当前位置:文档之家› 气相色谱测定蔬菜中甲基对硫磷的不确定度评定

气相色谱测定蔬菜中甲基对硫磷的不确定度评定

气相色谱测定蔬菜中甲基对硫磷的不确定度评定
气相色谱测定蔬菜中甲基对硫磷的不确定度评定

气相色谱测定蔬菜中甲基对硫磷的不确定度评定

摘要:目的探讨适用于气相色谱法测定蔬菜中甲基对硫磷农药残留量的不确定度评定的方法。方法从测定程序分析不确定度来源,并计算各不确定度分量及合成不确定度。结果被测样品蔬菜中甲基对硫磷农药残留量测定的测量不确定度主要来源于测量重复性,其它因素影响相对较小。通过选择合适的、可行的试验方案,规范操作可以有效减少不确定度,保证测量结果准确、可靠。结论提出的方法适用于蔬菜中甲基对硫磷农药残留量的不确定度评定。

关键词:气相色谱法;甲基对硫磷;不确定度;评定依据国际标准ISO/PIEC 17025《测试和校准实验室能力的通用要求》中5.4.6"测量不确定度的评估"条款规定:测试实验室应建立并实施测量不确定度评估程序。测量不确定度是表征合理赋予被测量之值的分散性,与测量结果相联系的参数[1-2]。测量结果的可用性很大程度取决于测量结果不确定度的大小。对蔬菜中甲基对硫磷农药残留量检验方法的测量不确定度研究迄今未见文献报道。作者根据国家标准

GB/T5009.20-2003和我国"测量不确定度评定与表示"的有关标准[1-4],对气相色谱法定量测定蔬菜中甲基对硫磷农药残留量的测量不确定度进行研究,找出影响不确定度的因素,

求出各不确定度分量对总测量不确定度的相对贡献,对不确定度进行评估,并对测量结果进行表述。为气相色谱法定量测定农产品中农药残留量的测量不确定度评定提供参考模型,对实验室的分析测试工作具有一定的实用价值。

1资料与方法

1.1方法及原理

1.1.1测量方法GB/T5009.20-2003,食品中有机磷农药残留量的测定[4]。

1.1.2原理试样经乙腈提取、氯化钠分层去水后,有机相经Carb/NH2固相萃取柱净化后,用丙酮定容,经GC/FPD (或GC-MS、GC/NPD)进行有机磷检测,根据保留时间和峰面积分别进行定性和定量。

1.2材料和仪器

1.2.1样品蔬菜(泥)(质控样,2013年9月12日测定)。

1.2.2甲基对硫磷标准液100 μg/mL的标准溶液(农业部环境保护科研监测所,编号为GSB05-2285-2008,不确定度为±0.17 μg/mL,2013年5月购买)。

1.2.3设备气相色谱仪GC7890A(安捷伦科技有限公司,编号为001-042-3);1/‰电子分析天平(Sartorius,编号为001-004-3);200 μL移液枪(Eppendorf North America,Inc,系统误差为±0.6 μL)。

2实验过程

2.1测定蔬菜(泥)(农残考核样)有机磷含量的步骤,见图1。

图1 测定蔬菜(泥)(农残考核样)有机磷含量流程图

2.2工作曲线制备用200 μL移液枪分别吸取100 μ

g/mL甲基对硫磷标准溶液8、16、24、32、6 μL用丙酮稀释到1.0 mL,上机测定,见表1。

2.3样品测定试样经乙腈提取、氯化钠分层去水后,有机相经Carb/NH2固相萃取柱净化后,定容到2.0 mL,经

GC/FPD进行甲基对硫磷检测,见表2。

3不确定度评定

3.1建立数学模型Cx=■(1)

其中:Cx--试样中甲基对硫磷的含量,mg/Kg;C0--测定液中甲基对硫磷浓度,μg/mL;m--样品取样量,g;V--试样定容体积,mL

3.2不确定度来源分析

3.2.1 A类不确定度来源(uArel)即由重复测定样品引起的。

3.2.2 B类不确定度来源

3.2.2.1样品称量引起的相对不确定度(umrel) 包括天平的允差、偏载误差、重复性误差引起的不确定度。

3.2.2.2样品定容体积引起的的相对不确定度(uvrel) 包括2 mL容量瓶允差、定容时的估读误差、校准与使用温度不同引起的不确定度。

3.2.2.3测定过程引起的相对不确定度(uxrel)包括工作曲线拟合引起相对不确定度uxrel-1,移液枪的相对不确定

度uxrel-2,标准溶液的相对不确定度uxrel-3,气相色谱仪的相对不确定度uxrel-4。

4不确定度分量的计算

4.1 A类不确定度评定同一操作人员在相同的条件下对同一试样进行6次检测,采用标准曲线法拟合甲基对硫磷含量测定结果分别为8.09 mg/Kg、7.88 mg/Kg、7.82 mg/Kg、7.90 mg/Kg、8.01 mg/Kg、7.86 mg/Kg,平均值为7.93 mg/Kg。样品重复测定的相对标准不确定度按贝赛尔公式计

算,RSD=0.011,p=6则

uArel= RSD/■=0.011/■=0.0045

4.2 B类不确定度评定

4.2.1样品称量引起的相对不确定度(umrel)查称量使用

的电子天平检定证书,其最大允许误差±0.010 g,偏载误差±0.010 g,重复性误差±0.015 g,取k=■,由于样品的称样量为4.832 g,所以由于样品称取的引起的相对标准不确定度umrel=■×■=0.0025

4.2.2样品定容体积引起的的相对不确定度(uvrel)[5]

4.2.2.1校准A级2 mL容量瓶允差±0.01 mL,取k=■,则uvrel-1=■×■=0.003;

4.2.2.2定容时的估读误差,估计为±0.01 mL,取k=■,则uvrel-2=■×■=0.003;

4.2.2.3温度由容量瓶校准温度与使用时温度不同引起

的不确定度uvrel-3在实验中测得水温Tt=23℃。

Δv=vt-v20=(α水-α玻)×V20×(Tt-T20)=(2.1×

10-4-1.5×10-5)×2×(23-20)=0.12×10-2(mL)。取k=■,则uvrel-3=Δ■=■=0.00035;

uvrel=■=■=0.0043;

4.2.3测定过程引起的相对不确定度(uxrel)

4.2.3.1工作曲线拟合引起相对不确定度uxrel-1[6-7] 甲基对硫磷含量x是工作曲线回归计算得出,由上述实验计算得出,回归方程y=ax+b(y为色谱峰面积,x为甲基对硫磷含量μg/mL),则x=(y-b)/a;本次实验的标准回归方程为:y= 108

5.5x+24.293,r=0.9999。按实验方法的要求,对每个浓度的标准溶液重复测定3次,求出其平均峰面积,则x的标准不确定度uxrel-1可按式(3)求得[8]:

uxrel-1=■■(3)

式中:sr=■;sxx=■x■-■■;式中a-工作曲线斜率,a=1085.5;p-样品测定液测量次数,p=6;n-标准曲线各点测量总次数,n=15;X-各标准溶液中甲基对硫磷含量的平均值,X=2.88 μg/mL;X0-样品测定溶液中甲基对硫磷含量平均值,X0=19.13 μg/mL,将各值代入式中得S=4.167902,Sxx=18.688则uxrel-1=0.0051。

4.2.3.2移液枪的相对不确定度uxrel-2 200 μL移液枪(±0.6 μL) 的不确定度为■=0.346(K=■),标准平均移取

体积为24 μL,则uxrel-2=■=0.014。

4.2.3.3标准溶液的相对不确定度uxrel-3[9-10] 由证书可知其不确定度±0.17 μg/mL,则uxrel-3=■=0.0017。

4.2.3.4气相色谱仪的相对不确定度uxrel-4 证书可知气相色谱仪的的定量重复性为3.0%,则uxrel-4=■=0.0122(K=■)。

综合以上结果则uxrel=■=0.0193

4.3 B类不确定度计算及结果urelB=■=0.0199

4.4合成标准不确定度计算及结果ucrel=■=0.020

5考核样中甲基对硫磷含量的扩展不确定度U(C)

考核样中甲基对硫磷的含量为C=7.93 mg/Kg。取包含因子k=2(95%置信概率),扩展不确定U(C)=2×7.93×0.020≈0.32 mg/Kg。

6测定结果表示

考核样中甲基对硫磷的含量表示为:Cx=C±U(C)=(7.93±0.32)mg/kg。扩展不确定U(C)=2×7.93×0.020≈

0.32mg/kg,包含因子k=2。

7结论

以气相色谱法定量测定蔬菜中甲基对硫磷农药残留量为例,讨论了测定蔬菜中甲基对硫磷农药残留量测量不确定度的主要来源及其各不确定度分量评定方法,分析了影响测量标准不确定度结果的各个因素,比较其对总测量不确定度

的相对贡献。由此可见,被测样品蔬菜中甲基对硫磷农药残留量测定的测量不确定度主要来源于测量重复性,其它的因素影响相对较小。通过选择合适的、可行的试验方案,规范操作就可以有效减少不确定度,保证测量结果的准确、可靠。该方法也可以应用于气相色谱法测定茶叶、蔬菜、水果、大米中其他农药残留量测量不确定度分析,还可以应用于高效液相色谱法测定防腐剂含量的不确定度评定。

参考文献:

[1]国家质量技术监督局.JJF1059-1999测量不确定度评定与表示[S].北京:中国计量出版社,1999.

[2]国家质量技术监督局计量司.测量不确定度评定与表示指南[M].北京:中国计量出版社, 2003,15-17.

[3]魏昊,乔东.化学分析中不确定度的评估指南[M].北京:中国计量出版社,2002:26-28.

[4]GB/T5009.20-2003,食品中有机磷农药残留量的测定[S].北京:中国计量出版社,2003:157-167.

[5]国家质量技术监督局.国家计量检定规程JJG196-2006.常用玻璃量器检定规程[S].北京: 中国计量出版社,2006:4-6.

[6]Ellison SLR, RossleinM. Quan tify ingU ncertainty in AnalyticalMeas??urement[S].2ndEd. UK, Eurachempcitac,2000:11.

[7]蒋永祥,叶丽.茶叶中多种有机磷农药残留量测定不确

定度的评定[J].分析实验室, 2006, 25(12): 54-57.

[8]S Lee,Y Park,W Yang et

al[J].Chromatogr,B,2008,865:33-39.

[9]卓先义,马栋,卜俊,等.气相色谱法测定海洛因含量的测量不确定度评定[J]. 法医学杂志, 2006,22(6):421-423.

[10]戴维杰.液相色谱法测定雪碧中苯甲酸的不确定度分析[J].职业与健康,2004,20(5):46-47.编辑/张燕

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

标准物质期间核查

1. 目的 规范标准物质及由标准物质配制而成的标准储备液的期间核查,对其在使用和保管过程中进行质量控制,保证标准物质和标准溶液的量值准确、可靠和可溯源性。 2. 范围 适用于对本中心使用的标准物质和由标准物质配制而成的标准储备液进行期间核查。 3. 职责 3.1 核查人员:负责严格按照本操作规程对标准物质和由标准物质配制而成的标准储备液进行期间核查,并做好记录。 3.2 管理人员:负责定期参与期间核查,并做好记录。 3.3 检测科室负责人:负责监督期间核查的进行。 4. 操作规程 4.1 操作前的检查 4.1.1 检查标准物质的包装是否完整、是否在有效期内、保存条件是否符合要求。 4.1.2 检查由标准物质配制而成的标准储备液是否在有效期内、保存条件是否符合要求、容器是否有损伤、溶液是否被污染等。 4.2 核查 4.2.1 从国家标准物质中心等单位购买的有证标准物质,在其有效期内按照要求保存。对于未开封的,可以免于核查;对于已开封的,应检查其包装是否完好无损、溶液是否澄清,若发现有任何异常现象,应立即停止使用该标准物质并

做好记录。 4.2.2 由标准物质配制而成的标准储备液的核查 4.2.2.1 用有证标准物质稀释并配制一条工作曲线,对一已知浓度的有证标准样品进行测试,记录结果1C 并与该标准样品的证书定值C 进行比较。 4.2.2.2 进行4.2.2.1步骤时,同时用需进行核查的标准储备液稀释并配制一条工作曲线,对该已知浓度的有证标准样品进行测试,记录结果2C 并与该标准样品的证书定值C 进行比较。 4.3 结果判定 4.3.1 1C 与C 相比较,若1C 在C 的不确定度范围内,则表示该测试操作过程正确无误,没有带来样品的损失或者污染;若1C 不在C 的不确定度范围内,则表示该测试操作过程中有样品损失或者带入了新的污染,应认真分析并查找原因,重新进行核查。只有在测试操作过程正确无误的情况下,比较2C 与C 的值才有意义。 4.3.2 2C 与C 相比较,若2C 在C 的不确定度范围内,则表示该储备液的示值与实值在允许的不确定度范围内,判定该储备液合格,可以继续使用;若2C 不在C 的不确定度范围内,则表示该储备液在配制、使用、储存过程中有损失或者带入了新的污染,应立即停止使用,并认真分析、查找原因,重新配制新的储备液。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

气相色谱仪不确定度评定分析-共8页

气相色谱仪检测限检定结果的CMC 评定 概述 气相色谱仪的检定根据JJG700—2019《气相色谱仪》检定规程进行。检测限(包括F1D 、FPD 、NPD 、ECD 检测器)和灵敏度(TCD 检测器)反映了检测器的敏感度,是仪器重要的计量指标。 检定依据:JJG700—2019(气相色谱仪检定规程》。 测量环境条件:温度(5~35)℃ ,相对湿度(20~85)%。 一、火焰离子化检测器( FID)检测线检定结果的不确定度评定 1、检定过程概 1.3 测量标准:正十六烷-异辛烷溶液,1mL /瓶,100ng/ L ,不确定度为 =3%,k=2。 微量进样器,10μL ,相对标准偏差为1%。 1.4 被测对象:气相色谱仪型号:GC7890F ;检测器名称:FID 。色谱工作站:T2019P 。 1.5 测量过程:检定时,选择适宜的色谱条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微量进样器准确量取1.0 μL 标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A ,按公式计算出检测限。并设定毛细柱分流比为1:10,故实际进样量为0.1uL 。 2 建立数字模型 FID 2NW D =A 式中: D FID ——FID 检测限,g/s ;N ——基线噪声,A ; W ——正十六烷进样量,g ;A ——正十六烷峰面积的平均值,A ·S 。 3 方差与灵敏系数 2222222()()()()()()()u D u A c A u N c N u W c W =++ 为评定方便,采用相对标准不确定度评定,则有: ()1,()1,()1 ()()()()(),(),()222() ()2rel rel rel rel rel c A c N c W u D u N u A u W u N u A u W N A W u D u D D ======== 其中: 4 各分量的相对标准不确定度的分析 4.1 正十六烷峰面积A 的相对标准不确定度评定u rel (A ) 峰面积A 的不确定度主要由人员操作的重复性、进样的重复性、色谱数据处理系统积分面积的重复性等因素引入,可以通过连续测量得到测量列,采用A 类方法进行评定。 选择适当的色谱仪条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微

如何区分参考标准、标准物质、参考数据、有证标准物质

如何区分参考标准、标准物质、参考数据、有证标准 参考标准:参考测量标准( referencemeasurement standard)简称参考标准(refe rence standard)在给定组织或给定地区内指定用于校准同类量工作测量标准的测量标准。 例如:实验室用的标准砝码就是一个参考标准。 标准物质:(reference material)缩写为RM,用于校准、对其他物质赋值或标称特性检查,具有一种或多种足够均匀和稳定特性的物质。 对于标准物质的理解注意以下几点: 1、标称特性的检查提供一个标称特性值及其不确定度。该不确定度不是测量不确定度。 2、未赋值的标准物质可用于监控测量精密度,只有具有赋值的标准物质可用于校准或监控测量正确度。 3、“标准物质”由包含量及标称特性的物质组成。 例:(1) 有具体量的标准物质: a.纯水,其动态粘性用于校准粘度计; b.没有给定原胆固醇物质量的浓度的人体血清,仅用作监控测量精密度。 (2) 有标称特性的标准物质: a.指明一种或多种指定颜色的色图; b.含有一种规定的核酸序列的DNA合成物; c.含有19-雄(甾)烯二酮的尿。 4.有时将标准物质与特制的装置组合使用。 例:(1)装在三相点容器中已知三相点的物质; (2)置于透射滤光器支架上已知光学密度的玻璃; (3)安放在显微镜载玻片上尺寸一致的小球。 5. 有些标准物质具有赋予的量值,这些量值计量溯源到制外单位的测量单位,如包含疫苗的物质计量溯源到由世界卫生组织规定的国际单位(IU)。 6. 在给定的测量中,标准物质或用于校准或用于质量保证。 7. 标准物质的技术规范应该包括其物质的溯源性,指出其来源和过程。 有证标准物质:(certified reference material)缩写为CRM ,附有权威机构出具的证书,其中说明使用有效程序获得具有相关不确定度和溯源性的一个或多个特性值的标准物质。

测量不确定度评定举例

测量不确定度评定举例 A.3.1 量块的校准 通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。 1).校准方法 标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度 L s 与长度差d 之和。即: L=L s +d 实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。 2)测量模型 长度差d 在考虑到影响量后为:d =L (1+?? )-L s (1+?s ?s ) 所以被校量的测量模型为: 此模型为非线性函数,可将此式按泰勒级数展开: L =ΛΛ+-++)(θαθαs s s s L d L 忽略高次项后得到近似的线性函数式: )(θαθα-++=s s s s L d L L () 式中:L —被校量块长度; L s —标准量块在20℃时的长度,由标准量块的校准证书给出; ? —被校量块的热膨胀系数; ?s —标准量块的热膨胀系数; ? —被校量块的温度与20℃参考温度的差值; ?s —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(),由此,数学模型可改写成: = ][θαδαθδs s s l d l +-+ () 测量模型中输入量??与?s 以及??与?不相关了。 特别要注意:在此式中的??和??是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。由于??和??是近似为零,所以被测量的估计值可以由下式得到: L =L s +d () 3).测量不确定度分析 根据测量模型, 即: l = ][θαδαθδs s s l d l +-+ 由于各输入量间不相关,所以合成标准不确定度的计算公式为: )()()()()()()(222222222222θδαδθαδδθαθ αu c u c u c u c d u c l u c l u s d s s c s +++++= () 式中灵敏系数为: 1)(11=+-=??= =θαδαθδs s s l f c c , 由此可见,灵敏系数c 3和c 4为零,也就是说明?s 及? 的不确定度对测量结果的不确定度没有影响。合成标准不确定度公式可写成: )()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= () 4).标准不确定度分量的评定 ○ 1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

气相色谱仪不确定度

气相色谱法测定水中甲苯的测量不确定度评定作业指导书 本作业指导书是对校准结果测量不确定度进行评定和表示的规范化程序。在实际运用中,应注意人员、标准、环境、方法等引入的标准不确定度分量与本作业指导书所采用的评定条件的区别,并按实际情况和本作业指导书规定的程序进行评定。 1 概述 1.1 测量依据 《水和废水监测分析方法》(第四版)挥发性有机物的测定《吹脱捕集 气相色谱法》 (P&T-GC-FID )(C ) 1.2 测量原理 通过吹脱捕集管用氮气将水中的VOCs 连续吹脱出来,通过气流带入并吸附于捕集阱中,待水样中的VOC 设备全部吹脱出来后,停止对水样的吹脱并迅速加热捕集管,将捕集管中的VOCs 热脱附出来,进入气相色谱仪。气相色谱仪采用在线冷柱头进样,使热脱附的VOCs 冷凝浓缩,然后快速加热进样。 1.3 使用仪器 1.3.1注射器:5mL 气密性注射器 1.3.2微量注射器:10μl 、100μl 1.3.3气相色谱仪:安捷伦6890N 2 数学模型 y=a+bx 式中:y ——峰面积(pA*s ); b ——校准曲线的斜率; x ——水样中甲苯的浓度(mg/L ); a ——校准曲线的截距。 水中甲苯含量C=x=b a -y 被测量C 的合成不确定度u (C )及其方差 u 2(C )=2 2 2 b u b a u a y u y ??? ??????? ????+?????????? ????+?? ?????? ??? ????)()()(C C C 其中u 2(y )=u 2(y 1)+u 2(y 2) 传播系数: b 1y =??C b 1a -=??C () 2b a y b --=??C 式中:u(C):水样中甲苯含量测定的合成不确定度 u(y 1):峰面积y 1的标准不确定度 u(y 2):由标准溶液y 2的标准不确定度引起峰面积不确定度 u (a):截距a 的标准不确定度 u (b):斜率b 的标准不确定度

-标准物质管理规定

-标准物质管理规定

————————————————————————————————作者:————————————————————————————————日期:

1 目的 对实验室所用标准物质〔包括参考标准、基准、传递标准或工作基准及标准物质(参考物质)〕进行全过程质量控制。 2 范围 适用于实验室所有用于检测工作中质量控制、分析仪器校正、分析方法比对及评价、技术仲裁和实验室能力测试的标准物质。 3 职责 3.1质控室负责标准物质采购的申请实施工作,负责标准物质的验收、保管、发放。 3.2质控室责标准物质的采购工作。 3.3各相关部门负责对所领用的标准物质的保管及正确使用。 4 工作程序 4.1 标准物质的申购 4.1.1 各部门于每季度初上报本部所需标准物质的名称、浓度范围、数量,交质控室汇总。质控室编制标准物质采购申请表,上报质控室主任审核,由总经理批准。 4.1.2标准物质采购申请表的内容包括:序号、标准物质名称、浓度范围、介质、数量、申购部门(人)、申购日期。 4.2 标准物质的采购 标准物质季度采购计划经批准后,由质控室负责购买,购买的标准物质必须是有证并在有效期内。 4.3 标准物质的验收、管理 4.3.1 标准物质验收时应检查:外观、保质期及证书,标准物质名称、编号、技术特性(均匀性、稳定性、标准值及不确定度等)是否符合使用要求,最后填写《标准物质登记表》,内容包括:序号、标准物质名称及编号、型号规格、标准值及不确定度、数量、研制单位、有效期、验收情况及日期。 4.3.2标准溶液(包括标准气体及其他标准物质)主要用作实验室绘制校准曲线及校正分析仪器。对于标准溶液,需填写《标准溶液领用登记表》,内容包括:标准溶液名称及编号、介质、标准值及相对不确定度、数量、有效期、领用人、领用日期。 4.3.3 标准样品,按每年技术校核计划发放考核标准样品,刮掉原样品安瓿瓶上的标准样

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

气相色谱仪的测量结果不确定度评定

气相色谱仪的测量结果不确定度评定 1、 概述 1.1测量依据:JJG700-2016《气相色谱仪检定规程》 1.2测量方法: 按JJJG700-2016 《气相色谱仪检定规程》,气相色谱仪用标准物质检定检测器的灵敏度或检测限。 2、数学模型 2.1气相色谱仪检测器分两类,(一)是浓度型检测器,包括热导检测器(TCD )和电子俘获检测器(ECD ),(二)是质量型检测器,包括火焰离子化检测器(FID )、火焰光度检测器(FPD )和氮磷检测器(NPD )。 2.2浓度度型检测器,其响应值与载气流速有关,灵敏度的计算公式为: W AFc S = (1) 式中: S ----灵敏度,mV ·mL/mg ; A ----标准物质中溶质的峰面积,mV ·s ; Fc ----载气流速,mL/min ; W ----标准物质的进样量,g 。 2.3质量型检测器,其响应值与载气流速无关。通常,检测限以(2)式计算: A NW D 2= (2) 式中: D -----检测限,g/s ; N -----基线躁声,A ; W ----标准物质的进样量,g ; A ----标准物质中溶质的峰面积,A ·s 。 由于FPD 对测定硫的响应机理不同,其响应值与标准物质浓度的平方成正比,则FPD 对测定硫的检测限以(3)式计算: ()2 4/12 )(2W h Wn N D s = ………………………(3) 式中:D -----检测限,g/s ; N -----基线躁声,mm ; h ----标准物质中硫的峰高,mm ; W 1/4---硫色谱峰高1/4处的峰宽,s ; Wn s ----标准物质中硫的进样量,g 。 3、不确定度的分析和评定 3.1根据传递由(1)式得出:222 2?? ? ??+?? ? ??+?? ? ??=?? ? ??W S Fc S A S S S W Fc A S ……………(4) 由 ( 2)式得 出: 2 2 2 2 ? ? ? ??+?? ? ??+??? ??=?? ? ??A S W S N S D S A W N D …………………(5) 由(3) 式得 出: 2 4/14 /122 222222??? ? ??+??? ? ?+??????????? ? ??+??? ??+??? ??=??? ??W S h S n Sn W S N S S S W h s s W N D (6)

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

气相色谱不确定度

气相色谱法测定水中有机氯的不确定度评估 1测定方法简述: 1.1 方法依据:GB/T7492—87 1.2 仪器条件和型号:HP5890Ⅱ型,柱子类型:1.5%OV —17+2%QF —1,柱温: 200℃ 气化室:230℃ ECD :280℃ 载气:2N :30mL/min 1.3 标准溶液:取0.1mg/mL ,1.00mL 稀释到100mL 。吸取1mL 定容到10mL 后再吸取2mL 定容到10mL ,此时应用液浓度为20ng/mL 。 1.4 分析步骤: 吸取样品2mL ,用重蒸石油醚(30-60)℃定容到10.00mL ,进样1μL ,采用单点校正法计算浓度,绝对保留时间定性,峰高定量。 2. 确定测定过程中测量不确定度的来源: 2.1 标准溶液引入的不确定度; 2.2 样品溶液稀释过程中容量器引入的不确定度; 2.3 测定样品过程中容量器引入的不确定度; 2.4 样品重复性测定引入的不确定度; 2.5 测定中仪器示值误差引入的不确定度 3. 建立数学模型 1223 m h v k C h v v ???= ?? [1] C — 试样中农药浓度 μg/L m — 标准农药 μg 1h — 样品的峰高 mm 1v — 样品定容体积;mL k — 稀释因子 2v — 样品进样体积 μL 3v — 取样量 mL 2h — 标准农药的峰高 mm 由于各含量相互独立,由式[1]得出测定结果合成相对标准不确定度的计算公 式: 12 22 2 2 (1)(2)(3)(4)(5)c r e l r e l r e l r e l r e l r e l u u u u u u ??=++++?? r e l u —分析过程中总的引入的相对不确定度 (1)rel u —标准溶液浓度引入的相对标准不确定度; (2)rel u —标准液稀释过程中容量器引入的相对标准不确定;

标准物质的申报

标准物质研制报告编写规则 1. 范围 本规范规定了国家标准物质研制报告的编写要求、内容和格式,适用于申报国家一级、二级标准物质定级评审的研制报告。 2. 引用文献 JJF1005-2005《标准物质常用术语及定义》 JJG1006-1994《一级标准物质技术规范》 JJF1071-2000 《国家计量校准规范编写规则》 使用本规范时,应注意使用上述引用文献的现行有效版本。 3. 术语和定义 3.1 标准物质(RM)Reference material (RM) 具有一种或多种足够均匀和很好地确定了的特性,用以校准测量装置、评价测量方法或给材料赋值的一种材料或物质。 3.2 有证标准物质(CRM)Certified reference material (CRM) 附有证书的标准物质,其一种或多种特性量值用建立了溯源性的程序确定,使之可溯源到准确复现的表示该特性值的测量单位,每一种鉴定的特性量值都附有给定置信水平的不确定度。 注:在我国,有证标准物质必须经过国家计量行政部门的审批、颁布。 3.3 定值Characterization 对与标准物质预期用途有关的一个或多个物理、化学、生物或工程技术等方面的特性量值的测定。 3.4 均匀性Homogeneity 与物质的一种或多种特性相关的具有相同结构或组成的状态。通过测量取自不同包装单元(如:瓶、包等)或取自同一包装单元的、特定大小的样品,测量结果落在规定不确定度范围内,则可认为标准物质对指定的特性量是均匀的。 3.5 稳定性Stability 在特定的时间范围和贮存条件下,标准物质的特性量值保持在规定范围内的能力。 3.6 溯源性Traceability 通过一条具有规定不确定度的不间断的比较链,使测量结果或测量标准的值能够与规定的参考标准,通常是与国家测量标准或国际测量标准联系起来的特性。 4. 报告编写要求 4.1一般要求 标准物质研制报告(以下简称“报告”)是描述标准物质研制的全过程,并评价结果的重要技术文件,在标准物质的定级评审时,作为技术依据提交给相关评审机构,因此,报告应提供标准物质研制过程和数据分析的充分信息。 研制者应将研制工作中采用的方法、技术路线和创造性工作体现在报告中,写出研制的特色。 报告应作为标准物质研究的重要技术档案保存。 4.1.1报告的内容应科学、完整、易读及数据准确。

相关主题
文本预览
相关文档 最新文档