当前位置:文档之家› 太阳能路灯控制器电路图

太阳能路灯控制器电路图

太阳能路灯控制器电路图
太阳能路灯控制器电路图

太阳能路灯控制器电路图

时间:2010年04月07日来源https://www.doczj.com/doc/ff18862884.html, 作者:17ic编辑我要评论(0)

请输入QQ号或者其它邮箱

推荐给朋友:

太阳能路灯控制器电路图

1 .工作原理

电路原理见图 1 所示。该电路由以 U5 为核心组成的蓄电池过充电控制电路、以 U 4A ~U4D为核心组成的蓄电池电压指示电路及显示电压按钮开关 KS1 电路、以 U1B 组成的蓄电池过放电控制电路、以 U1A组成的开灯检测控制电路、以 U2 组成的开灯及延时熄灯及二次开灯定时控制电路,以及以控制三极管Q2驱动继电器组成的输出控制电路等组成。现分别介绍如下。

(1) 过充电、过放电检测保护部分太阳能电池组件板或阵列由插口 CZ1 的①脚输入,加至防反充电二极管 D2 的正极.D2的负极接 12V 蓄电池的正极,即 CZ1 的③脚。控制器在初始上电时,由于 C4 的作用使 U5②脚为低电平,③脚输出高电平,Q7 导通; Q8 截止,允许太阳能电池给蓄电池充电。当蓄电池所充的电压小于 14 . 4V 时,由R13 、 (R38 十R39) 组成的串联分压电路送至 U5 ②、⑥电压低于 2 / 3 U5 的供电电压时,即小于6V,电路维持充电状态;随着充电时间的延长,蓄电池电压逐渐升高,当 U5 ②、⑥的电压高于2 / 3 U5 供电电压时,U5③脚输出低电平, Q7 截止、 Q8 导通,给太阳能电池板泄放电

流,停止对蓄电池充电。在U5③脚输出低电平的状态下,其⑦脚导通,相当于将 1140 并入电路中。此时电路的分压比为: R38+ R39 // R40/IRl3+(R38+R39) // R40 ,不难算出,当蓄电池电压低于设定值 13V 时.电路状态再次翻转,U5③脚输出高电平,允许蓄电池充电。

(2) 开灯检测方法与控制

太阳能电池板是一个很好的光敏元件,其输出电流、电压能随着接受光的强度和照度变化而变化,本控制器就是利用这一原理实现开、关灯控制的。太阳能电池板PVin 输入电压经R5 、 R6 串联分压后;加至运放 U 1A ②脚,其③脚接于 R9 、R8+VR1的分压点上。在白天,太阳能电池板在阳光的照射下输出电压很高,其经 R5 、 R6 分压后使运放 U 1A②脚电压高于③脚, U 1A①脚输出低电平, Q1 截止, U2 无供电电压不工作,Q2截止,继电器不吸合,系统无输出电压,路灯不工作。随着天色渐黑,太阳能电池板输出电压降低。 UlA ②脚的电压也同步降低,当 U1A②脚电压低于③脚时,比较器翻转, U 1A ①脚输出高电平,Q1 导通,定时电路 U2 得电工作, Q2 导通、JDQ1吸合点亮路灯。图中 VR1 为路灯开灯时刻设置调节电位器,调节 VRl 可设置不同时刻点亮路灯。DW1是钳位二极管,作用是避免白天太阳能电池板接受的电压过高导致 U 1A ②脚输入电压过高而损坏。 C1 为储能电容,作用是防止 U1A②脚电压瞬时突变误点亮路灯。 R14 为反馈电阻.其作用是使 U 1A 成为一个迟滞比较器.防止和避免 U1A在开灯点附近振荡而反复开、关路灯。

(3) 路灯延时电路点亮、熄灭控制电路

延时控制电路选用 CD4541BE 可编程定时控制芯片,它功耗低、内置可编程分频器电路,最大分频级数为 65536 级。

本控制器设计定时开灯和定时关灯时间调节范围是: 2 . 093 小时 -11 . 93 小时.分别由 V : R2 和VR3控制调节。

(4) 蓄电池停止放电优先控制电路

若在路灯欲点亮或已点亮时,蓄电池电压已经低于其允许终止放电值时, Q4 导通.此时无论 U 1A 输出高电平与否,均会使Q1截止,从而保护蓄电池避免过放电损坏。

(5) 电池电压指示电路

为了让现场看管、维护人员及时了解、掌握蓄电池的状态,本控制器设有 LED 电池电压指示装置,通过LLED点亮的数量指示蓄电池电压的高低。

2 .电路调试

制作中发现。 NE555 时基电路的实际状态转换点,即 1 / 3V( : C 与 2 /3VCC状态的翻转跳变点并不是严格遵循理论值。通过调节电阻 R13 可实现 14 . 4V 的过充电控制。将 R13 由设计的100kΩ换为 120k Ω即可达到实际要求。同理,通过调节 VR4 可校准蓄电池指示电压。

二、用 PIC 12F 675 单片机制作的太阳能路灯控制器

图 2 是用:PIC12F675单片机制作的太阳能路灯控制器电路。 PIC 12F 675 是 8 引脚单片机,具有 6个I / 0 口,自带内部 RC 振荡器 ( 振荡频率为 4MHz) 、 4 路 10 位 A /D转换器、一路比较器,该控制器性能稳定、可靠,耗电低。

1 .工作原理

PIC 12F675控制蓄电池的过充电、过放电,开、关路灯功能,定时点亮、天黑自动点亮、延时点亮、自动跟踪点亮等功能,路灯点亮测试控制功能,LED指示功能等。

由蓄电池 BTl 、蓄电池过充电控制执行场效应管 01 、三端稳压器 U1 组成电源供电系统;Q2 、 Q4.组成放电控制;K1 手动, R_GM1 光控自动开灯系统,蓄电池分压电阻,发光指示二极管等部分组成。太阳能电池板电压由接口J3输入.经防反充二极管 D1 后分成两路,一路经 U1 LM 78L 05 稳压后,为 PIC 12F675单片机提供工作电源,另一路经 FB 保险丝给蓄电池充电。单片机上电后,首先由 Rf 、 Cf组成的硬件电路进行复位.然后由软件控制U2 ③脚 GP4 输出高电平,让 Q4 导通、 Q2 截止,控制系统停止放电,再检测 U2⑦脚GP0 上的分压值,通过内部 A/ D 转换及软件运算间接检测、判断蓄电池是否欠压、过压.若蓄电池发生过充电,则通过软件控制U2 ②脚 GP5 输出高电平,使 Q1导通.短路太阳能电池板、停止向蓄电池充电,同时点亮“过充电”指示灯 LED2;若未发生过充电,则 U2 ②脚 GP5输出低电平,允许蓄电池充电。通过检测 U2 ⑥脚 GP1 所接的光敏电阻R_GM1上的分压值,判断是否已经“天黑,到了开路灯时间”,若到了预设的开灯点,则由软件控制 u2 ③脚 GP4 输出低电平,使 Q4截止、02 导通,点亮路灯。若不到开灯点,则程序返回,循环检测上述诸参数。

K1 是手动开灯按钮。按下 K1 ,路灯点亮。单片机通过检测光敏电阻R_GM1上的分压值,判断是否“天黑”,若是天黑.则按设计要求点亮路灯,若否,单片机进入路灯控制器“测试”功能:2分钟后路灯自动熄灭。

2 .说明

由于单片机程序设计十分灵活,故这里用“开灯点”作为开灯标记符,这个点可以是时间。也可以是天黑的“程度”。若定义的是时间,可以让路灯从此时开始计时,点亮若干小时后熄灭;若是天黑的程度,可以让路灯到了此天黑程度后开始点亮。此后既可计时熄灭,也可判别天亮后熄灭。一切由软件设计人员抉择。

基于单片机的太阳能路灯控制器设计毕业设计(论文)

安徽工程大学机电学院毕业设计(论文) 毕业设计论文 基于单片机的太阳能路灯控制器设计 摘要 本论文主要完成对光伏电源LED照明控制系统进行优化设计和研究,以使系统达到稳定、操作方便、节能环保的要求。太阳能路灯智能控制器以AT89C52单片机为核心,主要由六个部分组成:太阳能电池板、蓄电池、负载(LED路灯)、控制器、测量电路、充电电路、放电/负载驱动电路。本课题的主要研究内容有:针对现有独立运行的太阳能路灯控制器的特点,实现多点控制蓄电池剩余荷电容量(SOC)控制和脉宽调制信号(PWM)来驱动太阳能LED路灯控制器的硬件设计和软件程序设计。 首先对太阳能路灯基本模块组成、基本功能及发展现状进行了阐述,并根据蓄电池剩余荷电容量(SOC)的数学模型和剩余荷电容量(SOC)与蓄电池的使用寿命的关系提出了单片机系统改进的控制方案,并根据实际需要提出用脉宽调制信号(PWM)来驱动和调节白光LED,可使白光LED工作于发射最纯净白光。半导体PN结技术的太阳能光伏发电技术与发光二极管(LED)照明技术,都有着环保、节能、长寿命和安全的特点。对这两项技术的高效结合进行优化研究,符合我国目前节能,环保及可持续性发展的目标。 总之,随着城市规模的不断扩大,现有的路灯技术不能达到环保节能的要求,本文采用多点控制蓄电池剩余荷电容量(SOC)控制和脉宽调制信号(PWM)来驱动太阳能LED路灯控制器的硬件设计和源程序设计,能有效解决LED太阳能路灯的不足。因此,本课题设计对我国LED路灯节能环保的发展有很大的现实意义。 关键词:光伏发电;剩余荷电容量;脉宽调制信号;控制系统

基于单片机的太阳能路灯控制器设计 II

太阳能路灯控制器使用说明书

。 太阳能智能充电控制器 使用说明书 一、主要特点 1.使用微处理器和专用控制算法,实现了智能控制。 2.两种负载工作模式:纯光控、常开模式,负载亮灭时间可调。 3.具有放电率修正控制,不同放电率具有不同的终止电压,符合蓄电池固有特性。 4.科学的蓄电池管理方式,当出现过放时,对蓄电池进行提升电压充电,进行一次补偿维 护,正常使用时,使用直充充电和浮充结合的充电方式,增强了蓄电池的使用寿命;同时具有高精度温度补偿,使充电控制更加精确。 5.参数设置具有掉电保存功能,即系统模式和控制参数等重要数据均保存在芯片内部,掉 电后不丢失,使调节更加方便,系统工作更可靠。 6.充电回路采用双MOS串联式控制回路,使回路电压损失较使用二极管的电路降低近一半, 充电采用PWM模糊控制,使充电效率大幅提高,用电时间大大增加。 7.LED直观显示太阳能电池、蓄电池和负载的状态,数码管显示调节参数,让用户实时了 解系统运行状况,并且具有丰富的参数设置,用户可以根据不同使用环境设置相应的工作模式。 8.具有过充、过放、过载保护以及独特电子短路保护与防反接保护,所有保护均不损害任 何部件,不烧保险;具有TVS防雷保护,无跳线设计,可提高系统的可靠性、耐用性。 9.所有控制全部采用工业级芯片和精密元器件,能在寒冷、高温、潮湿环境正常运行。同 时使用晶振定时控制,使定时控制更加精确。 10.使用了数字LED显示及设置,一键式操作即可完成所有设置,使用方便直观。 二、系统说明: 本控制器专为太阳能直流供电系统、太阳能直流路灯系统、小型太阳能电站系统设计,使用专用电脑芯片实现了智能化控制,所有芯片均采用工业级别,可以在恶劣的环境下使用。对于具有12V/24V自动识别功能的型号,当控制器初次上电时,系统会进行电压识别,当数

基于51单片机太阳能路灯的控制系统

本设计基于C8051F330的PWM 限流控制器结合蓄电池充放电特性和电池伏安特性,专为LED路灯设计的充放电路。白天太阳能电池板给蓄电池充电作为供电能源,灯不亮;在晚上,蓄电池对LED路灯放电,达到照明目的。 1 太阳能路灯控制系统硬件设计 1.1 硬件组成 路灯控制电路系统如图1- 1 所示。 图1-1 路灯控制电路系统 1.2 控制器 1.2.1 充放电电路 选用C8051F330 单片机作主控制芯片,检测太阳电池电压、蓄 电池电压及充放电流等参数,并按一定算法控制MOS管的导通和关 断,达到控制路灯系统充放电的功能。 图1- 2 为控制器充放电电路图,电池板电压经R1 和R2 分压送至 A/D转换口检测,以判别光线强弱。光照充足时,电池板给蓄电池充 电。控制器实时检测蓄电池端电压,同时按设定转换点的蓄电池端电压 值,控制充电各阶段的电压转换和停充。 图1-2 充放电电路 1.2.2 MOSFET开关电路

设计中用MOSFET 实现电路通断。MOSFET 开关频率高适合作为PWM 控制充电开关。采用N 沟道MOSFET ,导通电压Vth>0,由图1- 3 实现MOSFET 驱动。R1 为基极限流电阻,C 为加速电容。当输入信号上升、下降时,R1 电阻瞬间被旁路并提供基极电流,在晶体管由导通状态变化到截止状态时能够迅速从基区取出电子(因为R1 被旁路),消除开关的时间滞后,提高开关速度。 图1-3 MOSFET 驱动电路图 1.3 电流采样电路 通过康铜丝电阻采样的电压经LM358 放大输入单片机,进行数据的处理。如下图1- 4 所示。 图1-4 电流的采样电路 回路电流在康铜丝电阻上产生的压降输入到放大器的反向输入端。其中 10-R R -U U R U R U -0V 0U -U 12032 31021==== 1.4 电源电路

太阳能路灯详细说明

一.太阳能路灯概述 太阳能路灯以太阳光为能源,白天充电晚上使用,无需复杂昂贵的管线铺设,可任意调整灯具的布局,安全节能无污染,无需人工操作工作稳定可靠,节省电费免维护。 1.系统组成 系统由太阳能电池组件部分(包括支架)、LED灯头、控制箱(内有控制器、蓄电池)和灯杆几部分构成;北京天柱阳光太阳能电池板光效达到127Wp/m2,效率较高,对系统的抗风设计非常有利;灯头部分以1W-5W白光LED和1W-5W黄光LED集成于印刷电路板上排列为一定间距的点阵作为平面发光源。 控制箱箱体以不锈钢为材质,美观耐用;控制箱内放置免维护铅酸蓄电池和充放电控制器。本系统选用阀控密封式铅酸蓄电池,由于其维护很少,故又被称为“免维护电池”,有利于系统维护费用的降低;充放电控制器在设计上兼顾了功能齐备(具备光控、时控、过充保护、过放保护和反接保护等)与成本控制,实现很高的性价比。 2.工作原理 系统工作原理简单,利用光生伏特效应原理制成的太阳能电池白天电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至10lux左右、长沙光合太阳能电池板开路电压4.5V左右,充放电控制器侦测到

这一电压值后动作,蓄电池对灯头放电。蓄电池放电8.5小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是保护蓄电池。 3.设计思想 1,太阳能电池组件选型 设计要求:北京地区,负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。 ⑴北京地区近二十年年均辐射量107.7Kcal/cm2,经简单计算北京地区峰值日照时数约为3.424h; ⑵负载日耗电量= = 12.2AH ⑶所需北京天柱阳光太阳能组件的总充电电流= 1.05×12. 2×÷(3.424×0.85)=5.9A 在这里,两个连续阴雨天数之间的设计最短天数为20天,1. 05为太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。 ⑷太阳能组件的最少总功率数= 17.2×5.9 = 102W 选用峰值输出功率110Wp、单块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。 产品参数: *主体材料:灯杆为全钢结构、整体热镀锌/喷塑处理 *太阳能电池组件:晶体硅15-80WP(按负载配置) *系统工作电压:直流12V—24V

太阳能路灯控制器技术指标

太阳能路灯控制器技术指标 很多用户在采购太阳能路灯组件时,为了减少成本而选择达不到设计峰值要求的太阳能电池板和蓄电池,从而导致路灯经常欠压关闭,尤其在阴雨天难以满足正常的照明需求。控制器在整个太阳能路灯系统中价值虽然最小,但却是非常重要的一个环节,选择功耗较低、可以灵活调功、并且具有节电节能、充电高效率的路灯控制器尤为重要,配套使用后可以降低客户在太阳能电池板、蓄电池的采购成本,同时也提高了相关企业在竞标时的竞争力。 太阳能充放电控制器 一:光控(时控)模式: 开灯照度10LUX,相当于目前长江中下游地区夏天晚7:30左右,(采用电池板光压照度法,开关灯时间更准确、更合理;0-255LUX可任意调,关灯照度默认为在开灯照度基础上再加10LUX;开灯照度设定后,也可以在光控基础上选择时控。 二:欠压保护功能: 蓄电池电压低于欠压保护值时,控制器关闭两路负载,停止供电,如果继续放电,易造成蓄电池因为过放而损坏,所以欠压保护值国家强制标准为10.8V,(欠压保护值为10.0V-14.7V 可选,建议设置为11.1V。此保护功能不可以关闭) 三:安全的雷电保护:(比较先进技术) 通过TVS防雷管进行防雷,保证相关组件的安全 四:负载的短路保护、负载过流保护、蓄电池极性反接保护:(一般厂家的产品都有此功能)摒弃以前单独用保险丝进行保护,现已改成通过软件快速感应率先保护,更好的保护了相关器件不被损毁,省略了故障时人工换保险丝的麻烦。 五:反向放电保护: 通过两路场管控制蓄电池对电池板反向放电,防止蓄电池容量损耗,保护更完善。 六:控制器对蓄电池的温度补偿: 蓄电池有负温度特性,在常温下(25℃),每增加1℃,12V蓄电池电压降低0.014-0.018V 左右,此款控制器将给予电压补偿,既保证蓄电池在恒压环境工作,延长其使用寿命;又保证其不会受夏日高温环境影响而导致使用时经常欠压断电。(蓄电池埋于地下的,可以定制外置温度传感线) 七:低压节能保护:

关于太阳能路灯设计详解

太阳能路灯配置 一系统介绍 随着地球资源的日益贫乏,基础能源的投资成本日益攀升,各种安全和污染隐患可谓是无处不在。太阳能作为一种“取之不尽,用之不竭”的安全、环保新能源越来越受到重视,在照明领域中得广泛的应用,因为太阳能照明灯有着以下几个优点。 ●太阳能照明灯安装简便:太阳能灯具安装时,不用铺设复杂的线路,只要做一个水泥基 座,然后用不锈钢螺丝固定就可。 ●太阳能照明灯具无需电费:太阳能照明灯具是一次性投入,无任何维护成本,长期受益。 ●太阳能照明没有安全隐患:太阳能灯具是低压产品,运行安全可靠。 ●安装简单.免维护. ●节能环保,符合国家节能环保要求,响应对新能源的使用要求. ●提升城镇管理形象.树立节能降耗与新能源的城市旗帜. 太阳能照明安全无隐患、节能无消耗、绿色环保、安装简便、自动控制免维护等固有的特性为市政工程的建设直接带来明显可利用的优势。 太阳能照明灯是一个自动控制的工作系统,只要设定该系统的工作模式就会自动运行工作。太阳能路灯是理想的道路照明灯具,随着人们生活的提高和社会的不断发展,它将被广泛利用,使太阳赐给大地的光明在夜晚为人类照明。

不足1平方米的光伏电池板每年可发电200余度;一个56W的LED节能灯,相当于150W的高压钠灯,每天应用6个小时的话,一年才用120度电。二者倘若结合应用,电力消耗仅为传统路灯照明光源的十分之一。 据统计,我国照明用电量已占总用量的12%。按照我国提出的“中国绿色照明工程”,照明节电已成为节能的重要方面。目前的照明节能潜力很大,一般节能方案均能达到节约20%~35%,按保守的数量采取20%的计算,全国节约的电能价值非常巨大。而太阳能LED照明的推广应用,让“绿色照明”实现了新的跨越。 据统计,以一个中型城市为例,按有5万余盏路灯计,若全部采用太阳能LED路灯代替的话,则一年节电近亿度,合计7000万元人民币,则整个城市每年节省煤炭50000吨,减少二氧化碳排放110000吨。假设全球30%的路灯转而使用太阳能LED集成照明系统,粗略计算这些措施可以减少2.60亿吨全球二氧化碳排放量和4600亿千瓦时用电量。而这些数字相当于印度的全年用电量、日本全年用电量的一半或中国全年用电量的四分之一。 以已经调查过的城市济南为例.济南市的2000个行政村全部安装太阳能路灯,按照一个村装20盏(30W)来计算。发电量约为120万千瓦时,相当于每年可节省标准煤480多吨,减排灰渣约336吨,减排二氧化碳约900多吨,减排二氧化硫约36吨,减排可吸入颗粒物约6吨,真正为农村绿色生态建设做出实实在在的贡献。 1、系统基本组成简介 系统由太阳能电池组件部分(包括支架)、光源、控制箱(内有控制器)等几部分构成;太阳能电池板光效效率较高,对系统的抗风设计非常有利; 蓄电池箱做地埋式设计,美观耐用、方便更换;蓄电池箱内放置免维护铅酸蓄电池和充放电控制器。本系统选用阀控密封式免维护铅酸蓄电池,由于其维护很少,故又被称为“免维护电池”,有利于系统维护费用的降低;充放电控制器在设计上兼顾了功能齐备(具备光控、时控、过充保护、过放保护和反接保护等)与成本控制,实现很高的性价比;

太阳能路灯技术的要求规范

太阳能路灯技术规范 前言 随着地球资源的日益贫乏,基础能源的投资成本日益攀高,各种安全和污染隐患可谓无处不在,太阳能作为一种“取之不尽、用之不竭”的安全、环保新能源越来越受重视。同时,也随着太阳能光伏技术的发展和进步,太阳能灯具产品在环保节能的双重优势,太阳能路灯、庭院灯、草坪灯等方面的应用已经逐渐形成规模,太阳能发电在路灯照明领域发展已经日趋完善。 经济效益 太阳能路灯安装简便,不用铺设复杂的输电线路、配电设备,不需开挖路面、埋管工程,不消耗电能,大幅降低维护成本,使运行成本大大减低。据推算,太阳能路灯5-7年即可与普通路灯的总投资持平,之后则长期受益。太阳能灯具是低压产品,运行安全可靠,无安全隐患,不会因施工质量、工程改造、材料老化、供电不正常、水电气管道的冲突等多方面因素而造成安全隐患,为市政工程的建设直接带来明显可利用的优势。 社会效益 与当前国家提倡科学发展观、建设节约型社会、实现可持续发展的主旋律一致,标志着现代物质文明和精神文明的进步、民众观念的更新和社会责任感的增强。

环境效益 太阳能路灯系统所需电能由清洁无污染的太阳能转化而来,不采用常规公网电力,不消耗任何化石原料,没有二氧化碳、二氧化硫的有害气体的排放,在环境危机不断加剧的今天,推广应用太阳能等新能源发电对于节能减排、改善环境,保证社会的可持续发展具有战略意义。 太阳能发电照明与传统发电照明的比较:

安全性能1.系统使用低压直流电源,密封性能 好,不怕水,不怕漏电,无触电危险。 1.易漏电,有触电危险; 2.短路易引发火灾,烧坏电网, 造成生命财产损失。 安装成本1.安装方便,使用灵活,只需安装于有 阳光的地方即可使用; 2.移动方便,无需其它投资和施工。 1.局限性大,布局更改困难安装 成本的地方即可使用; 2.移动需重新施工,再次投入资 金。 目的 为了更好的规范太阳能路灯的安装和管理特制定本规范,以便在日常工作中能够起到监督管理作用,保证产品质量,满足客户要求。 一、太阳能路灯的工作原理 太阳能路灯由以 下几部分组成:太阳 能电池、蓄电池、太 阳能路灯专用控制器、 光源及灯杆。工作原 理:在白天太阳能电 池接受阳光照射产生 给蓄电池充电,将光 能转换为电能,通过 太阳能控制器给蓄电 池充电,将电能存储

光电互补路灯控制器与太阳能路灯控制器有何区别

光电互补路灯控制器与太阳能路灯控制器有何区别 光电互补LED 路灯照明系统就是以太阳能电池发电为主,以普通220V交流电补充电能为辅的路灯照明系统,采用此系统,光伏电池组和蓄电池容量可以设计得小一些,基本上是当天白天有阳光,当天就用太阳能发电同时给蓄电池充电,到天黑时蓄电池放电把负载LED 点亮。在我国大部分地区,全年基本上都有三分之二以上的晴朗天气,这样该系统全年就有三分之二以上的时间用太阳能照亮路灯,剩余时间用市电补充能量,既减小了太阳能光伏照明系统的一次性投资,又有着显着的节能减排效果,是太阳能LED路灯照明在现阶段推广和普及的有效方法。太阳能路灯用蓄电池由于频繁处于充电、放电循环中,而且会经常发生过充或深度放电等情况,因此蓄电池工作性能和循环寿命成为最受关注的问题。阀控式密闭型铅酸电池具有不需要维护、不向空气中排出氢气和酸雾、安全性好、价格低等优点,因而被广泛应用。蓄电池过充电、过放电以及蓄电池环境温度等都是影响蓄电池寿命的重要因素,所以在控制器中要重点采取保护措施。 在光电互补路灯系统中,是靠太阳能和市电互补控制器对LED 路灯进行供电的。由于太阳光随天气变化差别很大,白天太阳光强时,太阳能电池板给蓄电池充电;晚上蓄电池给负载供电。阴天时,负载用电从蓄电池取得,当蓄电池放电电压降到最低允许限度时,自动转为市电补给。蓄电池的容量对保证可靠性供电很重要,电池容量过大导致成本价格升高,容量过小,又不能充分利用太阳能达到节能的目。充电电路用来调节充电电流与电压,使太阳能电池板稳定地对蓄电池充电。由于每天在各个时段太阳能电池板所转换的太阳辐射能不同,使得太阳能电池输出的电流和电压各不相同,这就需要通过必要的充电电路来控制。系统工作时,实时检测太阳能电池板的输出电压、蓄电池的电压,并根据各个电压值的不同状况,控制太阳能电池对蓄电池充电与否,并根据设定的路灯时控或光控方式,控制LED 路灯是否点亮,以及点亮时供电方式在蓄电池和市电之间的合理切换。 该控制器控制太阳能电池板对蓄电池组充放电,实时检测蓄电池容量,并用光电互补方式对负载供电。同时阐述了太阳能LED 路灯采用光电互补技术,既能提高可靠性,又能降低成本,是目前解决太阳能LED 路灯照明的最佳选择,并根据LED路灯负载计算了蓄电池容量和太阳能电池板容量的匹配关系。 太阳能路灯控制器利用蓄电池放电率特性修正的准确放电控制。放电终了电压是由放电率曲线修正的控制点,消除了单纯的电压控制过放的不准确性,符合蓄电池固有的特性,即不同的放电率具有不同的终了电压。具有使用了单片机和专用软件,实现了智能控制;过充、过放、电子短路、过载保护、独特的防反接保护等全自动控制;以上保护均不损坏任何部件,不烧保险;采用了串联式PWM充电主电路,使充电回路的电压损失较使用二极管的充电电路降低近一半,充电效率较非PWM高3%-6%,增加了用电时间;过放恢复的提升充电,正常的直充,浮充自动控制方式使系统由更长的使用寿命;同时具有高精度温度补偿;直观的LED发光管指示当前电瓶状态,让用户了解使用状况;所有控制全部采用工业级芯片(仅对带I工业级控制器),能在寒冷、高温、潮湿环境运行自如。同时使用了晶振定时控制,定时控制精确。取消了电位器调整控制设定点,而利用了Flash存储器记录各工作控制点,使设置数字化,消除了因电位器震动偏位、温漂等使控制点出现误差降低准确性、可靠性的因素使用了数字LED显示及设置,一键式操作即可完成所有设置,使用极其方便直观。

太阳能路灯控制器使用书

七、常见问题及处理方法: 太阳能智能充电控制器 使用说明书 一、主要特点 1.使用微处理器和专用控制算法,实现了智能控制。 2.两种负载工作模式:纯光控、常开模式,负载亮灭时间可调。 3.具有放电率修正控制,不同放电率具有不同的终止电压,符合蓄电池固有特性。 4.科学的蓄电池管理方式,当出现过放时,对蓄电池进行提升电压充电,进行一次补偿维 护,正常使用时,使用直充充电和浮充结合的充电方式,增强了蓄电池的使用寿命;同 时具有高精度温度补偿,使充电控制更加精确。 5.参数设置具有掉电保存功能,即系统模式和控制参数等重要数据均保存在芯片内部,掉 电后不丢失,使调节更加方便,系统工作更可靠。 6.充电回路采用双MOS串联式控制回路,使回路电压损失较使用二极管的电路降低近一半, 充电采用PWM模糊控制,使充电效率大幅提高,用电时间大大增加。 7.LED直观显示太阳能电池、蓄电池和负载的状态,数码管显示调节参数,让用户实时了 解系统运行状况,并且具有丰富的参数设置,用户可以根据不同使用环境设置相应的工 作模式。 8.具有过充、过放、过载保护以及独特电子短路保护与防反接保护,所有保护均不损害任 何部件,不烧保险;具有TVS防雷保护,无跳线设计,可提高系统的可靠性、耐用性。 9.所有控制全部采用工业级芯片和精密元器件,能在寒冷、高温、潮湿环境正常运行。同 时使用晶振定时控制,使定时控制更加精确。 10.使用了数字LED显示及设置,一键式操作即可完成所有设置,使用方便直观。 二、系统说明: 本控制器专为太阳能直流供电系统、太阳能直流路灯系统、小型太阳能电站系统设计,使用专用电脑芯片实现了智能化控制,所有芯片均采用工业级别,可以在恶劣的环境下使用。 对于具有12V/24V自动识别功能的型号,当控制器初次上电时,系统会进行电压识别,当数 码管显示“0”时,表示12V系统,若显示“1”则表示24V系统。同时系统具有短路、过载、 和独特的防反接保护,充满、过放自动关断、恢复等全功能保护措施,详细的充电指示、蓄 1 / 3

太阳能路灯设计要求

基本要求 ◇太阳能光伏作为电源,采用LED光源,照度要求相当于150W高压钠灯。 ◇使用地点在成都市双流县,要求全年不间断点亮(每天晚上不低于8小时)。◇灯高10m。 1设计依据 《城市道路照明设计标准》(CJJ 45-2006)。 2照明系统 2.1光源、灯具 采用___W LED照明,色温____,显色指数____,单颗光通量_____,品牌____。 2.3每盏路灯单独控制,以时控为基础,并辅以光控功能,且具有单独的遥控遥测功能。 2.4灯杆采用整板卷压成型热浸锌喷塑钢杆,__________。 2.5电控箱等采用防水、防尘型,防护等级不低于IP54。 3防雷与接地、风载 3.1灯杆避雷装置按三类防雷要求配置。 3.2接地极:____________。 3.3按照________的风速设计。 4节能环保 4.1采用太阳能光伏供电,太阳能光伏组件选用晶体硅_____Wp@stc___块,金太阳认证产品,转换效率16%以上,寿命20年以上。 4.2采用太阳能专用免维护胶体蓄电池,设计使用寿命8年。 4.3选用绿色环保且经国家认证的电气产品。 4.4满足灯具最低允许安装高度及美观的前提下,尽可能降低灯具的安装高度。5照明横断面图 5.1路灯采用双侧交错布置,位于人行道内0.5米处。 5.2路灯灯高10m,臂长1m,间距35米。 5.3采用半截光型LED灯具,功率为_______W。

5.4横断面图 6灯杆与灯具造型 6.1(灯杆尺寸、材质、制造工艺说明) 6.2(提供不低于8个灯具、灯杆外观样式供我方选择,外观要现代、大气)7地基 (施工图、结构图) 8其他 (需要说明的其他问题)

太阳能路灯控制器设计课程设计

太阳能路灯控制器设计课程设计

太阳能路灯控制器设计 摘要 为了提高太阳能光伏控制器的性价比,设计了运用单片机的太阳能光伏控制器。本控制器具有效率高、可靠性高、运行稳定、性价比高、适宜批量生产的特点。控制器实现了基于单片机PIC16F711的工作状态控制和蓄电池能量管理,满足了太阳能光伏控制器在不同工作状态下的稳定运行与准确切换的要求。蓄电池充放电精确控制也在此控制器中得到实现。实验结果表明,应用此控制器的太阳能光伏系统效率高、运行稳定,蓄电池寿命也可延长。 关键词:太阳能,单片机,充放电电路,锂蓄电池

1 绪论 1.1 课题背景 能源是经济、社会发展和提高人民生活水平的重要物质基础,能源问题是一个国家至关重要的问题。随着科学技术和全球经济地飞速发展,对能源的需求也在日趋增长。自20世纪70年代的世界石油危机以来,人们才真正意识到,化石燃料的储量是有限的,能源危机迫在眉睫。从全球来看,已探明的可支配的传统能源储量在不久的将来即将耗尽,能源问题的突出,不仪表现在常规能源的匮乏不足,更重要的是化石能源的开发利用对牛态环境的污染破坏:大气中的颗粒物和二氧化硫浓度增高,局部地区形成酸雨。而每年排放的大量二氧化碳带来的温室效应,使全球气候变暖,自然灾害频繁。常规能源在给人类社会带来飞速发展的同时,也在很大程度上使人类社会面临着前所未有的困难和挑战。这些问题最终将迫使人们改变能源结构,依靠科技进步,大规模地开发利用可再生洁净能源,实现可持续发展。 光伏发电具有取之不尽且无污染等优点,日前在我国,光伏发电主要应用在如下领域:西部偏远地区电力供应、通讯及交通设施、气象台站、航标灯和照明路灯。光伏发电的照明路灯应月J具有节能性、经济性和实川性等优点,在众多应用领域中具有最广泛的发展前景。本课题为研制一套独立光伏电源控制器,廊州于LED路灯照明系统。通常独立照明系统由太阳能电池、蓄电池、充放电控制器和负载LED组成。由于系统的稳定性严格受到蓄电池和LED寿命的影响,本课题研制的充放电控制器通过实时监测系统允放电回路的相关信息,确定相应的允放电策略,实现了稳定太阳能电池输出、优化蓄电池充电方法和保护蓄电池及负载的目的,最终提高了太阳能电池的利用率和整个照明系统的可靠性。 1.2 设计指标 本设计的设计要求指标如下: 1、锂蓄电池电压的检测 2、锂蓄电池电流的检测 3、充放电控制电路的检测

基于MPPT技术的太阳能发电的路灯控制系统

基于MPPT技术的太阳能发电的路灯控制系统 2011-4-6 10:50:24 太阳能是一种清洁高效的可再生能源。在阳光充足的白天,屋顶的光伏电池将太阳能转化成电能,供人们在夜晚使用。据专家预测,到2040年,全球的光伏发电量将占世界总发电量的26%,2050年后将成为世界能源的支柱。太阳能路灯以太阳光为能源,不需要铺设复杂的管线,安全节能无污染。白天利用太阳光给蓄电池充电,晚上蓄电池提供能量带动路灯工作。路灯的关/开过程采用光控,采用最大功率跟踪技术,最大程度的吸收太阳能,提高太阳能光电池的效率,以降低路灯系统的成本。最大功点跟踪(Maximum Power PointTracking,MPPT)系统是一种通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统。 1 硬件组成 太阳能路灯控制系统的组成如图1所示。

1.1 Buck电路及其驱动电路 Buck电路工作原理是通过斩波形式将平均输出电压予以降低,可以将输入接在光伏电池输出端,通过调节其输出电压来达到调节负载之目的,以保持光伏阵列输出电压在其最大功率点的电压和电流处。这里控制目标是输出功率为最大,调节手段是改变开关管的开通占空比。由于光伏阵列的软特性,并不是简单的增大开关管占空比就能增大光伏阵列输出功率。当Buck电路负载为蓄电池时,其构成了蓄电池充电电路,将蓄电池直接接在Buck电路的输出端,通过调节蓄电池的端电压实现蓄电池的充电控制,使用单片机智能控制方法,可以实现蓄电池的智能化充放电控制。 Buck电路为主电路,如图2所示,太阳能光伏阵列输出额定电压为35 V,输出额定电流为4.65 A,蓄电池额定电压为24 V,开关频率为80 kHz。电路工作在电流连续模式时电感量: 式中Ui为太阳能光伏电池输出电压;D为PWM脉冲占空比;f为开关频率;k为k=△I/2Io;△I为纹波电流;Io为负载上的输出电流。

6米太阳能路灯灯杆技术要求

6米太阳能路灯灯杆技术要求 1、总则 (1)所有灯具报价均为含光源及配套附件价格。 (2)所有灯具应设专用接地端子。 (3)灯具应满足运行安全,可靠性高,外型美观。 (4)灯具外型美观且应与周围环境相适应。 (5)灯具运行时应满足噪音低,故障率低,易维护,并能提供连续不断的服务。 (6)投标单位需按本标准的技术要求,完成路灯的设计、制造、运输、仓储、安装和调试、试运行、售后服务等工作。 (7)投标单位必须按招标文件各条款的内容和顺序逐项作出实质性应答。(主要性能指标必须填入技术性能表)任何不按此要求的招标文件将承担被拒绝接受的风险。 (8)投标单位应提供成熟的、已被广泛使用合格的产品和配置。 (9)灯具光源参数依据设计说明。 2、运行条件和技术要求:(路灯及控制箱参数满足以下要求同时必须满足设计说明,若有矛盾,以设计说明为准) (1)质量标准: 设计与制造和试验中应遵循的国家规范与标准包括但不限于以下: GB13037-91 《固定式通用灯具的技术条件》 GB70001-1996 《灯具通用安全要求与实验》 GB7001-86 《灯具外壳防护等级分类》 GB7003-86 《灯具电镀、化学覆盖层》 QB/T1504-94 《高压钠灯泡镇流器的性能要求》 QB/1115-91 《高压钠灯泡用电子部触发器性能要求》 GB13259-91 《高压钠灯泡》 GB9468-88 《道路路灯光度测试》 GB2694-88 《热浸镀锌体镀锌质量》 GB10854-89 《钢结构焊接外形尺寸》 GB77-88 《碳素结构钢》 AASHT01994 《灯杆、高杆、交通信号杆》 CJJ45-2006 《城市道路照明设计标准》 DIN EN13201 《固定地点交通照明》

太阳能路灯控制器产品

金士顿 小款四时段恒流一体机 双路分时段太阳能路 灯… 单路三时段自带恒流 控… 单路分时段太阳能路 灯… HCTS-L四时段控制恒 流…

威尔士 1 维尔仕太阳能MPPT调光路灯控制器WS-AL MPPT15 15A 来自: 太阳能控制器 品牌:维尔仕尺寸:134*100*31mm 品名:太阳能路灯控制器重量:260g 型号: WS-AL MPPT15 规格: 50台/箱维尔仕太阳能MPPT调光路灯控制器WS-AL MPPT15 15A WS-AL MPPT15 15A维尔仕太阳能路灯控制器(维尔仕智能型MPPT太阳能调光路灯控制器,光伏控制器)采用微电脑(CPU)控制技术,白天调节太阳能发电板的工作电压,使太阳能板全天时、全天候始终工作在V-A特性曲线的最大功率点。同普通太阳能路灯控制器相比,可以将光伏组件工作效率提高30%。当天黑时自动开启照明灯,给定照明灯弱光半小时后自动转为强光,到设定时间或天亮时转为晨光。其中强光时间可以随意设定:强光有10个小时可以设置成满功率光+半功率光,例如:把强光10个小时之中设置满功率光为6小时(灯泡满功率亮),之后4小时光线为半功率光(灯泡半亮),最后变为晨光直到天亮时控制器自动停止向负载供电(灯泡熄灭)。 WS-AL MPPT15 15A维尔仕太阳能路灯控制器还负责蓄电池的充、放电管理:当蓄电池电压低时,自动关闭照明灯,以保护蓄电池;当蓄电池充满时,自动进入PWM浮充状态;当天黑时,关闭充电回路,避免蓄电池通过太阳能板放电。从而大幅延长蓄电池的使用寿命。此外,本控制器还增加了全面的保护功能,使整个太阳能光伏系统高效,安全的运作。 WS-AL MPPT15 15A 维尔仕太阳能路灯控制器不同于其它的控制器,选用最先进的功率器件,简洁明了的LED显示,设备运行状况一目了然且适应寒冷,高温,潮湿等恶劣自然环境。性能优异、质量可靠,是专用于各种太阳能路灯或户用太阳能电源系统多功能、多用途的太阳能控制器。 功能特点: 1.MPPT最大功率功能 2.可以设定光线强度,节省能源消耗,真正达到节能效果 3.防止蓄电池过度充电、过度放电。 4.防止反充功能(蓄电池向太阳能板充电)。 5.防止蓄电池与太阳能电池反接功能。 6.根据光线强弱,傍晚自动开启照明灯。 7.可设定20级定时模式或10种分段模式 8. 12V、24V自动识别。

太阳能路灯控制器设计报告

太阳能路灯控制器设计报告 专业名称:电子信息工程 学生姓名:李伟 班级学号: 27378382737 指导教师: 实习日期:

太阳能路灯控制器设计 摘要:近年来,随着按照全面协调可持续的科学发展观的要求,把节约资源作为基本国策,发展循环经济,保护生态 环境,加快建设资源节约型、环境友好型社会,促进经济发展与人口、资源、环境相协调。这表明,发展循环经济,实 现节约发展、清洁发展、安全发展,从而实现可持续发展,然而对太阳能的利用就愈发的重要,本文综合介绍了太阳能 路灯控制器的构造及其原理,并提出自己的一些看法,一边为相关研发人员提供参考。 关键词:太阳能路灯控制器,太阳能,原理 一、太阳能路灯控制器的基本介绍 太阳能控制器应用于太阳能光伏系统中,它全称太阳能充放电控制器,协调太阳能电池板、蓄电池、负载的工作,是光伏系统中非常重要的组件。使整个太阳能光伏系统高效,安全的运作。 太阳能路灯控制器主要用于家庭、商业区、工厂、交通、牧区、通信以等太阳能供电系统。作为太阳能路灯控制器应该具备以下基本功能: 过载保护、短路保护、反向放电保护、极性反接保护、雷电保护、欠压保护、过充保护、负载开机恢复设置。 二、太阳能路灯控制器工作原理 新一代多功能太阳能路灯控制器。其电子线路配备了性能优良的单片机微处理芯片,具有高效率充电、五个LED 全功能显示、可编程的路灯控制模式等功能。 1、控制器具有如下功能: 带有自动温度补偿的三阶段的充电方式(强充电-均衡充电-浮充电),由脉宽调制(PWM)控制充电方式,可应用于给全密封或不密封的铅酸蓄电池充电。用户可以自己选择,由蓄电池容量(SOC)还是蓄电池电压来控制深度放电保护功能。五个LED可清晰地显示蓄电池的不同工作及充放电状态。 2主要技术参数: 根据太阳能电池组的开路电压自动识别白天和夜晚内置温度补偿蓄电池容量(SOC)或者蓄电池电压来控制深度放电保护功能极性反接保护两种夜间照明模式,其中一种为只有光控无定时模式。另一种是可编程的控制模式。当黄昏来临,在一定延时后,负载端自动打开。用户可自定义夜间负载打开的时长,设定时长以1小时为单位,在定时模式下最长可达12小时。五个LED全面显示蓄电池的不同充放电状态通过路灯控制器的可编程模式可分13段步进0.5V选择控制器天黑程度的控制点电压和天亮程度的控制点电压。充电采用串联调节PWM脉冲宽度方式进行控制。 3、设计原理 太阳能路灯是以太阳的光为主要能源,白天可以自主充电、晚上使用。无需铺设任何复杂、昂贵的电路管线等,同时还可以任意调整灯具的布局,安全高效节能并且无其它污染,充电和使用开关的过程采用光控自动控制,无需人工操作,工作稳定可靠,节省电费和电力资源,免维护,太阳能路灯的实用性已充分得到了人们的认可,本文介绍的是基于单片机的太阳能路灯控制器的设计,对12V和24V蓄电池可以实现自动识别,能实现对蓄电池的科学管理,能指示蓄电池过压、欠压等运行状态,而且具有两路负载输出,每路负载额定电流可以达到5A,两路负载可以随意设置为同时点亮、分时点亮,单独定时等多种工作模式,同时对负载的过流、短路具有保护等功能;且有较高的自动化和智能化程度。 硬件电路组成及工作原理是由统硬件结构框图太阳能路灯智能控制器以STC12C5410AD单片机为核心的。其中外围电路主要由电压采集电路、主要负责输出控制与检测电路、LED显示电路及键盘电路等几部分组成的,电压采集电路包括:太阳能电池板和蓄电池电压采集,用于太阳光线强弱的识别以及蓄电池电压的获取。单片机的P3口的两位作为键盘输入口,用于工作模式等参数的设置。

太阳能路灯常见规格有几种

生活中随处可见的太阳能路灯,虽然低调不显眼,但是适应环境的能力很强,不管是城市道路还是乡间小道,都默默发挥着作用。需要注意的是不同的规格适用的环境是不一样的,通常来说,常用的规格有: 一、1.6米30W 很多农村太阳能路灯采用这个规格,其亮度能满足农村地区夜晚户外照明需求,适合10米内宽度的道路安装。这种规格的农村太阳能路灯横竖照射范围都为20米左右。 二、7米40W 此太阳能路灯规格也常常适用于农村地区。适合道路宽度15米内,横竖照射距离为25米左右。

三、3.8米60W 此规格适合对照明要求不是太高的集镇街道。适合道路宽度20米内,横竖照射距离为35米。 四、4.9米80W 此太阳能路灯规格适合道路照明要求高并且道路宽度大的城市地区,适合道路宽度25米,横竖照射距离40米左右。但是此规格太阳能路灯配置要求很高,整体太阳能路灯价格很大,因此采用的地区并不多。 一般常见的太阳能路灯杆高度为5米~9米,太阳能灯头功率为20W~80W之间,是采用的LED光源。这里要说一下,太阳能灯头的功率没有超过80W的原因,因为如果功率过大的话,所需要搭配的太阳能路灯配置就要很大,而灯头功率超过80W所需要的太阳能电池板功率是很大的,因此其面积和重量也会很大,安装到路灯杆上

会大大增加路灯杆的风阻,从而影响太阳能路灯杆的稳定性。况且灯头功率过大,使得太阳能路灯价格会过分昂贵。因此太阳能灯头的功率最好选择在20W~80W之间。按照这种路灯杆的高度和灯头功率搭配会产生很多种规格,而常见的规格为: 5W太阳能路灯50W电池板55AH蓄电池。 18W太阳能路灯60W电池板65AH 蓄电池。 21W太阳能路灯70W 电池板80AH蓄电池。 24W太阳能路灯80W电池板80AH 蓄电池。 30W太阳能路灯90W电池板100AH 蓄电池。 36W太阳能路灯100W电池板120AH蓄电。 42W太阳能路灯130W电池板80AH*2蓄电池。 50W太阳能路灯150W电池板100AH*2蓄电池。

太阳能路灯控制系统常用英语词汇表达及解释--精华归纳

太阳能路灯控制系统常用表达词汇 灯具:Luminaire 亮度: Luminance=辉度 照度: Illuminance 照明: Illumination 光源: illuminant 发光的: Luminous 路灯灯杆Street light pole 路灯灯具Street light Luminaire 灯饰配件Light fitting 灯罩Light shade/cap 灯头/灯座Lamp holder/base 灯盘Lamp house 光源Light source, illuminant 灯泡light/lamp bulb 节能灯Energy saving/conservation lamp 灯杯light/lamp cup 白炽灯Filament lamp/incandescent lamp LED灯LED lamp 金属卤素灯Metal halide lamp/halogen lamp 应急灯Emergency lamp 嵌入式/埋地灯Recessed/embedded lamp 电子感应灯Electronic sensor light/lamp 荧光灯Fluorescent light/lamp 汞灯Mercury lamp 钠灯Sodium lamp 五金配件Hardware fitting 玻璃配件Glass fitting 压铸件Die-casting fitting 开关Switch 插头Plug 插座Socket/Plug base 电感/电子镇流器Inductive or magnetic /electronic ballast 适配器Adaptor 变压器Convertor, transformer 启动器Starter 整流器Commutator, current rectifier 感应器Sensor 调光器-衰减器Dimmer 端子台Terminal 子系统Subsystem

太阳能路灯控制器电路2例

太阳能路灯控制器电路2例(组图)2008-08-12 08:20:17中国能源信息网我要评论 核心提示:太阳能路灯控制器电路. 1 .工作原理 电路原理见图 1 所示。该电路由以U5 为核心组成的蓄电池过充电控制电路、以U 4A ~U4D为核心组成的蓄电池电压指示电路及显示电压按钮开关KS1 电路、以U1B 组成的蓄电池过放电控制电路、以U1A组成的开灯检测控制电路、以U2 组成的开灯及延时熄灯及二次开灯定时控制电路,以及以控制三极管Q2驱动继电器组成的输出控制电路等组成。现分别介绍如下。 (1) 过充电、过放电检测保护部分太阳能电池组件板或阵列由插口CZ1 的①脚输入,加至防反充电二极管D2 的正极.D2的负极接12V 蓄电池的正极,即CZ1 的③脚。控制器在初始上电时,由于C4 的作用使U5②脚为低电平,③脚输出高电平,Q7 导通;Q8 截止,允许太阳能电池给蓄电池充电。当蓄电池所充的电压小于14 .4V 时,由R13 、(R38 十R39) 组成的串联分压电路送至U5 ②、⑥电压低于2 /3 U5 的供电电压时,即小于6V,电路维持充电状态;随着充电时间的延长,蓄电池电压逐渐升高,当U5 ②、⑥的电压高于2 / 3 U5 供电电压时,U5③脚输出低电平,Q7 截止、Q8 导通,给太阳能电池板泄放电流,停止对蓄电池充电。在U5③脚输出低电平的状态下,其⑦脚导通,相当于将1140 并入电路中。此时电路的分压比为:R38+ R39 //R40/IRl3+(R38+R39) //R40 ,不难算出,当蓄电池电压低于设定值13V 时.电路状态再次翻转,U5③脚输出高电平,允许蓄电池充电。 (2) 开灯检测方法与控制 太阳能电池板是一个很好的光敏元件,其输出电流、电压能随着接受光的强度和照度变化而变化,本控制器就是利用这一原理实现开、关灯控制的。太阳能电池板PVin 输入电压

太阳能LED路灯系统设计方案

太阳能LED路灯系统设计方案 1.0总述 如今,太阳能已经成为人们公认的结净的绿色能源,并逐渐应用于民生,造福人类。其中太阳能庭院灯就是太阳能应用方式的一种,依靠白天太阳照射太阳能光伏组件而产生电能,并将所产生的电能输送到蓄电池进行储存。晚上当光照度降到一定程度时或达到某一时刻,通过控制器控制,使蓄电池对光源用电器放电。待到光照度升高到一定程度或某一时刻时,自动关闭用电。 2.0系统总体设计 太阳能路灯主要由太阳电池组件、组件支架、电控箱(内装控制器、蓄电池)、灯杆(含灯具)等几部分组成。系统示意图如下图: 图1 太阳能路灯系统示意图 2.1系统设置 本系统使用地区为**,其平均标准光照小时数为4.46小时。设系统每天正常工作8小时,每月连续阴雨天为5天,每两个连续阴雨天间隔20天。 2.2设计流程 本系统设计过程主要包括:灯杆的选型,灯具的选型,太阳能组件的配置,蓄电池、控制器的配置,系统保护措施设定。

3.0灯杆的选型 灯杆是整个路灯的支撑部分,对其硬度,高度,抗风能力,防腐等有较高的要求;现在常用的材料为Q235,通过一系列工艺加工而成,表面喷镀80μm的防腐层。 本系统安装路况为主干道,路宽30米,采用双侧对称排布。根据路灯施工设计规范(见表1),本系统采用截光型灯具,安装高度为10米(按照标准本应安装高度为15M,但是考虑高度越高,需要灯具的功率越大,灯杆设计越复杂,综合考虑后选择灯杆为12米,灯具安装高度为10米),间距为30米。灯杆上下口直径为Ф70/Ф250,材料厚度为3.75mm,圆锥度为11‰,地基尺寸500*500,法兰盘尺寸及孔间距400*400*18-300,基础架尺寸为300*300-Ф18。 表1 灯具的配光类型、布置方式与灯具的安装高度、间距的关系 注: Weff为路面有效宽度(m)。 4.0路灯功率的选择 根据路灯施工设计规范中对机动车交通道路照明标准(见表2)的要求,本系统属于级别I,路面平均照度取20勒克斯(lx)。则由此可得出灯具的总光通量为: 光通总量=(平均光照度*维护系数*照射面积)/(灯具数量*灯具利用系 数)=(20*0.9*15*30)/0.95=8526lm。

相关主题
文本预览
相关文档 最新文档