当前位置:文档之家› 中科大数字信号处理计算机作业

中科大数字信号处理计算机作业

中科大数字信号处理计算机作业
中科大数字信号处理计算机作业

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

数字信号处理实验报告

实验一MATLAB语言的基本使用方法 实验类别:基础性实验 实验目的: (1)了解MATLAB程序设计语言的基本方法,熟悉MATLAB软件运行环境。 (2)掌握创建、保存、打开m文件的方法,掌握设置文件路径的方法。 (3)掌握变量、函数等有关概念,具备初步的将一般数学问题转化为对应计算机模型并进行处理的能力。 (4)掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理。 实验内容和步骤: 1、打开MATLAB,熟悉MATLAB环境。 2、在命令窗口中分别产生3*3全零矩阵,单位矩阵,全1矩阵。 3、学习m文件的建立、保存、打开、运行方法。 4、设有一模拟信号f(t)=1.5sin60πt,取?t=0.001,n=0,1,2,…,N-1进行抽样,得到 序列f(n),编写一个m文件sy1_1.m,分别用stem,plot,subplot等命令绘制32 点序列f(n)(N=32)的图形,给图形加入标注,图注,图例。 5、学习如何利用MATLAB帮助信息。 实验结果及分析: 1)全零矩阵 >> A=zeros(3,3) A = 0 0 0 0 0 0 0 0 0 2)单位矩阵 >> B=eye(3) B = 1 0 0 0 1 0 0 0 1 3)全1矩阵 >> C=ones(3) C = 1 1 1 1 1 1 1 1 1 4)sy1_1.m N=32; n=0:N-1; dt=0.001; t=n*dt; y=1.5*sin(60*pi*t); subplot(2,1,1), plot(t,y); xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('正弦函数'); title('二维图形'); subplot(2,1,2), stem(t,y) xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('序列函数'); title('条状图形'); 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 二维图形 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 条状图形

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩. 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_

19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1.诉述有限元法的定义 答: 有限元法是近似求解一般连续场问题的数值方法 2.有限元法的基本思想是什么 答: 首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3.有限元法的分类和基本步骤有哪些 答: 分类: 位移法、力法、混合法;步骤: 结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4.有限元法有哪些优缺点 答: 优点:

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

有限元答案

1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别? 单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。 整体刚度矩阵的性质:对称性、奇异性、稀疏性。 单元Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。 整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力ζ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δΠp=δUε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2ΠP=δ2Uε+δ2V≧0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩC T(v)D(u)dΩ+∫ΓE T(v)F(u)dΓ为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。 建立弱形式的关键步骤:对场函数要求较低阶的连续性。 2.4为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz法收敛的条件是什么? (1)在Ritz 法中,N决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1构造单元形函数有哪些基本原则?形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一个坐标方向的次数不应超过完全多项式的次数。有时为了使位移函数保持一定阶次的完全多项式,可在单元内部配置节点。然而,这种节点的存在将增加有限元格式和计算上的复杂性,除非不得已才加以采用。形函数应保证用它定义的位移函数满足收敛要求,即满足完备性要求和协调性条件。 3.1构造单元形函数有哪些基本原则?试采用构造单元的几何方法,构造T10 单元的形函数,并对其收敛性进行讨论。 通常单元位移函数采用多项式,其中的待定常数由节点位移参数确定,因此其个数应与单元节点自由度数相等。根据实体结构的几何方程,单元的应变是位移的一次导数。为了反映单元刚体位移和常应变即满足完备性要求,位移函数中必须包含常数项和一次项,即完全一次多项式。 3.3何谓面积坐标?其特点是什么?为什么称其为自然坐标或局部坐标? (1)三角形单元中,任一点P(x,y)与其3个角点相连形成3个子三角形,其位置可以用下述称为面积坐标的三个比值来确定: L1=A1/A L2=A2/A L3=A3/A 其中A1,A2,A3分别为P23,P31,P12的面积。 (2)面积坐标的特点: a T3单元的形函数Ni就是面积坐标Li b面积坐标与三角形在整体坐标系中的位置无关。 c三个节点的面积坐标分别为节点1(1, 0, 0)、节点2(0, 1, 0)、节点3(0, 0, 1),形心的面积坐标为(1/3, 1/3, 1/3)。 d单元边界方程为Li=0(i=1,2,3) e在平行于23边的一条直线上,所有点都有相同的面积坐标L1(L1对应的三角形具有相同的高和底边),而且L1就等于此直线至23边的距离与节点1至23边的距离之比值。

数字信号处理第二章上机作业

第二章上机作业 1、ljdt(A,B)函数定义 function ljdt(A,B) p=roots(A); q=roots(B); p=p'; q=q'; x=max(abs([p q 1])); x=x+0.1; y=x; clf hold on axis([-x x -y y]) w=0:pi/300:2*pi; t=exp(i*w); plot(t) axis('square') plot([-x x],[0 0]) plot([0 0],[-y y]) text(0.1,x,'jIm[z]') text(y,1/10,'Re[z]') plot(real(p),imag(p),'x') plot(ral(q),imag(q),'o') title('pole-zero diagram for discrete system') hold off 例2.26 a=[3 -1 0 0 0 1]; b=[1 1]; ljdt(a,b) p=roots(a) q=roots(b) pa=abs(p) 程序运行结果如下: P= 0.7255+0.4633i 0.7255+0.4633i -0.1861+0.7541i -0.1861-0.7541i -0.7455 q=

-1 pa= 0.8608 0.8608 0.7768 0.7768 0.7455 例2.27 b=[0 1 2 1];a=[1 -0.5 -0.005 0.3]; subplot 311 zplane(b,a);xlabel('实部');ylabel('虚部'); num=[0 1 2 1];den=[1 -0.5 -0.005 0.3]; h=impz(num,den); subplot 312

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

2012《现代数字信号处理》课程复习...

“现代数字信号处理”复习思考题 变换 1.给出DFT的定义和主要性质。 2.DTFT与DFT之间有什么关系? 3.写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1.说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2.全通数字滤波器、最小相位滤波器有何特点? 3.线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4.简述FIR离散时间系统的Lattice结构的特点。 5.简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。 4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。 6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的μ值,μ值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少? 5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1.为什么偏差为零的估计不一定是正确的估计? 2.什么叫一致估计?它要满足哪些条件? 3.什么叫维拉-辛钦(Wiener-Khinteche)定理? 4.功率谱的两种定义。 5.功率谱有哪些重要性质? 6.平稳随机信号通过线性系统时输入和输出之间的关系。 7.AR模型的正则方程(Yule-Walker方程)的导出。 8.用有限长数据估计自相关函数的估计质量如何? 9.周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10.改进的周期图法谱估计有哪些方法?它们的根据是什么? 11.既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗? 12.经典谱估计和现代谱估计的主要差别在哪里? 13.为什么AR模型谱估计应用比较普遍? 14.对于高斯随机过程最大熵谱估计可归结为什么样的模型? 15.为什么Levison-Durbin快速算法的反射系数的模小于1? 16.什么是前向预测?什么是后向预测? 17.AR模型谱估计自相关法的主要缺点是什么? 18.Burg算法与Levison-Durbin算法的区别有哪些?

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

现代数字信号处理实验报告

现代数字信号处理实验报告 1、估计随机信号的样本自相关序列。先以白噪声()x n 为例。 (a) 产生零均值单位方差高斯白噪声的1000个样点。 (b)用公式: 999 1?()()()1000x n r k x n x n k ==-∑ 估计()x n 的前100个自相关序列值。与真实的自相关序列()()x r k k δ=相比较,讨论你的估计的精确性。 (c) 将样本数据分成10段,每段100个样点,将所有子段的样本自相关的平均值作为()x n 自相关的估值,即: 999 00 1?()(100)(100) , 0,1,...,991000x m n r k x n m x n k m k ===+-+=∑∑ 与(b)的结果相比,该估计值有什么变化?它更接近真实自相关序列()()x r k k δ=吗? (d)再将1000点的白噪声()x n 通过滤波器1 1 ()10.9H z z -= -产生1000点的y (n ),试重复(b)的工作,估计y (n )的前100个自相关序列值,并与真实的自相关序列()y r k 相比较,讨论你的估计的精确性。 仿真结果: (a)

图1.1零均值单位方差高斯白噪声的1000个样本点 分析图1.1:这1000个样本点是均值近似为0,方差为1的高斯白噪声。(b) 图1.2() x n的前100个自相关序列值 分析上图可知:当k=0时取得峰值,且峰值大小比较接近于1,而当k≠0时估计的自相关值在0附近有小幅度的波动,这与真实自相关序列r (k)=δ(k) x 比较接近,k≠0时估计值非常接近0,说明了估计的结果是比较精确的。

相关主题
文本预览
相关文档 最新文档