便。而传统的硬件检测系统,生产工艺复杂,参数分散性较大,每次更改都涉及到元器件和仪器结构的改变。 (4)实现多参数检测与信息融合 智能检测系统设备多个测量通道,可以有计算对多路测量通进行检测。在进行多参数检测的基础上,依据各路信息的相关特性,可以实现智能检测系统的多传感器信息融合,从而提高检测系统的准确性、可靠性和容错性。 (5)测量速度快 高速测量时智能检测系统追求的目标之一。所谓高速检测,是指从检测开始,经过信号放大、整流滤波、非线性补偿、A/D转换、数据处理和结果输出的全过程所需要的时间。目前,高速A/D转换的采样速度在2000MHz以上,32位PC机的时钟频率也在500MHz以上。随着电子技术的迅猛发展,高速显示、高速打印、高速绘图设备也日臻完善。这些都为智能检测系统的快速检测提供了条件。(6)智能化功能强 以计算机为信息处理核心的智能检测系统具有较强的智能功能,可以满足各类用户的需要。典型的智能功能有: 1)测量选择功能 智能检测系统能够实现量程转换、信号通道和采样方式的自动选择,使系统具有对被测量对象的最优化跟踪检测能力。 2)故障诊断功能 智能检测系统结构复杂,功能较多,系统本身的故障诊断尤为重要,系统可以根据检测通道的特性和计算机本身的自诊断能力,检查个单元故障,显示故障部位,故障原因和应采取的故障排除方法。 3)其他智能功能 智能检测系统还可以具备人机对话、自校准、打印、绘图、通信、专家知识查询和控制输出等智能功能。 2、系统的构成

相关主题
文本预览
相关文档 最新文档