当前位置:文档之家› 离子液体介绍

离子液体介绍

离子液体介绍
离子液体介绍

离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。

离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH3)N03的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。一般而言,离子化合物熔解成液体需要很高的温度才能克服离子键的束缚,这时的状态叫做“熔盐”。离子化合物中的离子键随着阳离子半径增大而变弱,熔点也随之下降。对于绝大多数的物质而言混合物的熔点低于纯物质的熔点。例如NaCl的熔点为803℃,而

50 %LICI-50 %AICl3(摩尔分数)组成的混合体系的熔点只有144℃。如果再通过进一步增大阳离子或阴离子的体积和结构的不对称性,削弱阴阳离子间的作用力,就可以得到室温条件下的液体离子化合物。根据这样的原理,1915年RH.Hurley和T.P Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是正乙基吡咤,合成出的离子液体是溴化正乙基吡咤和氯化铝的混合物。但这拼中离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有束刺激作用。直到1976年,美国Cblorado州立大学的Robert利用AICl3/[N-EtPy]Cl 作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1982年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃在这以后,离子液体的应用研究才真正得到广泛的开展。

种类

离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。离子液体作为离子化合物,其熔点较低的主要原因是因其结构中某些取代基的不对称性使离子不能规则地堆积成晶体所致。它一般由有机阳离子和无机阴离子组成,常见的阳离子有季铵盐离

子、季鏻盐离子、咪唑盐离子和吡咯盐离子等(如下图所示),阴离子有卤素离子、四氟硼酸根离子、六氟磷酸根离子等。

目前所研究的离子液体中,阳离子主要以咪唑阳离子为主,阴离子主要以卤素离子和其它无机酸离子(如四氟硼酸根等)为主。但近几年来又合成了一系列新型的离子液体,例如在阳离子方面,Shreeve领导的研究小组合成了一些新型阳离子的离子液体如下所示:

在阴离子方面,Yoshida研究小组也合成了一些新型阴离子的离子液体,如下所示:

由于离子液体本身所具有的许多传统溶剂所无法比拟的优点及其作为绿色溶剂应用于有机及高分子物质的合成,因而受到越来越多的化学工作者的关注。

离子液体的制备

离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。

直接合成法

通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。Hlrao等酸碱中和法合成出了一系列不同阳离子的四氟硼酸盐离子液体。另外,通过季胺化反应也可以一步制备出多种离子液体,如卤化1-烷基3-甲基咪唑盐,卤化吡啶盐等。

两步合成法

直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。特别注意的是,在用目标阴离子Y交换X-(卤素)阴离子的过程中,必须尽可可能地使反应进行完全,确保没有x.阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备。另外,直接将Lewis酸(MY)与卤盐结合,可制备[阳离子][MnXny+l]型离子液体,如氯铝酸盐离子液体的制备就是利用这个方法,如离子液体的性质中所述,离子液体的酸性可以根据需要进行调节。

由于离子液体的可设计性,所以根据需要定向的设计功能化离子液体是我们实验研究的方向。

应用

由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中。离子液体作为反应的溶剂已被应用到多种类型反应中。

1.1.4.1

氢化反应

将离子液体应用于氢化反应已有大量的报道,反应中应用离子液体替代普通溶剂优点是:反应速率比普通溶剂中快几倍;所用的离子液体和催化剂的混合液可以重复利用。研究表明,在过程中离子液体起到溶剂和催化剂的双重作用。

由于离子液体能溶解部分过渡金属,因而目前在氢化反应中运用离子液体研究最多的是用过渡金属配合物作为催化剂的均相反应体系。另外,相对于传统溶剂来说,将离子液体运用于柴油(主要是针对其中含有的芳烃)的氢化反应时具有产品易于分离、易纯化,又不会造成环境污染等优点。

1.1.4.2

傅-克反应

傅-克反应包括傅-克酰基化和傅-克烷基化反应,这两种类型的反应在有机化工中具有举足轻重的地位。比较成熟的催化剂有沸石、固体酸和分子筛等。但是出于绿色合成和成本的考虑,许多化学工作者已改传统溶剂为离子液体进行相关研究。

例如,Seddon等利用离子液体研究了两可亲核试剂吲哚和2-萘酚的烷基化反应,该方法简单、产品易于分离,杂原子上的区域选择性烷基化产率在90%以上,而且溶剂可以回收再利用,显示了离子液体作为烷基化反应的溶剂时所具有的优势。

1972年,Parshall就研究了在四已胺三氯锡酸盐中乙烯的羰基化反应。近些年来,化学工作者在此方面做出了较多的努力。例如我国化学工作者邓友全等在烷烃的羰基化方面作了相关的研究。他们首次报道了几种烷烃在卤化1-烷基吡啶和1-甲基-3-烷基咪唑盐与无水AlCl3组成的超强酸性室温离子液体中与CO的直接羰基化反应,产物为酮。

1.1.4.3

Heck反应

Heck反应即烯烃和卤代芳烃或芳香酐在催化剂(如金属钯)的作用下,生成芳香烯烃的反应,这在有机合成中是一个重要的碳-碳结合反应。离子

液体应用于此类反应中能较好地克服传统反应存在的催化剂流失、所使用的有机溶剂挥发等问题。2000年,Vincenzo等报道了将离子液体应用于Heck 反应后,该反应的反应速率很快,而且收率提高到90%以上Seddon等研究小组在三相系统[BMIM(1-丁基-3-甲基咪唑)]PF6/水/己烷中进行了Heck反应的研究,所用的催化剂留在离子液体中,可以循环使用,而产品溶解在有机层内,反应形成的副产物被提取到水相中,容易分离。

1.1.4.

Diels-Alder反应

Diels-Alder反应是有机化学中的一个重要反应,人们对该反应的注意点不仅是其产率和速率,更重要的是其立体选择性。将离子液体应用于Diels-Alder反应研究方面,现在已有大量的报道。如Howarth等研究小组报道了在咪唑盐室温离子液体中环戊二烯与烯醛类物质反应进行的情况。研究发现,在离子液体中进行时该反应的立体选择性较好,即得到的内外型产物的比例约在95:5左右。研究都发现,在离子液体中进行的该反应不但反应速度快,反应产率高,反应的立体选择性好,而且离子液体可以回收重新使用。这说明,离子液体在Diels-Alder反应方面比普通溶剂具有更大的优势。

1.1.4.5

在不对称催化反应中的应用

研究表明,将离子液体应用于不对称催化反应,对映体的选择性相对于普通溶剂有很大的提高,而且解决了传统方法中产物不易从体系中分离出来这一难题。将离子液体应用于不对称催化反应中已有大量的报道,如Chen研究组报道了将离子液体应用于不对称烯丙基烷基化反应中;Song研究组则将离子液体应用于不对称环氧化反应中;Wasserschied等最近报道了从“手性池”(chiral pool)衍生的新型手性离子液体的合成和特性,我们相信这些手性离子液体的合成对于研究不对称催化反应尤其在手性药物合成方面将会有重大意义。

1.1.4.6

用于分离提纯技术

由于离子液体具有其独特的理化性能,非常适合于用作分离提纯的溶剂。现在在此方面已有大量的报道,如利用离子液体从发酵液中提取回收丁醇;利用超临界CO2从离子液体中提取非挥发性有机物等等。我国化学工作者邓友全等在此方面也有一定的研究。他们首次将离子液体应用到固-固分离领域中,以[BMIM]PF6作为分离牛黄酸和硫酸钠固体混合物的浸取剂,有效地分离了牛黄酸,回收率高于97%,此方法具有很大的应用价值。

1.1.4.7

用于电化学研究

由于离子液体具有导电性、难挥发、不燃烧、电化学稳定电位窗口比其它电解质水溶液大很多等特点,因此,将离子液体应用于电化学研究时可以减轻放电,作为电池电解质使用温度远远低于融熔盐,目前离子液体已经作为电解液应用于制造新型高性能电池、太阳能电池以及电容器等。例如,美国航空化学研究中心的Wilkes等研究的BIME电池中使用的离子液体就是[EMIM]BF4;瑞士的Bonhöte研究了一系列利用离子液体作为电解质的太阳能电池;McEewen等人将离子液体应用于电容器,这些研究都取得了一定的成果。

前景

迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。

世界领先的离子液体开发者—德国Solvent Innovation公司即将推出数以吨计的商品。Solvent Innovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其Ecoeng商标的无卤素离子液体出售量达1t 的该系列包括1-烷基-3-甲基咪唑硫酸酯来取代卤化的溶剂。Ecoeng系列将提供更为绿色的产品和工艺,今后几年内仅有.2或3种离子液体达到数吨数量的工业生产,可育都是不含卤族原子的。最近在波士顿美国化学学会的离子液体开发组正讨论其商业计划。

离子液体正在以强劲的势头和崭新的姿态开始问世。

离子液体由带正电的离子和带负电的离子组成,现在多指在低于100℃时呈液体状态的熔盐。北爱尔兰皇后大学离子液体研究中心主任赛顿说,从理论上讲离子液体可能有1万亿种,化学家可以从中选择适合自己工作需要的离子液体。与典型的有机溶剂不一样,离子液体一般不会成为蒸汽,所以在化学实验过程中不会产生对大气造成污染的有害气体,而且使用方便。更能引起化学家感兴趣的是,离子液体可以反复多次使用。此外,用离子液体做催化剂还可加速化学反应的过程。英国石油公司化学家莫兰说,如果英国石油公司在化工生产过程中采用离子液体,则可减少使用挥发性大的有机溶剂,降低对环境的污染,减少废物的产生。

早在19世纪,科学家就在研究离子液体,但当时没有引起人们的广泛兴趣。20世纪70年代初,美国空军学院的科学家威尔克斯开始倾心研究离子液体,以尝试为导弹和空间探测器开发更好的电池。在研究中他发现,一种离子液体可用做电池的液态电解质。到了20世纪90年代末,已有许

多科学家参与离子液体的研究。去年4月有50多人参加了有关离子液体的研讨会,而今年4月美国化学会召开的离子液体会议就有275人参加,会议同时收到了80篇论文。

离子液体的发明者梅斯等人最近发现,离子液体不仅是一种绿色溶剂,它还可用作新材料生产过程中的酶催化剂。威尔克斯最近还发现,离子液体还可以用于处理废旧轮胎,回收其中的聚合物。科学家最近的研究成果还表明,用离子液体可有效地提取工业废气中的二氧化碳。

与典型的有机溶剂不一样,在离子液体里没有电中性的分子,100%是阴离子和阳离子,在负100℃至200℃之间均呈液体状态,具有良好的热稳定性和导电性,在很大程度上允许动力学控制;对大多数无机物、有机物和高分子材料来说,离子液体是一种优良的溶剂;表现出酸性及超强酸性质,使得它不仅可以作为溶剂使用,而且还可以作为某些反应的催化剂使用,这些催化活性的溶剂避免了额外的可能有毒的催化剂或可能产生大量废弃物的缺点;离子液体一般不会成为蒸汽,所以在化学实验过程中不会产生对大气造成污染的有害气体;价格相对便宜,多数离子液体对水具有稳定性,容易在水相中制备得到;离子液体还具有优良的可设计性,可以通过分子设计获得特殊功能的离子液体。总之,离子液体的无味、无恶臭、无污染、不易燃、易与产物分离、易回收、可反复多次循环使用、使用方便等优点,是传统挥发性溶剂的理想替代品,它有效地避免了传统有机溶剂的使用所造成严重的环境、健康、安全以及设备腐蚀等问题,为名副其实的、环境友好的绿色溶剂。适合于当前所倡导的清洁技术和可持续发展的要求,已经越来越被人们广泛认可和接受。

离子液体已经在诸如聚合反应、选择性烷基化和胺化反应、酰基化反应、酯化反应、化学键的重排反应、室温和常压下的催化加氢反应、烯烃的环氧化反应、电化学合成、支链脂肪酸的制备等方面得到应用,并显示出反应速率快、转化率高、反应的选择性高、催化体系可循环重复使用等优点。此外,离子液体在溶剂萃取、物质的分离和纯化、废旧高分子化合物的回收、燃料电池和太阳能电池、工业废气中二氧化碳的提取、地质样品的溶解、核燃料和核废料的分离与处理等方面也显示出潜在的应用前景。

从理论上讲离子液体可能有1万亿种,化学家和生产企业可以从中选择适合自己工作需要的离子液体。目前,对离子液体的合成与应用研究主要集中在如何提高离子液体的稳定性,降低离子液体的生产成本,解决离子液体中高沸点有机物的分离以及开发既能用作催化反应溶剂,又能用作催化剂的离子液体新体系等领域。随着人们对离子液体认识的不断深入,相信离子液体绿色溶剂的大规模工业应用指日可待,并给人类带来一个面貌全新的绿色化学高科技产业。

离子液体的优点

一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题;

二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积;

三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用;

四、表现出 Lewis、Franklin 酸的酸性,且酸强度可调。

上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。

离子液体的特点

不挥发、不可燃、导电性强、黏度低、热容大、蒸汽压小、性质稳定,对许多无机盐和有机物有良好的溶解性,在电化学、有机合成、催化、分离等领域被广泛的应用。

在与传统有机溶剂和电解质相比时,离子液体具有一系列突出的优点:(1)液态范围宽,从低于或接近室温到300摄氏度以上,有高的热稳定性和化学稳定性;(2)蒸汽压非常小,不挥发,在使用、储藏中不会蒸发散失,可以循环使用,消除了挥发性有机化合物(VOCs,即volative organic compounds)环境污染问题,(3)电导率高,电化学窗口大,可作为许多物质电化学研究的电解液;(4)通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,并且其酸度可调至超酸。(4)具有较大的极性可调控性,粘度低,密度大,可以形成二相或多相体系,适合作分离溶剂或构成反应—分离耦合新体系;(5)对大量无机和有机物质都表现处良好的溶解能力,且具有溶剂和催化剂的双重功能,可以作为许多化学反应溶剂或催化活性载体。由于离子液体的这些特殊性质和表现,它被认为与超临界CO2,和双水相一起构成三大绿色溶剂,具有广阔的应用前景。

离子液体的合成研究成果

1914年合成出现最早的室温离子液体硝酸乙基铵,直到1992年,Wikes 领导的研究小组合成了低熔点、抗水解、稳定性强的1-乙基-3甲基咪唑四氟硼酸盐离子液体后,离子液体的研究开始才得以迅速发展,随后开发了多系列的离子液体。这些离子液体主要是通过将一定的二烷基咪唑阳离子(EMIM+、BMIM+)和一些阴离子(如:BF4-、PF6-)组合得到的,其物理性质和电化学性质类似于AlCl3体系室温离子液体,却不像氯化铝体系那样对水和空气敏感,因此而被广泛地开发和应用。1996年Bonhote P.和Dias A.采用固定阴离子,即改变咪唑分子上不同的取代基的方法,系统的合成了一系列离子液体,制得35个咪唑离子液体,详细介绍了许多合成方法及

各种性质如熔点、与水的溶解性、粘度、电导率、密度、折射率及随t变化的测定。并得出以下三点结论;(1)非对称的阳离子比对称性的阳离子形成的离子液体有较低的熔点;(2)阴阳离子之间如果形成氢键,熔点升高,粘度增大;(3)阳离子带长链取代基的离子液体与有机溶剂的互溶性增加。

我国的离子液体研究现状

我国对离子液体的研究起步相对晚,2003年,在邓友全教授的带领下,中科院兰州物理研究所成功地使用离子液体作为催化体系,用二氧化碳取代剧毒的光气和一氧化碳等应用于异氰氰酸酯中间体的合成,2005年,我国中科院过程工程研究所自主开发成功了离子液体规模化制备清洁技术,解决了小规模制备原料成本高、合成过程复杂、溶剂和原料循环利用差、污染严重、转化率低等问题。

功能离子液体

功能离子液体的合成及其应用 刘雪琴 (武汉科技大学化学工程与技术学院,湖北武汉,430081) 摘要:离子液体作为一类新型的环境友好的“绿色溶剂”,具有很多独特的性质,在很多领域有着诱人的应用前景。由于离子液体的众多优点,人们越来越多地将离子液体作为一种可设计和修饰的功能型分子,以便从这一新型溶剂中获得更大的应用价值。本文对功能离子液体的合成及应用等方面的研究进展进行了综述。 关键词:离子液体;合成;应用;功能 Synthetic Methods and Applications for the Functionalized Ionic Liquids. Xueqin Liu (College of Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China) Abstract: Ionic liquids, as a class of novel environmental benign “green solvents”that have remarkable new properties and promising applications in many fields, are receiving more and more attentions. Because of the numerous advantages of the ionic liquid, ionic liquid is widely used as a kind of functional molecules which can be designed and modified. In this paper, some recent research developments on the synthetic methods and applications of the functionalized ionic liquids. Key Words: ionic liquids; synthetize; application; function 1离子液体简介 离子液体是在室温以及相邻温度下完全由离子组成的有机液体物质。但也不是说有大量离子的液体就叫离子液体。例如无机盐如NaCl-AlCl3系的低共熔点为115℃,而CsF-2.3HF 熔点为-16.9摄氏度,他们都不是我们现在说的离子液体,因为不是有机物。其中AlCl3型离子液体较为特殊,组成不固定。但至少它的正离子是有机物,或者是有机取代的铵离子。 一般可以将离子液体分为三类:1.AlCl3型离子液。2.非AlCl3型离子液体。3.其他特殊离子液体。前两种主要区别是负离子不同,正离子主要是三类季铵:咪唑离子、砒啶离子、一般季铵离子。最稳定的是烷基取代的咪唑阳离子。 2离子液体的合成 离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。一般阳离子为有机成分,并根据阳离子的不同来分类。离子液体中常见的阳离子类型有烷基铵阳离子、烷基鏻阳离子、N-烷基吡啶阳离子和N,N’-二烷基咪唑阳离子等,其中最常见

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

熟悉常用液体的种类

熟悉常用液体的种类、成分及配制 注射用水是禁忌直接由静脉输入的,因其无渗透张力,输入静脉可使RBC膨胀、破裂,引起急性溶血。 (1)非电解质溶液:常用的有5%GS和10%GS,主要供给水分(由呼吸、皮肤所蒸发的(不显性丢失)及排尿丢失的)和供应部分热量,并可纠正体液高渗状态,但不能用其补充体液丢失。5%GS为等渗溶液,10%GS为高渗溶液,但输入体内后不久葡萄糖被氧化成二氧化碳和水,同时供给能量,或转变成糖原储存于肝、肌细胞内,不起到维持血浆渗透压作用。(注:10%GS 比5%GS供给更多热量,虽其渗透压比5%GS高1倍,如由静脉缓慢滴入,Glucose迅速被血液稀释,并被代谢,其效果基本与5%GS类似。Glucose输入速度应保持在0.5-0.85g/kg*h,即8-14mg/kg*min。) (2)电解质溶液:种类较多,主要用于补充损失的液体(体液丢失)、电解质和纠正酸、碱失衡,但不能用其补充不显性丢失及排稀释尿时所需的水。 1)生理盐水(0.9%氯化钠溶液):为等渗溶液,常与其他液体混合后使用,其含钠和氯量各为154mmol/L,很接近于血浆浓度142mmol/L,而氯比血浆浓度(103mmol/L)高。输入过多可使血氯过高,尤其在严重脱水酸中毒或肾功能不佳时,有加重酸中毒的危险,故临床常以2份生理盐水和1份1.4%NaHCO3混合,使其钠与氯之比为3:2,与血浆中钠氯之比相近。(生理盐水主要用于补充电解质,纠正体液中的低渗状态。2:1等张液与生理盐水功用相同,但无NS之弊,临床常用于严重脱水或休克时扩张血容量。) 2)高渗氯化钠溶液:常用的有3%NaCl和10%NaCl,均为高浓度电解质溶液,3%NaCl 主要用以纠正低钠血症,10%NaCl多用以配制各种混合液。 3)碳酸氢钠溶液:可直接增加缓冲碱,纠正酸中毒作用迅速,是治疗代谢性酸中毒的首选药物(但有呼吸功能障碍及CO2潴留倾向者应慎用),1.4%溶液为等渗液,5%溶液为高渗液。在紧急抢救酸中毒时,亦可不稀释而静脉推注。但多次使用后可使细胞外液渗透压增高。4)氯化钾溶液:常用的有10%氯化钾和15%氯化钾溶液两种。均不能直接应用,须稀释成0.2%~0.3%溶液静脉点滴,含钾溶液不可静脉推注,注入速度过快可发生心肌抑制而死亡。 5)林格氏液(等张液):含0.86%NaCl,0.03%KCl,0.03%CaCl2,1.4% NaHCO3。 (3)混合溶液:为适应临床不同情况的需要,将几种溶液按一定比例配成不同的混合液,以互补其不足,常用混合液的组成及配制见以下几种常用混合液的简易配制:几种混合液的

瓦利安-离子注入机工作原理01解析

第三部分原理 瓦利安半导体设备有限公司 VIISta HCS 目录 章节章节编号 原理介绍…………………………………………………………………E82291210 控制原理………………………………………………---………………E82291220 离子注入操作原理………………………………………………………E82291230 第1页

介绍 第1页

VIISta HCS型高束流离子注入机是高自动化的生产工具。此离子注入机可以将单一离子类别掺杂剂的离子束注入到硅片中。 首先利用Varian 控制系统(VCS)产生工艺配方,在配方的基础上制定产生离子束的确切标准。工艺配方的设计目的包括:控制掺杂剂种类的选择,控制剂量、控制离子束的能量、注入角度等以及工艺步骤等等。 在阅读本章之前,请阅读第二章安全方面内容。 一、系统单元组成 VIISta HCS 可以分为三个有用的重要的单元:离子源单元、离子束线单元、工作站单元。 1、离子源单元 离子源子单元包括产生,吸出、偏转、控制,和聚焦,离子是有间接加热的阴极产生再由吸极取出(由D1电源与吸级装置构成),在取出工艺过程中,为了得到离子束更好的传输和低的离子束密度,离子束将被垂直聚焦。被取出的离子束通过一个四极的透镜,在进入90度离子束磁分析器之前离子束被聚焦,在磁分析器中,绝大多数不需要的离子将被分离出去。 离子源模块的主要结构,包括离子源围栏内部分和安全系统,支持分布各处的主要动力组件。还有离子源控制模块,源初始泵抽,涡轮分子泵抽,工艺气体柜,离子源和(套)管路。离子源围栏与安全系统要互锁,这是为了防止在正常注入操作过程中有人员接近。如果任何一扇门打开,或者任何维护、伺服面板被移动,高压电源和有害气体流就会通过互锁系统关闭。VIISts HCS 系统使用的不是高压工艺气体,就是需要安全输送系统的工艺气体。VSEA提供的标准工艺气体有三氟硼烷、砷烷和磷烷。 2、离子束线控制单元 离子束线控制子系统包括从90度磁偏转区域到70度磁偏转区域,在这些区域,离子束将会被减速、聚焦、分析、测量以及被修正为平行、均匀的离子束。从90度磁偏转区域到70度磁偏转区域中,离子束先被增速,再被减速。离子源与控制离子束线的四极透镜,协同D1、D1抑制极,D2、D2抑制极动力一起,提供水平与垂直聚焦控制。90度磁偏转协同判决光圈一起实现对离子的筛选分析。预设法拉第杯测量离子束强度。最终,离子束在70度偏转磁场中,协同多组磁极和顶部和底部的磁棒,被调整为方向平行,分布均匀的离子束。 离子束离开离子源模块之后进入离子束线模块。离子束首先通过离子源四极透镜(源四极透镜,Q1)调整离子束使其竖直方向 第1页

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

非牛顿型流体的分类

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ???≥-<=y y y σσησσσσγ/)(0& (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γησσ&p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。 特殊地,若流动规律遵从幂律,方程为

n y K γσσ&+= (2-76) 则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与橡 胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。 4.2 假塑性流体 绝大多数高分子液体属假塑性流体。流动的主要特征是流动很慢时,剪切粘度保持为常数,而随剪切速率增大,粘度反常地减少——剪切变稀。 典型高分子液体的流动曲线见图2-17。曲线大致可分为三个区域: 当剪切速率0→γ&时,γσ&-呈线性关系,液体流动性质与Newton 型流体

有机合成现状及最新发展

有机合成现状及最新发展 唐彬 (吉首大学化学化工学院08化工一班20084064026) 摘要:本文针对有机合成的现状、合成方法和最新发展及应用进行了综述。同时结合各种技术的发展状况及最新进展与突破,对其前景作了简要概述。 关键词:有机合成最新进展波促进生物催化光化学离子液 0引言 在人类多姿多彩的生活中,化学可以说是无处不在的。据统计,在工业发达国家的全部生产中,化学过程的工业占高比例,以美国为例占到35%。有机化学是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法的学科[1]。自从1828年合成尿素以来,有机化学的发展是日新月异,其发展速度越来越快,而有机合成则是有机化学的核心,下面就有机合成的方法与应用作一综述: 1绿色有机合成 1.1 高效、无毒的溶剂和助剂 有机溶剂因其对有机物具有良好的溶解性。但有机溶同相合成的剂的较高的挥发性毒性成为有机合成造成污染的主要原因。因此新型绿色反应介质代替有机溶剂成为绿色化学研究的重要方向[2]。目前,水、超临界流体、离子液体、仿酶化学和含氟溶剂作为反应介质的有机合成在不同程度上已取得了一定的进展。用离子液体作有机反应的介质,可获得更高的选择性和反应速率,同时还具有条件温和、环境友好的特点[3]。Vincenzo 等[4]在离子液体中以钯催化烯丙醇的芳基化Heck 反应,可以高选择性地得到芳香族羰基化合物或芳香族共轭醇。Doherty 等[5]在非对称性Diels-Alder 反应中采用离子液体作溶剂,获得了比常规的三氯甲烷溶剂更高的对映选择性和反应速率。 有机合成研究发现,在固态下能够进行的有机反应大多数较溶液中表现出高的反应效率和选择性。无溶剂有机合成具有高选择性、高产率、工艺过程简单和不污染环境、能耗少和无爆炸性等优点。Zhang 等[6]对水介质中1,4-苯醌的芳

离子液体在药物研究中的应用

离子液体在药物研究中的应用 发表时间:2019-11-26T14:40:50.783Z 来源:《中国西部科技》2019年第21期作者:谭俊荣 [导读] 随着社会与经济的发展,生活水平的提高,离子液体因其高度可调性而具备优良的物理化学性质和独特的生物活性,已不再局限于作为溶剂的传统应用。随着对其毒性与生物相容性的深入了解,由于阴阳离子组合的多样性与可设计性,离子液体已经能够弥补市售药物在溶解度、生物利用度和药物输送等方面的不足,在药物开发中潜力巨大。本文通过对离子液体在药物合成、输送作用,以及作为药物活性成分和剂型改良方面的研究与应用进行阐述,并对 谭俊荣 广州康瑞泰药业有限公司 摘要:随着社会与经济的发展,生活水平的提高,离子液体因其高度可调性而具备优良的物理化学性质和独特的生物活性,已不再局限于作为溶剂的传统应用。随着对其毒性与生物相容性的深入了解,由于阴阳离子组合的多样性与可设计性,离子液体已经能够弥补市售药物在溶解度、生物利用度和药物输送等方面的不足,在药物开发中潜力巨大。本文通过对离子液体在药物合成、输送作用,以及作为药物活性成分和剂型改良方面的研究与应用进行阐述,并对离子液体药物的未来发展作出展望。 关键词:离子液体;药物研究;应用 引言 离子液体是完全由阴阳离子组成的室温下为液体的盐,因其强大的空间位阻使得室温下阴、阳离子可以自由振动、转动甚至平动,使整个有序的晶体结构遭到破坏,导致其在室温下呈现出液态的性质。但是,整体上静电场仍占优势,阴阳离子之间存在较强的相互作用,使得离子液体与易挥发易燃的分子型液体如苯、乙醚等有机液体相比几乎无蒸汽压。由于离子液体特殊的结构,使其具有蒸气压低、黏度范围宽、导电性好、溶解能力强及热稳定性高等优点,已被广泛应用于电化学、有机合成、催化工程等领域。Hough等将离子液体分为三代,第一代离子液体主要应用其物理性质,制备功能性溶剂;第二代离子液体应用其化学性质,获得具有独特物理化学性质的功能性材料;第三代离子液体应用其生物活性,制备具有特殊生物活性的目标产物。离子液体具有一定的可设计性,可以通过改变阴阳离子对调节其物理或化学性质。许多常见离子液体的结构或组分和活性药物成分相似,因此已有部分学者对离子液体在药物合成、多功能活性药物及药物传递等方面进行了深入的研究。 1离子液体在药物研究的概述 离子液体(ionicliquids,ILs)由大体积有机阳离子与无机或有机阴离子组成,熔点低于100℃,是在室温或室温附近温度下呈液态的盐,故又称为室温离子液体(roomtemperatureionicliquids,RTILs),其阴阳离子体积很大且高度不对称,强大的空间位阻使室温下的阴阳离子自由振动、转动甚至平动,导致整个有序晶体结构被破坏而表现出液态的性质。ILs最主要的特点就是"可调性",即通过选择不同阴阳离子而具有不同的生物活性或独特的理化性质。ILs发展如下:第一代ILs主要根据其独特的物理性质,如可忽略的蒸气压、高(热、化学)稳定性和低挥发性等用作"绿色"溶剂;第二代ILs主要根据其可调节的理化性质,对于给定的阴离子或阳离子,合理选择相应的反荷离子制备"功能化"ILs,如高能材料、润滑剂和金属离子络合剂等;第三代和最近的ILs主要根据其可调的理化性质并使用低毒性和生物相容性的离子组合,形成具有生物活性的ILs,甚至可以作为APIs,合成特效离子液体,即API-ILs。 2离子液体在药物研究中的应用 2.1利用ILs从天然产物中提取 APIs天然产物一直是新药研发的重要源泉,但在天然产物中提取药物有效成分时需要大量使用VOCs,导致溶剂残留而污染药品,甚至对环境也会造成一定的破坏。研究表明,ILs作为药物提取的溶剂能够较好地克服上述问题。Cull等首次在疏水性离子液体-水双相体系(liquid? liquidextractionswithhydrophobicils,IL-LLE)中提取大环内酯类抗生素红霉素A(arythromycin-A),发现萃取效率与乙酸丁酯-水双相体系相当,因此能够代替常规有机溶剂,从而避免溶剂的毒性和可燃性所带来的经济和环境损害。之后,Freire等采用同样的液-液萃取方法,实现对咖啡因(caffeine)和尼古丁(nicotine)两种生物碱的完全提取,萃取原理主要在于:生物碱中氮氧原子之间的相互作用;ILs中阳离子的酸性氢原子;生物碱芳环与离子液体阳离子之间的π-π相互作用;生物碱的烷基与咪唑基离子的烷基侧链之间的色散相互作用。微波辅助离子液体(microwave-assistedionicliquid,MAIL)与超声辅助离子液体(ultrasound-assistedionicliquid,UAIL)也常用于天然产物中药物的提龋其中,Du等开发的MAIL 方法是将IL作为萃取剂,在最佳萃取条件下,从延胡索中提取脱氢卡维丁(dehydrocavidine),与常规提取方法相比,该方法具有产率高、耗时短、溶剂使用量少且不使用VOCs等优点,因此常用于快速有效提取和分析药用植物中的活性成分。Bi等利用UAIL技术,以1-烷基-3-甲基咪唑氯化物(1-alkyl-3-methylimidazoliumchloride,[Cnmim]Cl,n=2,4,6,8)为萃取剂,从抗心血管病药物丹参中成功提取出丹参酮(tanshinone)活性成分,结果表明,阳离子上烷基侧链越长,ILs与APIs相互作用越强,提取效率也就越高,最后[C8mim]Cl通过阴离子之间的复分解反应转化成疏水性1-辛基-3-甲基咪唑六氟硼酸盐([C8mim]PF6)而与APIs实现分离。 2.2.黄酮类化合物的提取 黄酮类化合物主要是一种具有2-苯基色原酮的化合物,在防治及治疗老年高血压、脑溢血、糖尿病以及过敏性疾病等发挥重要的作用。Zhang等人使用微波辅助法研究了从黄芩中提取黄酮类化合物(黄芩苷、汉黄芩苷、黄芩素和汉黄芩素),结果表明四种萃取物的产率分别是5.18%(30min)、8.77%(90s)、16.84%(30min)和18.58%(3h),与传统的萃取方法相比在萃取效率上有明显的提升,并且发现离子液体的中阴离子种类(Br-、Cl-、BF4-、OAc-和CF3SO3)和咪唑阳离子上取代的烷基链的长度([C2mim]+、[C8mim]+、[C10mim]+和[C12mim]+等)也会对萃取效率产生影响,萃取产率随着烷基链的增长而减小,含Br-离子液体对萃取效率有较强的影响,其原因可能是Br-与四种萃取物发生较强的相互作用,Xie和Swatloski在研究离子液体萃取能力过程中也得到了相似的结论。冯吉等人研究了可以用于降低血小板聚集、预防心脑血管疾病的一类多酚化合物的提取,在超声辅助条件下,以1-丁基-3-咪唑四氟硼酸盐代替有机溶剂为萃取剂提取虎杖中的虎杖苷和白藜芦醇,集提取,分离和纯化与一体,具有提取时间短、溶剂用量少、操作过程简单的特点。张露月等人以离子液体[Bmim]BF4为萃取剂提取金钗石斛总黄酮和石斛碱,与传统的加热回流的方式相比,两组分的产率都有很大的提高,提取时间由90min降为185s,并且扫描电镜(SEM)观察后发现:发现离子液体微波协同处理后处理后的对结构的破坏更为严重,张冕[23]在采取离子液体-微波辅助方法提取女贞子中特女贞苷时,比较不同的提取方式对植物结构形貌的破坏程度也同样发现,离子液体处理后的植物细胞

水的分类和区别

自来水、矿泉水、山泉水、纯净水有何区别 水是生命之源,可水污染问题一直令人担忧,除了水源地的江河污染,还有楼房供水“二次加压”造成的二次污染。每当停水再恢复供水时,水龙头里流出的黑红色的“水锈”,令人望而生畏!越来越多的城市居民喝各种各样的水,什么山泉水、矿泉水、纯净水、苏打水、弱碱水、太空水、离子水、富氧水、生态水等等等等,不一而足,简直令人眼花缭乱。 作为消费者,有必要对这些五花八门的水有个基本了解,从而做出理智的选择。据多年从事饮用水的检测专家介绍,目前大家饮用最多的仍然是自来水。自来水直接采自水源地,经过初步加工过滤,符合国家饮用水标准,输入输水管道。但是,其中的杂质和污染物不可能全部过滤掉,残留的杂质和污染物仍存在潜在的威胁,所以人们对它不太放心。 除了自来水以外,饮用水尽管五花八门、种类繁多,最主要不过是两大主流:矿泉水和纯净水。矿泉水不是那种倒入各种矿泉壶加工出来的水,是指自然环境条件下地下涌出的泉水。矿泉水的概念亦即国家标准是:“从地下深处自然涌出的或经人工开发的、未受污染的地下矿水,含有一定量的矿物盐、微量元素或二氧化碳气体,在通常情况下,其化学成分、流量、水温等动态指标相对稳定。”矿泉水中的某些特定元素对人体健康有益,它出现得最早,最受人们欢迎,但毕竟资源有限,难以大众化普及,灌装过程中也还有个二次污染的问题。某些地区的矿泉水也存在一些问题。比如,广州的地下水中含有的

钠离子、氯离子偏高,同时水的硬度也偏高,使矿泉水口感上偏咸,加热煮沸后还会出现沉淀物,水质发浑,令人难以接受。但,这样的矿泉水只是极少数。 矿泉水中有一种非常珍贵的水,就是天然苏打水。据专家介绍,国人大多数处于亚健康状态,主要原因就是饮食不科学,体内循环系统呈酸性——国人的饮食习惯也很难让人体内的酸碱平衡。各种病菌、病毒都很喜欢酸性环境,乘势迅速发展,使人患上包括癌症在内的各种各样的病。据了解,癌症病人几乎都是酸性体质。因此,专家提倡饮用弱碱水,以达到人体内的酸碱平衡。但是,世界上天然的弱碱水——亦称苏打水非常罕见,仅在欧洲、日本、美国等地发现为数不多的几处,因此价格昂贵,天然苏打水的价格远远高于啤酒!我国最近在黑龙江省克东县发现了天然苏打水,黑龙江省政府决定投资3000万元进行系统开发。 由于天然苏打水资源有限、价格昂贵,聪明的商人又开发出人工添加的苏打水,就是在纯净水的基础上,添加小苏打和其他矿物质,制造出人工弱碱水。对消费者来说,这也可以作为一种选择。 山泉水其实也属于矿泉水的一种,亦称天然水。是取自环境清幽、无任何污染,具有稳定的pH值、水温,以及对人有益的矿物质和微量元素的地表水、泉水、自然井水等等,经过深度过滤、消毒加工而成。 继各种矿泉水之后出现的就是各种纯净水。大桶纯净水的定义亦即国家标准是:“符合生活饮用水卫生标准的水为水源,采用蒸馏法、

离子液体的性质

离子液体的性质,改性和下一代 1:离子液体的性质,考虑到离子液体及其应用的宽泛性,很难简单的概括离子液体的性质和发展趋势。因此著者更愿意总结离子液体的不同点而不是共同点。而且前人总结的离子液体的某些性质也存在一定的争议:例如电化学窗口,热稳定的长久性(热稳定性在过去的一段时间过于看重),极性,挥发性(某些离子液体在适当的条件下会蒸发)。为什么会出现这种争议呢?这是近年来所取得的改进技术所带来的,测量手段的进步,知识的深化,以及那些能够显著影响离子液体的热物理性质的杂质量化(离子色谱仪,ICP-MS)的精确性带来的描述的准确性。就离子液体的物理-化学性质而言,实验手段的不同,数据库数据的时限性都会对其不一致性产生影响。但是,离子液体还是具有广发接受的类属性质。他们完全由离子组成(见表一)。举个例子来说,在熔点为12摄氏度的【BMI】【PF6】系列中,离子熔化时的密度是4.8mol/l。离子液体的熔化温度,人为地规定,要低于100摄氏度,离子度要高于99%。这些基本的类属性质在离子液体的书籍和数据库(例如离子液体的热性质-美国标准与技术协会编著)中都可以找到。这里不再一一详述-只在下文中讨论一些关键的具有代表性的性质。 熔点:文献中离子液体的熔点一定要谨慎对待,离子液体的熔点具有不确定性,它们能够经受超冷,而且可能存在杂质的影响。 挥发性:对于典型的离子液体,正常的沸点与它们的标准大气压下的饱和蒸汽压有关,通过实验的手段确定的饱和蒸汽压是不准确的,因为离子液体适当的低温条件下是不挥发的。尽管如此,还是有文献可循,离子液体在200-300摄氏度的情况下会蒸发,但是当压力急剧下降时,挥发的速度很低,小于0.01g/H。问题是什么样的离子是离子液体?离子液体中的离子本性可以部分解释它们气态时的蒸汽压可以忽略不记的事实,也可以把它们同常规的分子溶剂区分开来。离子度的量化是定义离子液体的指标。而这些又可以通过有效的离子浓度来代替。 阻燃性:与易挥发的有机溶剂相比,离子液体被证明有成为绿色溶剂的潜力,主要因为离子液体在环境中不易挥发而且具有阻燃性,即使是高温。其他符合条件的溶剂也在研究当中,但还没有引起足够的重视。值得一提的是,离子液体用在热源处并不是因为它的阻燃性。离子液体的活性很高。它们可以代替肼及其衍生物,作为能量的供体。 热稳定性和化学稳定性:通过热重分析仪推算的离子液体的热解温度,可以知道离子液体的热稳定性很好,一般大于350摄氏度。但是离子液体作为催化剂等使用时的热稳定的长期性却没有什么有价值的发现。带有【NTF2】-和【N(CN)2】-阴离子的磷类离子液体分解为易挥发的物质要经过明显的几部。分解的产物说明在此过程中发生过霍夫曼消去反应或者脱烷基化反应。含氮的离子液体不完全分解,而是发生碳化(氰基化合物则易于形成高分子化合物)。 导电性和电化学窗口:电导率是评价离子液体能否既做溶剂又做电解液的重要性质。离子液体表现出宽泛的电导率,0.1-20mS/cm。在高电导率的离子液体中,咪唑基类的电导率要比铵基类高。影响离子液体的电导率的因素很多,如粘度、密度、粒子大小、阴离子电荷离域效应、聚集态以及粒子运动。人们现在引用强离子对效应来解释为什么【NTF2】-基的离子液体的电导率比【BF4】-基的离子液体低。说到离子液体的电化学窗口,典型的离子液体在4.5-5V,与传统的有机溶剂相比,类似或者

离子液体论文

题目:离子液体 学院:化学与材料工程学院 专业:无机功能材料 班级:无机121 学号:1510612130 姓名:张鹏程 时间:2014.4.13 摘要: 离子液体是近10年来在绿色化学的框架下发展起来的全新功能材料,具有不挥发、不可燃、液态范围宽、热稳定性好、溶解性好、物化性质可调等优点,已被作为催化剂、反应介质成功地应用于有机合成、电化学、分离提取及材料科学等领域。研究开发新型离子液体并扩展其应用范围,具有重要意义。近年来其应用领域不断扩大并迅猛发展,目前已从化学制备扩展到材料科学、环境科学、工程技术、分析测试等诸多领域,并迅速在各领域形成研究热点。 一:离子液体简介 1.离子液体的定义 离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐(室温离子液体常伴有氢键的存在,定义为室温熔融盐有点勉强)、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。 2.离子液体的发展历史 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+ HNO3-的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。

1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) 。但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用。 直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃。在这以后,离子液体的应用研究才真正得到广泛的开展。 3.离子液体的分类 正离子:烷基季铵离子、烷基季瞵离子、1, 3 -二烷基取代的咪唑离子、N - 烷基取代的吡啶离子; 负离子的不同可将离子液体分为两大类:一类是卤化盐。其制备方法是将固体的卤化盐与AlCl3混合即可得液态的离子液体,但因放热量大,通常可交替将2种固体一点一点地加入已制好的同种离子液体中以利于散热。此类离子液体被研究得较早,对以其为溶剂的化学反应研究也较多。此类离子液体具有离子液体的许多优点,其缺点是对水极其敏感,要完全在真空或惰性气氛下进行处理和应用,质子和氧化物杂质的存在对在该类离子液体中进行的化学反应有决定性的影响。 另一类离子液体,也被称为新离子液体,是在1992年发现BF4的熔点为 12 ℃以来发展起来的。这类离子液体不同于AlCl3离子液体,其组成是固定 的,而且其中许多品种对水、对空气稳定,因此近几年取得惊人进展。其正离子多为烷基取代的咪唑离子 + ,如 + ,负离子多用BF4- 、PF6- ,也有CF3 SO3- 、(CF3 SO2 ) 2N- 、C3 F7 COO- 、C4 F9 SO3、CF3 COO- 、(CF3 SO2 ) 3 C- 、(C2 F5 SO2 ) 3 C- 、(C2 F5 SO2 ) 2N- 、SbF6- 、AsF6、为负离子的离子液体要注意防止爆炸(特别是干燥时)。 二:离子液体研究现状与前景

核磁共振波谱技术在室温离子液体研究中的应用

收稿:2008年5月,收修改稿:2008年10月 3国家自然科学基金项目(N o.20573034)资助33通讯联系人 e 2mail :Jwang @https://www.doczj.com/doc/ff2345375.html, 核磁共振波谱技术在室温离子液体 研究中的应用 3 翟翠萍1  刘学军1  王键吉 233 (1.河南大学化学化工学院 开封475001;2.河南师范大学化学与环境科学学院 新乡453007) 摘 要 室温离子液体作为一种绿色溶剂和功能材料,越来越引起人们的重视,其研究手段也越来越 多。本文着重概述了核磁共振方法在测定离子液体的结构、纯度及性质,研究离子液体阴阳离子间的相互作用、离子液体与其他化合物的相互作用、离子液体及其在混合体系中的动力学特征、离子液体在溶液中的聚集行为,以及测定离子液体的热力学参数中的应用。 关键词 核磁共振 室温离子液体中图分类号:O64514;O657139 文献标识码:A 文章编号:10052281X (2009)0521040212 Applications of NMR Techniques in the R esearch of R oom Temperature Ionic Liquids Zhai Cuiping 1  Liu Xuejun 1  Wang Jianji 233 (1.C ollege of Chemistry and Chemical Engineering ,Henan University ,K aifeng 475001,China ;2.C ollege of Chemistry and Environmental Science ,Henan N ormal University ,X inxiang 453007,China )Abstract As new green s olvents and functional materials ,room tem perature ionic liquids (I Ls )have attracted great attention.The present paper reviews the applications of NMR techniques in the research of structure ,properties ,and interactions of cations with anions of I Ls ,interactions between I Ls and the other com pounds ,the dynamic characteristics of I Ls and their mixtures ,the aggregation behavior of I Ls in s olutions ,and the determination of therm odynamic parameters of I Ls. K ey w ords NMR ;room tem perature ionic liquids Contents 1 Determination of the structure ,purity and properties of ionic liquids 2 Study on the interactions of cations with anions of ionic liquids 3 Study on the interactions of ionic liquids with the other com pounds 4 Study on the dynamic characteristics of ionic liquids and their mixtures 411 Measurements of the spin 2lattice relaxation time and the m olecular rotation correlation time of ionic liquids 412 Measurements of the self 2diffusion coefficients of ionic liquids 5 Study on the aggregation behavior of ionic liquids in s olutions 6 Determination of the therm odynamics parameters of ionic liquids 第21卷第5期2009年5月 化 学 进 展 PROG RESS I N CHE MISTRY V ol.21N o.5  May ,2009

离子液体在有机合成中的应用概述

离子液体在有机合成中的应用 摘要:室温下的离子液体作为一种绿色、环保、可替代传统有机溶剂的新型溶剂受到了极 大关注。总结了近年来离子液体在有机合成反应中的研究新进展, 包括氧化反应、还原反应、Fr iedel Crafts 应、Diels Alder 反应、H eck 反应、硝化反应及其它合成反应。 关键词:绿色化学; 离子液体; 有机合成 引言:离子液体离子液体由带正电的离子和带负电的离子构成,在- 100~ 200 之间均呈 液体状态。与典型的有机溶剂相比, 离子液体具有无味、无恶臭、无污染、不易燃、易与产物分离、使用方便、易回收、可多次循环使用等优点, 此外还具有优良的可设计性, 可以通过分子设计获得具有特殊功能的离子液体。因此, 离子液体是传统挥发性溶剂的理想替代品, 能有效地避免使用传统有机溶剂所造成的环境、健康、安全以及设备腐蚀等问题, 是名副其实的、环境友好的绿色溶剂, 适合于清洁技术和可持续发展的要求, 已经被人们广泛认可和接受。 1 含有手性阳离子的手性离子液体 1.1 咪唑盐类CIL 利用手性试剂作为反应底物立体选择性地合成手性产物的不对称诱导反应已被很多研究者关注. 早在1975 年, Seebach 和Oei[1]首次将手性的氨基醚作为反应介质, 应用于酮的电化学还原反应中, 尽管产量很低,但是该方法促进了手性溶剂的进一步发展和研究.近些年来, 由于天然氨基酸易得、种类多等优点,它作为手性源并将手性中心引入到阳离子来合成CIL 已经引起了人们广泛的兴趣. 该方法可以克服手性试剂价格昂贵、难以合成等缺点, 而且合成出的离子液体种类比较多. 2003 年, Bao 等[2]首次报道了用天然手性氨基酸合成带有侧链的咪唑类手性离子液体(Scheme 1). 首先是利用氨基酸1 与醛反应生成咪唑环后酯化得到酯2,接着用四氢铝锂还原酯得到咪唑类的醇3, 3 与溴乙烷发生烷基化反应得到咪唑类手性离子液体4, 总产率为30%~33%. 这些手性离子液体的熔点为5~16 ℃, 它们可作为溶剂应用于不对称反应中.

相关主题
文本预览
相关文档 最新文档