DOI 10.1111j.1469-8986.2006.00490.x Comparison of time and frequency domain measures of RSA
- 格式:pdf
- 大小:221.36 KB
- 文档页数:13
Journal of Alloys and Compounds 492 (2010) 496–499Contents lists available at ScienceDirectJournal of Alloys andCompoundsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j a l l c omMixing of iron and molybdenum and photo-doping effect on Sr 2FeMoO 6Y.C.Hu a ,Q.Ji a ,J.J.Ge a ,R.B.Xie a ,Z.S.Jiang a ,X.S.Wu a ,∗,G.F.Cheng b ,Hairui Liu c ,Qingfeng Lu caNanjing National Laboratory of Microstructures,Key Lab of Solid State Microstructures,Department of Physics,Nanjing University,Hankou Road,Nanjing 210093,China bShanghai Institute of Ceramics,CAS,1295Dingxi Road,Shanghai 200050,China cDepartment of Physics,Henan Normal University,Xinxiang 453007,Henan,Chinaa r t i c l e i n f o Article history:Received 17August 2009Received in revised form 19November 2009Accepted 20November 2009Available online 26 November 2009Keywords:Magnetically ordered materials X-ray diffraction Crystal structurePositron spectroscopya b s t r a c tThe structure and photo-doping effect on Sr 2FeMoO 6are investigated using the X-ray powder diffraction and positrons annihilation technique,respectively.Anti-site defect is about 8.8%,can be estimated directly from the XRD pattern,which is well consistent with that of obtained from the XRD refinements.The integral intensity ratio of the reflection (101)and the reflections (200)and (112)may used to estimate the concentration of the anti-site defect.The positron annihilation lifetime in Sr 2FeMoO 6is sensitive to photo-doping.The average lifetime and the electron density n e vary with photo-doping.© 2009 Elsevier B.V. All rights reserved.1.IntroductionThe double perovskite compound Sr 2FeMoO 6(SFMO),with a high magnetic transition temperature (T c ≈410K)[1]and a remarkable magneto-resistance around room temperature,has become one of the most promising candidates in magnetic storage materials [2].SFMO is a typical ordered double perovskite structure A 2BB O 6,where A is the alkali-earth ion,B and B are the transition metals.As reported in [3,4],the crystal structure of SFMO is cubic or tetragonal,where the alternating FeO 6and MoO 6octahedral are arranged regularly in a rock salt superlattice with the voluminous Sr cation occupying the voids among the octahedral.The existence of anti-site defects (Mo on Fe site and vice versa)has great influence on the magnetic and transport properties of Sr 2FeMoO 6[5,6].Defects are important structural information in understanding the properties of material [7].Positron annihilation technique (PAT)can provide unique information about defects and has many advan-tages in structural characteristic.It is a nondestructive and effective method to detect the information of defects [8],whereas there are few studies about SFMO using this technique recently.Photo-doping,which remains the component and structure of material unchanged,is an effective way to improve the property [9,10].It has been extensively used in semiconductor material [11,12],but∗Corresponding author.Tel.:+862583594402;fax:+862583595535.E-mail address:xswu@ (X.S.Wu).seldom studies are performed on magnetic materials.In order to understand the photo-doping effect on defects in SFMO,we synthe-size the compounds using standard solid-state reaction.The crystal structure and photo-doping effect on defects have been studied by means of X-ray powder diffraction and the positrons annihilation technique,respectively.2.ExperimentalSample of Sr 2FeMoO 6is prepared by standard solid-state reaction.Stoichiomet-ric powders of SrCO 3,Fe 2O 3and MoO 3are mixed,ground and heated at 900◦C for 10h in air.The pre-reacted mixture is then finely ground,pressed into pellets and sintered at 1280◦C in a stream of 5%H 2/Ar gas for 15h with several intermediate grindings.The samples are heated and cooled at a rate of 5◦C/min under the same atmosphere.Structure of the sample is examined by X-ray powder diffraction (XRD)using a Rigaku D/max 2500diffractometer with CuK ␣radiation (50kV 250mA)and a graphite monochromator.The XRD pattern shows that the sample crystallizes in sin-gle phase.The XRD data are analyzed by means of the Rietveld refinement program GSAS [13].Sample is illuminated by halogen lamp (60mW/cm 2)with varying illumina-tion time from 0min to 40min in a space of 10min.Power of the lamp is 100W and distance between sample and lamp is 7.9cm.The sample temperature values reached at 28±1◦C after 40min irradiation.The heating rate of the samples is about 2±1◦C/10min through the illumination.We use pieces of the samples at the same time.After each illumination,the positron lifetime measurements are carried out using a conventional fast–fast coincidence ORTEC-100U system with a prompt time resolution of 228ps (FWHM,full width at half maximum)and 10Ci 22Na source in sandwich geometry with the pellets.The total count for spectrum is 1million with the counting rate of 1000cps.Lifetime spectrum is analyzed by the PATFIT computer program with necessary source corrections.The measurements of positron lifetime are all performed at room temperature (20±1◦C).0925-8388/$–see front matter © 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.jallcom.2009.11.148Y.C.Hu et al./Journal of Alloys and Compounds492 (2010) 496–499497Fig. 1.Observed(circles)and calculated(continuous line)XRD pattern for Sr2FeMoO6.The lowest curve is the difference between the observed and the calcu-lated XRD patterns.The vertical bars at the bottom indicate the Bragg reflection positions.(101)is the Bragg reflection at2Â≈19◦and(200)+(112)is that at 2Â≈32◦.3.Results and discussionFig.1presents the XRD pattern for Sr2FeMoO6.The excellent crystalline quality of sample used in this work can be appreci-ated.The XRD data can be used to refine the structure of the sample and abundance of information could be revealed due to precise counting statistics.Rietveld refinements of XRD diffraction pattern are carried out using the I4/m and the corresponding Wyck-off positions:Sr,4d(1/2,0,1/4);Fe1,2a(0,0,0);Fe2,2b(0,0,1/2); Mo1,2b(0,0,1/2);Mo2,2a(0,0,0);O1,8h(x,y,0);O2,4e(0,0,z). The refinement is performed according to the following group order[14,15]:(1)scale factor;background;zero point shift/sample displacement,transparency coefficient;(2)cell parameters;(3) peak shape;half width;asymmetry parameter and preferred ori-entation;(4)atom position parameter;(5)site occupancies;(6) overall thermal parameters;(7)isotropic thermal parameters.The Gaussian function is considered to refine the profile.No absorp-tion correction is taken into account.The wavelengths of CuK␣1, CuK␣2and the intensity ratio arefixed as1.5406A,1.5444A,and 0.497A,respectively.Full occupancy at every site in the unit cell is assumed during the refinements,i.e.the occupancies of Fe and Mo at2a and2b in total are1,respectively.The preferred orien-tations are very small and the temperature factors B Sr,B Fe1,B Fe2,B Mo1,B Mo2,B O1,and B O2are0.01304Å2,0.00611Å2,0.00611Å2,0.00392Å2,0.00392Å2,0.02301Å2,and0.01271Å2,respectively. The refinement process is smooth and leads to good quality fac-tors Rwp=10.00%and Rp=7.26%.All reflections can be indexed and a=b=5.58235(1)Å,c=7.87965(4)Å.The occupancy of Fe on Mo site (which is the occupancy of Fe2,equivalent in value to that of Mo on Fe site)is8.8%,which means the order concentrationÁis82.4% due toÁ=1−2x,where x is fraction of Fe on Mo site.Superstructure reflection(101)at2Â≈19◦can be seen clearly,which may indicate the existence of cation order-ing between Fe/Mo.Fig.2is the sketch of the unit cell of Sr2FeMoO6,in which Fe and Mo are completely ordered.Each unit cell is composed of10ions and the coordinates ofthe Fig.2.The unit cell of Sr2FeMoO6,in which Fe and Mo is completely ordered. ions are as following:Sr(1/2,1/2,1/4),(1/2,1/2,3/4),Fe(0,0,1/2), Mo(0,0,0),and O(1/2,0,0),(0,1/2,0),(0,0,1/4),(0,0,3/4),(1/2,0,1/2), (0,1/2,1/2).Based on the structure factor formula F(h k l)= nj=1f j e2 i(hx j+ky j+lz j),we can calculate the F(h k l)of Sr2FeMoO6as:F(h k l)=f Sre2 i(h/2+k/2+l/4)+e2 i(h/2+k/2+(3/4)l)+f Oe2 i(h/2)+e2 i(k/2)+e2 i(l/2)+e2 i(3/4)l+e2 i(h/2+l/2)+e2 i(k/2+l/2)+f Fe e2 i(l/2)+f Mo e2 i0when(h k l)=(101),F(101)=f Sr(e(3/2) i+e(5/2) i)+f O(e i+e0i+e(1/2) i+e(3/2) i+e2 i+e i)+f Mo−f Fe =f Mo−f FeSo we can obtain:I101∝P101|F(101)|2=P101|f Mo−f Fe|2,whereP101=(1+cos22Â)/(4sin2ÂcosÂ)is the Lorentz polarization fac-tor.The reflection of(101)is indeed observed at2Â≈19◦.Infact,as reported in Ref.[16],there is a fraction of Mo atoms onthe B site,equivalent in value to that of Fe atoms on the B site,which is defined as the anti-site defect.Suppose there are x Moions on Fe sites in the unit cell.The F(101)can be modified as:F(101)=(1−x)f Mo+xf Fe−(1−x)f Fe−xf Mo=(1−2x)f Mo−(1−2x)f Fe=(1−2x)(f Mo−f Fe)Four interesting results can be seen from above consequences.Firstly,the intensity of(101)reflection decreases with the increaseof the anti-site defect.Secondly,the integral intensity ratio betweenthe reflection peak of about2Â≈19◦and the reflection peak ofabout2Â≈32◦,I19◦/I32◦,which is used to indicate the order of Fe/Mo[17],can be interpreted as following:I32◦=I200+I112I200∝P200F2002,I112∝P112F1122,Thus,I32◦∝P200F2002+P112F1122Due to F(200)=(f Fe+f Mo)+2(f Sr+3f O),F(112)=(f Fe+f Mo)−2(f Sr+3f O).So I32◦∝P200|(f Fe+f Mo)+2(f Sr+3f O)|2+P112|(f Fe+f Mo)−2(f Sr+3f O)|2,which has no relation to Fe/Mo order.I19◦/I32◦can498Y.C.Hu et al./Journal of Alloys and Compounds 492 (2010) 496–499indicate the Fe/Mo order concentration as I 19◦is induced by Fe/Mo order.The larger I 19◦/I 32◦,the higher order of Fe/Mo.Thirdly,we define R is the integral intensity ratio of I 19◦/I 32◦for ideal sample without anti-site defect and R e as that for our sample which is prepared by standard solid-state reaction.R =I 19◦I 32◦∝P 101 F (101)2P 200F 2002+P112F1122∝P 101 f Mo −f Fe2P 200 (f Fe +f Mo )+2(f Sr +3f O ) 2+P 112 (f Fe +f Mo )−2(f Sr +f O )2When consider the fraction of anti-site defect x ,R e ∝(1−2x )2P 101 f Mo −f Fe2P 200(f Fe +f Mo )+2(f Sr +3f O ) 2+P 112(f Fe +f Mo )−2(f Sr +f O )2,soR e /R =1−2x .Due to Á=1−2x ,thus Á=R e /R .R e =I 19◦/I 32◦=2.56%from our experiment and we cancalculate R =3.76%[18,19]as sin Â(101)/ =0.11and sin Â(200)/ ≈sin Â(112)/ =0.18.ThusR e /R =82.5%,which is also similar with the order concentration Áfrom Rietveldrefinement.So we think Á=R e /R is a convenient method to calculate the order concentration approximately.Fourthly,based on the third result,we can define the disorder concentration as:=⎧⎨⎩2x,0<x ≤12(1−x )+(1−x ),12≤x <1.When x =1/2,F (101)=0, =100%.This means that the peak at 19◦will disappear as Fe/Mo complete disorder.When x =0or 1,the Fe/Mo is perfect ordered.Analysis on the positron lifetime spectra usually tells us three meaningful components of 1, 2and 3in the ratio I 1+I 2+I 3=100%.The second lifetime component 2with the typ-ical value of 278–280ps and a relative intensity of 1.5–2%,is due to the partial trapping of positrons at residual extrinsic vacancy-type defects. 2suggests that photo-doping has little effect on vacancy-type defect,according to our experiments [20],we here do not consider for further discussion.Fig.3(a)left shows the short lifetime component 1against different illumination time in the Sr 2FeMoO 6.The short lifetime component 1,having a value of 180–200ps,is due to the free annihilation of positrons.Anti-site defect is not open volume defect and contributes to 1.Electrons in the sample are activated by photo-doping and the concentration of electrons at the site of free annihilation increases,which improves the annihilation rate 1. 1decreases because of 1=1/ 1.The increase of 1is due to the decrease of the electron concentration at the site of free annihilation when t ≥30min.The longest lifetime component 3against different illumina-tion time in SFMO is shown in Fig.3(a)right.The longest component 3,with the typical value >0.5ns,results from positronium formed and annihilated through the ‘pick-off’process.The three main mod-els that describe the positronium formation in condensed matter are the Ore model (OM)[21],the spur model (SM)[22]and the free volume model (FVM)[23].Our work can be better explained according to FVM.Illumination may make electrons transit into the free volume and improve the annihilation rate 3. 3decreases because of 3=1/ 3. 3continually decreases because more elec-trons might locate the free volume.This is similar with Ref.[24],which suggests that two or more electrons can locate one vacancy.The concentration of electron at the free volume is saturated when t =30min due to Coulomb compel potential betweenelectrons.Fig.3.Positron lifetime parameters (a)left 1,right 3;(b)left I 1,right I 3;and (c)left AV ,right n e against different illumination time in the Sr 2FeMoO 6.The solid lines are guides for the eyes.Fig.3(b)shows I 1(left)and I 3(right)against different illu-mination time in the Sr 2FeMoO 6.I 1is found first to increase (0min ≤t ≤30min)and then decrease (t >30min)with a relative intensity of 85–88%,which is the main part of the positron lifetime spectra.This can be explained in light of the following scenario:electrons at the site of free annihilation is easier to active by illu-mination than at the free volume.When t =30min,electrons at the site of free annihilation is completely activated.When t >30min,electrons at the free volume is continually activated but at the site of free annihilation has already saturated,thus the intensity of 1decreases.Fig. 4.Observed (circles)and calculated (continuous line)XRD pattern for Sr 2FeMoO 6after 30min illumination,which is the representative XRD pattern for illuminated samples.The lowest curve is the difference between the observed and the calculated XRD patterns.The vertical bars at the bottom indicate the Bragg reflection positions.Y.C.Hu et al./Journal of Alloys and Compounds 492 (2010) 496–499499Table 1Unit cell parameters for Sr 2FeMoO 6after irradiation obtained from Rietveld refinement of XRD data.0min10min 20min 30min 40mina 5.58235(1) 5.58246(9) 5.58236(5) 5.58250(5) 5.58261(9)c7.87965(4)7.87968(8)7.87982(4)7.87985(6)7.87990(6)v245.55084(2)245.56228(3)245.55737(1)245.57068(5)245.58227(3)Rwp (%)10.0010.4110.289.9210.12Rp (%)7.267.596.866.767.41We have calculated the average positron lifetime AV ,defined as AV =I i i ,where I i is the relative intensity of the i th lifetime com-ponent. AV is better to describe the mean size of the defects in the samples.As shown in Fig.3(c)left, AV of the photo-doped is smaller than that of photo-free.According to Navarro et al.[25],Sr 2FeMoO 6may be unstable when heated,and that may have important oxida-tion effects if exposure it to air for several days.We measured the structure of the samples after PALS measurements.Fig.4shows the XRD pattern for Sr 2FeMoO 6after 30min illumination,which is the representative XRD pattern for illuminated samples.There is no trace of SrMoO 4is detected,due to that 40min might be a very short time for oxidation procedure.Structure parameters after irra-diation obtained from Rietveld refinement are shown in Table 1.The increase of unit cell makes the size of defects small.This might be important reason for decrease of average lifetime.Ions may absorb photons and occupy part of defects,thus also reduce the mean size of defects.We calculated the electron density n e ,defined asn e =1/(¯ r 20c ),where c is the speed of light and r 0is classical elec-tron radius.The variation of n e against illumination time is shown in Fig.3(c)right.The minimum value of AV suggests the maximum of electrons density when t =30min.4.ConclusionTo investigate the structure and photo-doping effect on defect in SFMO,we performed X-ray powder diffraction and the positrons annihilation technique.The result of X-ray powder diffraction sug-gests that the superstructure reflection (101)appearing due to the Fe/Mo order on the B/B site can index the concentration of anti-defect.Positron lifetime measurements after illumination suggest that the positron annihilation lifetime is sensitive to photo-doping.The minimum of defects size and the maximum of electrons den-sity when t =30min indicate that photo-doping may be an effective way to improve the property of the material.AcknowledgementsThis work is supported by NNSFC (10774065,10523001)and NKPBRC (2006CB921802,2010CB923404).Professor QFL thanks for the financial support from Henan Education foundation (No.2007140008).References[1]K.-I.Kobayashi,T.Kimura,H.Sawada,K.Terakura,Y.Tokura,Nature 395(1998)677.[2]A.Gary,Prinz,J.Magn.Magn.Mater.200(1999)57.[3]F.K.Patterson,C.W.Moeller,R.Ward,Inorg.Chem.2(1963)196.[4]F.S.Galasso,F.C.Douglas,R.J.Kasper,J.Chem.Phys.44(1966)1672.[5]D.Stoeffler,S.Colis,Mater.Sci.Eng.B 126(2006)133.[6]M.F.LÜ,J.P.Wang,J.F.Liu,W.Song,X.F.Hao,D.F.Zhou,X.J.Liu,Z.J.Wu,J.Meng,J.Alloy Compd.428(2007)214.[7]Z.Bajnok,Zs.Simon,Nucl.Phys.B 802(2008)307.[8]X.J.Hu,J.S.Ye,H.J.Liu,S.Mariazzi,R.S.Brusa,Thin Solid Films 516(2008)1699.[9]J.H.Hao,W.D.Si,X.X.Xi,Appl.Phys.Lett.76(2000)3100.[10]J.H.Hao,X.T.Zeng,H.K.Wong,J.Appl.Phys.79(1996)1810.[11]M.Idrish Miah,Mater.Chem.Phys.111(2008)249.[12]O.V.Prezhdo,Chem.Phys.Lett.460(2008)1.[13]B.H.Toby,J.Appl.Crystallogr.34(2001)210.[14]X.S.Wu,W.M.Chen,X.Jin,S.S.Jiang,Physica C 273(1996)99–106.[15]X.S.Wu,S.S.Jiang,N.Xu,F.M.Pan,X.R.Huang,W.Ji,Z.Q.Mao,G.J.Xu,Y.H.Zhang,Physica C 266(1996)296–302.[16]M.T.Anderson,K.B.Greenwood,G.A.Taylor,K.R.Poppelmeier,Prog.Solid StateChem.22(1993)197.[17]Ll.Balcells,J.Navarro,M.Bibes,A.Roig,B.Martínez,J.Fontcuberta,Appl.Phys.Lett.78(2001)781.[18]/xray/comp/scatfac.htm .[19]A.Guinier,X-ray Diffraction,W.H.Freeman and Company,San Francisco,1963.[20]Y.C.Hu,P.F.Wang,B.Lv,Q.Ji,X.S.Wu,Q.F.Lu,J.Appl.Phys.105(2009)07D726.[21]A.Ore,Univ.Bergen Arbok,Naturvet Rekke,1949,p.9.[22]O.E.Mogensen,J.Chem.Phys.60(1974)998.[23]W.Brandt,S.Berko,W.W.Walker,Phys.Rev.120(1960)1289.[24]P.Hautojarvt,Positrons in Solid,Springer-Verlag,Berlin,Heidelberg/New York,1979.[25]J.Navarro,C.Frontera,D.Rubi,N.Mestres,J.Fontcuberta,Mater.Res.Bull.38(2003)1477–1486.。
第40卷第1期声学技术Vol.40, No.1引用格式:张杰, 莫润阳. 超声相控阵全聚焦成像算法比较分析[J]. 声学技术, 2021, 40(1): 71-76. [ZHANG Jie, MO Runyang. Comparative analysis of total focusing method in ultrasonic array imaging algorithms[J]. Technical Acoustics, 2021, 40(1): 71-76.] DOI: 10.16300/ki.1000-3630. 2021.01.011超声相控阵全聚焦成像算法比较分析张杰,莫润阳(陕西师范大学超声学重点实验室,陕西西安710062)摘要:先进的成像算法推动了超声相控阵技术的发展,全聚焦方法(Total Focusing Method, TFM)是一种基于全矩阵捕获的虚拟聚焦后处理及缺陷图像重构算法。
文章基于一维线阵相控阵纵波探头全矩阵数据模式,利用Matlab软件结合Field II自带开源函数包编写了算法程序,比较了TFM和1/2矩阵方法成像效果并对缺陷分辨率影响因素进行分析,最后用标准试块对算法进行实验验证。
仿真结果表明,TFM和1/2矩阵方法都能用于缺陷重构且效果无明显差异,激励脉冲的宽度和频率对图像分辨率影响较大;实验表明,1/2矩阵的成像方法虽可有效降低计算数据量,但同时也丢失了检测区边缘处缺陷的部分信息,因而成像效果较TFM稍差。
关键词:超声相控阵;全矩阵捕获;全聚焦算法;1/2矩阵方法中图分类号:O426 文献标志码:A 文章编号:1000-3630(2021)-01-0071-06Comparative analysis of total focusing method in ultrasonicarray imaging algorithmsZHANG Jie, MO Runyang(Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710062, Shaanxi, China) Abstract: Advanced imaging algorithms promote the development of ultrasonic phased array technology. Total focusing method (TFM) is a virtual focusing post processing and defect image reconstruction algorithm based on full matrix capture. In this paper, based on the full matrix data mode of one-dimensional linear phased array longitudinal wave probe, the algorithm is programmed by using Matlab software combined with the open source function package of Field II. The imaging effects of TFM and 1/2 matrix method are compared, and the influencing factors of defect resolution are analyzed. Finally, the algorithm is verified experimentally with the standard test block. The simulation results show that both TFM and 1/2 matrix method can be used for defect reconstruction without significant difference in effect, and the width and frequency of the excitation pulse have great influence on the image resolution. Experimental results show that the imaging method of 1/2 matrix can effectively reduce the amount of calculated data, but it also loses part of the defect information at the edge of the detection area, and its imaging effect is slightly worse than that of TFM.Key words: ultrasonic phased array; full matrix capture (FMC); total focusing method (TFM); 1/2 matrix technique0 引言全聚焦方法(Total Focusing Method, TFM)是一种基于全矩阵捕获(Full Matrix Capture, FMC)数据进行图像重建的超声阵列后处理技术,由英国Bristol大学Holmes等[1-2]于2005年首次提出。
Advances in Clinical Medicine 临床医学进展, 2021, 11(4), 1889-1894Published Online April 2021 in Hans. /journal/acmhttps:///10.12677/acm.2021.114272体外膈肌起搏对呼吸机相关膈肌功能障碍的有效性研究王晓红1*,单亮1,徐祥美2,张超凡1,刘鑫1,李连弟11青岛大学附属医院重症医学科,山东青岛2青岛大学附属医院肝病中心,山东青岛收稿日期:2021年3月22日;录用日期:2021年4月20日;发布日期:2021年4月27日摘要目的:呼吸机相关膈肌功能障碍在临床应用呼吸机患者中普遍存在,与ICU患者的脱机拔管及病死率密切相关,本研究通过对全麻术后转入ICU继续应用呼吸机患者应用体外膈肌起搏器刺激膈神经来间断锻炼膈肌功能,通过超声、呼吸肌力学指标来评估对膈肌功能的影响。
方法:研究对象为全麻术后转入ICU 继续呼吸机治疗的患者,试验组间断应用体外膈肌起搏器,对照组不予膈神经刺激,在0 h、5 h、10 h、15 h、20 h分别在PSV模式下测量膈肌增厚率、最大吸气负压来评估膈肌功能。
结果:t0时对照组和试验组的膈肌增厚率:(15.47 ± 0.67)%、(15.48 ± 0.44)%和最大吸气负压:(−4.29 ± 0.61) cm H2O、(−4.30 ± 0.52) cm H2O,t检验,差异无统计学意义;在5 h、10 h、15 h、20 h时试验组TFdi依次为:(17.59 ±0.50)%、(22.98 ± 0.83)%、(24.95 ± 0.63)%、(28.28 ± 0.58)%;对照组为:(17.36 ± 0.64)%、(22.55± 0.92)%、(24.69 ± 0.94)%、(28.04 ± 0.61)%;两组间进行独立样本t检验,差异有明显的统计学意义(P < 0.05)。
普罗雌烯阴道胶丸联合电刺激生物反馈疗法在盆底功能障碍患者中的应用张霞① 方岚① 【摘要】 目的:探讨普罗雌烯阴道胶丸联合电刺激生物反馈疗法在盆底功能障碍(PFD)患者中的疗效。
方法:选择无锡市第二中医医院2022年2月—2023年1月收治的100例PFD患者为研究对象,采取随机数字表法分为观察组(50例)与对照组(50例)。
对照组给予电刺激生物反馈疗法,观察组给予普罗雌烯阴道胶丸联合电刺激生物反馈疗法,两组均治疗3个月。
治疗前及治疗3个月后,通过生物刺激反馈仪测定两组Ⅰ、Ⅱ类肌纤维肌力、肌纤维疲劳度及盆底肌电位,通过盆底功能障碍问卷(PFDI-20)评估患者盆底功能障碍程度;记录两组不良反应。
结果:治疗后,两组Ⅰ、Ⅱ类肌纤维肌力明显均优于治疗前,且观察组Ⅰ、Ⅱ类肌纤维肌力均明显优于对照组,差异均有统计学意义(P<0.05)。
治疗后,两组肌纤维疲劳度、PFDI-20评分均优于治疗前,且观察组均优于对照组,差异均有统计学意义(P<0.05);两组盆底肌电位均高于治疗前,且观察组高于对照组,差异均有统计学意义(P<0.05)。
两组不良反应总发生率比较,差异无统计学意义(P>0.05)。
结论:普罗雌烯阴道胶丸联合电刺激生物反馈疗法可有效提高Ⅰ、Ⅱ类肌纤维肌力、盆底肌电位,改善肌纤维疲劳度及盆底功能障碍,且不良反应发生较少。
【关键词】 盆底功能障碍 电刺激生物反馈疗法 普罗雌烯阴道胶丸 肌纤维肌力 Application of Promestriene Vaginal Capsules Combined with Electrical Stimulation Biofeedback Therapy in Patients with Pelvic Floor Dysfunction/ZHANG Xia, FANG Lan. //Medical Innovation of China, 2024, 21(05): 148-152 [Abstract] Objective: To investigate the efficacy of Promestriene Vaginal Capsules combined with electrical stimulation biofeedback therapy in patients with pelvic floor dysfunction (PFD). Method: A total of 100 patients with PFD admitted to Wuxi No.2 Chinese Medicine Hospital from February 2022 to January 2023 were selected as research objects, and were divided into observation group (50 cases) and control group (50 cases) by random number table method. The control group was given electrical stimulation biofeedback therapy, and the observation group was given Promestriene Vaginal Capsules combined with electrical stimulation biofeedback therapy, both groups were treated for 3 months. Before and 3 months after treatment, the muscle fibers muscle strength, muscle fiber fatigue and pelvic floor muscle potential of class Ⅰ and Ⅱ of the two groups were measured by the pelvic floor rehabilitation treatment instrument; the pelvic floor dysfunction degree of the patients was assessed by the pelvic floor distress inventory-short form 20 (PFDI-20); the adverse reactions of the two groups were recorded. Result: After treatment, the muscle fibers muscle strength of class Ⅰ and Ⅱ in the two groups were significantly better than those before treatment, and the muscle fibers muscle strength of class Ⅰ and Ⅱ in the observation group were significantly better than those in the control group, the differences were statistically significant (P<0.05). After treatment, muscle fiber fatigue and PFDI-20 score in two groups were better than those before treatment, and those in the observation group were better than those in control group, the differences were statistically significant (P<0.05); pelvic floor muscle potential in two groups were higher than those before treatment, and that in the observation group was higher than that in the control group, the differences were statistically significant (P<0.05). There was no significant difference in the total incidence of adverse reactions between the two groups (P>0.05). Conclusion: Promestriene Vaginal Capsules combined with electrical stimulation biofeedback therapy can effectively improve the muscle fibers muscle strength of class Ⅰ and Ⅱ, pelvic floor muscle potential, improve muscle fiber fatigue and pelvic floor dysfunction, and less adverse reactions.①无锡市第二中医医院妇产科 江苏 无锡 214000通信作者:张霞- 148 - 盆底功能障碍(PFD)是由盆底支持结构缺陷、损伤及功能障碍导致的一组疾病,在妇女尤其是有分娩经历的妇女中发生率较高[1]。
2016年2月份统计已经被踢出EI的中文期刊:1009-6264 材料热处理学报1006-3021 地球学报1005-0388 电波科学学报1001-3555 分子催化1673-0224 粉末冶金材料科学与工程1672-3813 复杂系统与复杂性科学1001-9731 功能材料1006-2793 固体火箭技术1005-0086 光电子-激光1001-6929 环境科学研究0253-2417 林业化学与工业1000-0925 内燃机工程1001-4322 强激光与粒子束1000-985X 人工晶体学报1000-1441 石油物探1672-1926 天然气地球科学1004-0277 稀土1673-9078 现代食品科技1009-6582 现代隧道技术1002-0861 烟草科技1671-8879 长安大学学报(自然科学版)1672-7126 真空科学与技术学报1003-0174 中国粮油学报1004-5708 中国烟草学报1004-5341 China Welding (English Edition)1022-4653 Chinese Journal of Electronics1934-6344 International Journal of Agricultural and Biological Engineering 1672-5220 Journal of Donghua University (English Edition)1005-9113 Journal of Harbin Institute of Technology (New Series)1869-1951 Journal of Zhejiang University: Science C1674-4926 Journal of Semiconductors。
·临床研究·传统的右室起搏曾是治疗缓慢型心律失常的标准方法,但其使心室正常的电激动顺序发生改变,可导致心室的电-机械活动不同步,引起心房纤颤,加重心室重构,心功能恶化,增加心力衰竭死亡和住院风险[1]。
右室流出道起搏虽然起搏位点接近于希氏束,更接近心脏正常的电激动顺序,但右室电活动主要通过心肌传导激活[2],传导速度远慢于希氏-浦肯野系统,因此不能维持左室良好的同步性。
2017年,Huang等[3]实时三维超声心动图对比评价左束支区域起搏与右室流出道起搏术后左室整体收缩功能及同步性张丽娟邓晓奇王淑珍严霜霜徐敏刘春霞谭焜月熊峰摘要目的应用实时三维超声心动图(RT-3DE)技术对比分析左束支区域起搏(LBBP)与右室流出道起搏(RVOP)术后左室整体收缩功能及同步性。
方法收集我院成功植入永久起搏器的患者47例,根据起搏部位不同分为LBBP患者25例(LBBP组)和RVOP患者22例(RVOP组)。
应用RT-3DE获取两组患者术后1个月左室整体收缩功能参数即左室射血分数(LVEF)、左室每搏量(LVSV)、左室舒张末期容积(LVEDV)及收缩末期容积(LVESV),以及左室收缩同步性参数即左室达最小收缩容积时间的标准差(Tmsv-SD)、最大时间差(Tmsv-Dif)及经心率校正的标准差及时间差(Tmsv-SD%、Tmsv-Dif%),比较两组上述各参数差异。
结果两组LVEF、LVSV、LVEDV、LVESV比较差异均无统计学意义;LBBP组左室16节段、12节段及6节段Tmsv-SD、Tmsv-Dif、Tmsv-SD%、Tmsv-Dif%均较RVOP组小,差异均有统计学意义(均P<0.05)。
结论RT-3DE能定量评价LBBP患者和RVOP患者左室收缩同步性,且LBBP患者术后左室收缩同步性优于RVOP。
关键词超声心动描记术,三维;左束支区域起搏;右室流出道起搏;同步性[中图法分类号]R540.45;R541[文献标识码]AAssessment of left ventricular global systolic function and synchrony in patients with left bundle branch area pacing and right ventricular outflow tract pacing byreal-time three-dimensional echocardiographyZHANG Lijuan,DENG Xiaoqi,WANG Shuzhen,YAN Shuangshuang,XU Min,LIU Chunxia,TAN Kunyue,XIONG Feng Department of Cardiology,the Third People’s Hospital of Chengdu,Chengdu610031,ChinaABSTRACT Objective To compare and analyze the left ventricular global systolic function and synchrony in patients with left bundle branch area pacing(LBBP)and right ventricular outflow tract pacing(RVOP)by real-time three-dimensional echocardiography(RT-3DE).Methods Twenty-five patients with LBBP(LBBP group)and22patients with RVOP(RVOP group)were enrolled in the study.The global systolic function parameters of the left ventricle,including left ventricular ejection fraction(LVEF),left ventricular stroke volume(LVSV),left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV)and systolic synchronic parameters(Tmsv-SD,Tmsv-Dif,Tmsv-SD%,Tmsv-Dif%)were obtained by RT-3DE.The differences of above parameters were compared between two groups.Results There were no significant differences in LVEF,LVSV,LVEDV and LVESV between the LBBP group and RVOP group.Tmsv-SD,Tmsv-Dif,Tmsv-SD%,Tmsv-Dif% of16,12,6segments of left ventricle in LBBP group were lower than those in RVOP group,there were statistically significant differences(all P<0.05).Conclusion RT-3DE can quantitatively assess left ventricular systolic synchrony,and LBBP is superior to RVOP in left ventricular systolic synchrony.KEY WORDS Echocardiography,three-dimensional;Left bundle branch area pacing;Right ventricular outflow tract pacing;Synchrony作者单位:610031成都市,西南交通大学附属医院成都市第三人民医院心内科成都市心血管病研究所通讯作者:熊峰,Email:********************首次报道了一种新的、安全、可行的生理性起搏方法,即“左束支区域起搏(LBBP)”,其电学参数更优。
超声与数字断层摄影检查致密乳腺进展安琪;李晶【摘要】The dense breast notification legislation,which was passed by Connecticut in 2009,has attracted more attention to the dense breast.Now there is still no unified criterion nor global guide for reference to indicate additional supplemental screening tool suitable for women with dense breast.Ultrasonography and digital breast tomosynthesis became research focus.The progresses of these two technologies in dense breast were reviewed in this article.%2009年美国康涅狄格州通过的致密乳腺告知法案,引发对于致密乳腺的关注.目前全球仍无统一的标准或指南来指导如何选择适合致密乳腺的辅助检查.超声与数字乳腺断层摄影技术是目前的研究热点.本文对二者在致密乳腺检查中的进展进行综述.【期刊名称】《中国介入影像与治疗学》【年(卷),期】2018(015)004【总页数】4页(P251-254)【关键词】致密乳腺;超声检查;数字乳腺断层摄影检查【作者】安琪;李晶【作者单位】中国医科大学附属盛京医院超声科,辽宁沈阳 110004;中国医科大学附属盛京医院超声科,辽宁沈阳 110004【正文语种】中文【中图分类】R737.9;R4452012年WHO的数据统计显示,乳腺癌居全球女性肿瘤的第2位。
我国乳腺癌的发病率约22.1/10万,居我国女性肿瘤首位[1],尤其55~59岁的城市居民是重点防控人群[2]。
ComparisonoftimeandfrequencydomainmeasuresofRSAinambulatoryrecordings
ANNEBETD.GOEDHART,aSOPHIEVANDERSLUIS,aJANH.HOUTVEEN,bGONNEKEWILLEMSEN,aandECOJ.C.DEGEUSa
aDepartmentofBiologicalPsychology,VrijeUniversiteitAmsterdam,TheNetherlands
bDepartementofHealthPsychology,UniversityofUtrecht,Utrecht,TheNetherlands
AbstractTheextenttowhichvariousmeasuresofambulatoryrespiratorysinusarrhythmia(RSA)capturethesameinformationacrossconditionsindifferentsubjectsremainsunclear.Inthisstudytherootmeansquareofsuccessivedifferences(RMSSD),peakvalleyRSA(pvRSA),andhighfrequencypower(HFpower)wereassessedduringambulatoryrecordingin84subjects,ofwhich64wereretestedafterabout3years.WeusedcovariancestructuremodelingtotesttheequalityofthecorrelationsamongthreeRSAmeasuresovertwotestdaysandthreeconditions(daytimesittingorwalkingandnighttimesleep)andingroupswithlow,medium,andhighmeanheartrate(HR),orlow,medium,andhighmeanrespirationrate(RR).ResultsshowedthatambulatoryRMSSD,pvRSA,andHFpowerarehighlycorrelatedandthattheircorrelationisstableacrosstime,ambulatoryconditions,andawiderangeofrestingHRandRRvalues.RMSSDappearstobethemostcost-efficientmeasureofRSA.
Descriptors:Heartratevariability,Ambulatory,Parasympathetic,Interbeatinterval,Respiration
Measuresofheartratevariability(HRV)provideawindowonthemodulationofheartratebytheautonomicnervoussystemandhavebroadapplicationsinbothhumanandanimalphysi-ology(Berntsonetal.,1997;TaskForceoftheEuropeanSocietyofCardiologyandtheNorthAmericanSocietyofPacingandElectrophysiology,1996).Within-subjectstudiesshowthatHRVisresponsivetochangesinpsychologicalstate,particular-lymentalloadandemotionalstress(Allen&Crowell,1989;Kamphuis&Frowein,1985;Langewitz&Ruddel,1989;Mulder,1992;Sakakibara,Takeuchi,&Hayano,1994),andtochangesinpostureandphysicalactivity(Hatfieldetal.,1998;Houtveen,Groot,&deGeus,2005;Houtveen,Rietveld,&deGeus,2002;Tulppo,Makikallio,Takala,Seppanen,&Huikuri,1996).Between-subjectsstudiesfurthershowthatlowerlevelsofHRVindependentlypredictcardiacdiseaseandcardiacmortal-ity(Bigger,Fleiss,Rolnitzky,&Steinman,1993;Dekkeretal.,1997,2000;Hayanoetal.,1991;Lombardietal.,1987;Nolanetal.,1998;Sauletal.,1988;Singeretal.,1988;Singhetal.,1998;Tsujietal.,1996.)MostresearchhasfocusedonHRVintherespiratoryfre-quencyrange,alsoknownasrespiratorysinusarrhythmia(RSA).RSAisthedifferenceinheartperiodduringtheinspi-ratoryandexpiratoryphasesoftherespiratorycycle.RSAshows
virtuallynosensitivitytosympatheticnervoussystemactivitybutisaffectedinadose–responsewaybymuscarinergicblockersinhumans(Martinmaki,Rusko,Kooistra,Kettunen,&Saalasti,2006)orvagalcoolinginanimals(Katona&Jih,1975).ThishasledtotheuseoftonicRSAlevelsasaproxyforindividualdif-ferencesinvagalcardiaccontrol(Berntsonetal.,1997;TaskForceoftheEuropeanSocietyofCardiologyandtheNorthAmericanSocietyofPacingandElectrophysiology,1996),al-thoughnotwithoutcontroversybecauseofpotentialconfound-ingbyindividualdifferencesinsensitivityofchemoreceptorandbaroreceptorreflexes(Berntsonetal.,1997;Houtveenetal.,2002)andbyindividualdifferencesinrespiratorybehavior(Grossman&Kollai,1993;Grossman,Wilhelm,&Spoerle,2004;Ritz&Dahme,2006).RSAcanbederivedfromtheinterbeatinterval(IBI)timeseriesinthetimedomainbytakingtherootmeansquareofdifferencesbetweensuccessiveinterbeatintervals(RMSSD;Penttilaetal.,2001)or,inthefrequencydomain,byFourieranalysis(Akselrodetal.,1981,1985)orWaveletanalysis(Pichotetal.,1999;Wiklund,Akay,&Niklasson,1997).RSAcanalsobederivedbypeak–valleyestimation(pvRSA;Katona&Jih,1975)usingthetimeseriesofIBIsincombinationwiththeres-pirationsignal.Animportantfeatureofthesetime-andfrequency-domainRSAmeasuresisthattheycanbereliablymeasuredundernat-uralisticconditionswiththeuseofambulatorymonitoring(deGeus,Willemsen,Klaver,&vanDoornen,1995;Houtveenetal.,2005;Wilhelm,Roth,&Sackner,2003).Instressresearch,ambulatoryrecordingisahugeadvantage.Differentbetween-
Preparationofthisarticlewas,inpart,financiallysupportedbyNWO/MaGWVIDI-016-065-318.Addressreprintrequeststo:AnnebetD.Goedhart,VrijeUniversiteit,DepartmentofBiologicalPsychology,vanderBoechorststraat1,1081BT,Amsterdam,TheNetherlands.E-mail:ad.goedhart@psy.vu.nl.
Psychophysiology,44(2007),203–215.BlackwellPublishingInc.PrintedintheUSA.Copyrightr2007SocietyforPsychophysiologicalResearchDOI:10.1111/j.1469-8986.2006.00490.x
203