当前位置:文档之家› 最优化方法课程设计

最优化方法课程设计

最优化方法课程设计
最优化方法课程设计

最优化方法课程设计

湖南****大学

课程设计

资料袋

理学院学院(系、部)2013-2014 学年第一学期

课程名称最优化方法指导教师黄力职称讲师

学生姓名**** 专业班级数学与应用数学101班学号**********

学生姓名**** 专业班级数学与应用数学101班学号*********

学生姓名**** 专业班级数学与应用数学101班学号*********

题目最优化方法

成绩起止日期2013 年12 月16 日~2013 年12 月23 日

目录清单

湖南******大学

课程设计任务书

2013—2014 学年第1学期

理学院学院(系、部)数学与应用数学专业101 班课程名称:最优化方法

设计题目:求解各类最优化问题

完成期限:自2013 年12 月16 日至2013 年12月23 日共 1 周

指导教师(签字):年月日

系(教研室)主任(签字):年月日

设计说明书

最优化方法

求解各类最优化问题

起止日期:2013 年12 月16 日至2013 年12 月23 日学生姓名*********

学生姓名*********

学生姓名*********

班级数学与应用数学101班

学号*********

学号*********

学号*********

成绩

指导教师(签字)

理学院

2013 年12 月23 日

目录

第1章课程设计目的和要求 (3)

1.1设计目的 (3)

1.2设计要求 (4)

第2章具体问题及解析 (3)

2.1铁板问题 (3)

2.2配棉问题 (5)

2.3连续投资问题 (7)

2.4销售问题 (8)

2.5整数规划模型 (8)

第3章课程设计心得与体会 (9)

参考文献 (9)

第一章设计目的和要求

1.1设计目的:

1、理解线性规划原理并能解决实际问题;

2、学会针对实际问题建立数学模型;

3、掌握用Matlab实现线性规划问题;

4、发现学习Matlab中的不足之处,加以改进。

1.2设计要求:

1、编写针对实际具体的问题建立数学模型,并编写求解程序;

2、能够处理调试程序中出现的问题,并总结经验;

3、将实验过程中出现的问题加以分析讨论,找出解决办法;

4、该实验两人一组,通过共同讨论来一起学习。

第二章具体问题及解析

2.1铁板问题

某工厂有一张边长为5m的正方形的铁板,

欲制成一个方形无盖水槽,问在该铁板的四个角处剪去多大的相等的正方形才能使水槽的容积最大?

2.1.1建立数学模型:

设剪去的正方形的边长为X,则水槽的的容积为f(x).则有:

f(x)=(5-2x)^2*2,0

2.1.2用Matlab软件编辑,代码如下:

编写M文件fun2.m如下:

function f=fun1(x)

f=-(5-2*x).^2*x

主程序为:

[x,fval]=fminbnd('fun1',0,2.5);

xmax=x

fmax=-fval

2.1.3运行结果如下:

xmax = 0.8333

fmax = 9.2593

2.1.4结果分析:

即当x=0.8333m时,水槽容积最大,为9.2593m3

2.2配棉问题

一年纺纱能力为15000锭的小厂在采用最优化方法配棉前,某一种产品32D纯棉纱的棉花配比、质量指标及单价如

表:

有关部门对32D纯棉纱规定的质量指标为棉结不多于70粒,品质指标不小于2900.问应该如何选择棉花配比,才能使混棉单价最少?

2.2.1建立数学模型:

设在新的最优化配比方案中,国棉131、国棉229、国棉32各自所占的配比为X1、X2、X3.则有

Min=8400X1+7500X2+6700X3

s.t

60x1+65x2+80x3≤70,

3800x1+3500x2+2500x3≥2900,x1+x2+x3=1.

2.2.2用Matlab软件编辑,代码如下:

f=[8400 7500 6700]';

A=[60 65 80;-3800 -3500 -2500];

b=[70 -2900]';

Aeq=[1 1 1];

beq=[1];

lb=[0 0 0]';

[x,fval]=linprog(f,A,b,Aeq,beq,lb,[])

2.2.

3.运行结果如下:

Optimization terminated.

x =

0.0000

0.6667

0.3333

F val =

7.2333e+003

2.2.4.结果分析:

由上述结果可看出,即为国棉131、国棉229、国棉327各自所占的配比为0;0.6667;0.3333,混棉价:7233.3

2.3连续投资问题

部门在今后五年内考虑下列项目投资,已知:

1、项目A ,从第一年到第四年每年年初需要投资,并于次年

末收回本利115%;

2、项目B ,第三年初需要投资,到第五年末能回收本利125%

但规定最大的投资额不超过4万元;

3、项目C ,第二年初需要投资,到第五年末能回收本利140%

但规定最大的投资额不能超过3万元;

4、项目D,五年内每年初可购买公债,于当年末还,并加利息

%。

该部门现有资金10万元,问应该如何确定这些项目的投资额

才能使得到第五年末拥有的资金本利总额最大?

2.3.1建立数学模型:

这是一个连续投资问题,与时间有关.但这里设法用线性规

划方法,静态地处理.

设以xiA,xiB,xiC,xiD(i=1,2,…,5)分别表示第i 年年初给项目A ,B ,C ,D 的投资额,它们都是待定的未知变量.则可建立模型如下:

?

??

????

?=--=--+=--++=-++=++++=006.115.1006.115.1006.115.1006.110000006.14.125.115.1max 4353244213331222115224

x x x x x x x x x x x x x x x x x x x x x x z D A D D A D A

D A D B A D D C A

D A D

C B A

2.3.2用lingo软件编辑,代码如下:

max =1.15*x4A+1.40*x2C+1.25*x3B+1.06*x5D;

x1A+x1D=100000;

x2A+x2C+x2D-1.06*x1D =0;

x3A+x3B+x3D-1.15*x1A-1.06*x2D =0;

x4A+x4D-1.15*x2A-1.06*x3D =0;

x5D-1.15*x3A-1.06*x4D=0;

x3B<= 40000;

x2C<= 30000;

2.3.3运行结果如下:

2.3.4 结果分析:

第一年:x1A=71698.11元,x1D=28301.89元;

第二年:x2A=0元,x2C=30000元,x2D=0元;

第三年:x3A=0元,x3B=40000元,x3D=42452.83元;

第四年:x4A=45000元,x4D=0元;

第五年:x5D=0元.

到第五年末该部门拥有资金总额为143,750元,即盈利3.75%.

2.4销售问题

某公司经营两种设备,第一种设备每件售价30元,第二种设备每件售价450元,根据统计,售出一件第一种设备所需的营业时间平均为0.5h,第二种设备是2

h,其中2x是第二种设备的

(20.25)

x

销售数量,已知该公司在这段时间内的总营业时间为800h,试确定使营业额最大的营业计划。

2.4.1 建立数学模型:

设第一种设备的销售数量为X1,第二种设备的销售数量X2,最大营业额为f(x).则有

Max f(x)=30X1+450X2

s.t

0.5X1+2X2+0.25X2^2<=800,

X1>=0, X2>=0.

2.4.2 用lingo软件编辑,代码如下:

max=30*X1+450*X2;

0.5*X1+2*X2+0.25*X2^2<=800;

X1>=0;

X2>=0;

2.4.3 运行结果如下:

2.4.4 结果分析:

由上述运行结果可看出,当第一种设备的销售数量X1为149,第二种设备的销售数量X2为11时,

公司的最大营业额为49815元。

2.5整数规划模型

求解下面的线性整数规划模型的最优解

12

12

12

12

min4 ..28

26

,0,

z x x

s t x x

x x

x x

=+

+≤

+≥

≥且为整数

2.5.1 用lingo软件编辑,代码如下:

min=X1+4*X2;

2*X1+X2<=8;

X1+2*X2>=6;

X1>=0;

X2>=0;

2.5.2运行结果如下:

2.5.3 结果分析:由上述运行结果可看出,当X1为

3.333,X2为1.333时,可得到最优解8.666.

第三章课程设计心得与体会

这一次最优化方法的课程设计,要求我们不

仅要对课本的知识有较深刻的了解,更要求我们

有较强的思维和动手能力,熟悉运用Lingo和

Matlab软件。通过对各类最优化问题的求解,

明白自己的优点和不足之处在哪儿,同时也加深

对最优化方法的各个方面的理解。对待学习,决

不能有半点马虎,就像这一次最优化方法课程设计一样,我们小组在编写第三题程序的时候,少输入了一个字母,结果老是运行不出,后来一个一个字母仔细对照,终于发现了其中的问题。

这次的课程设计,让我们把课本上枯燥无味的东西应用到实际中,用理论联系实际,这样才能更好的掌握这门知识。不过,刚开始设计的时候,几乎什么都不会,还不敢做,慢慢的,翻书,查阅资料,思考,与同学讨论,最后做完了课程设计,这个过程非常享受,也让自己受益匪浅。我也希望能把最优化方法学好,为以后的学习和工作打下坚实的基础。

参考文献

[1]蒋邵忠.线性规划与网络优化.杭州:浙江大学出版社,1992.

[2]赵凤治,周继英.约束最优化计算方法.北京:科学出版社,1991.

[3]施光燕,钱伟懿,庞丽萍.最优化方法.北京:高等教育出版社,2007.8

[4]林锉云,董加礼.多目标优化的方法和理论.

长春:吉林教育出版社,1992.

[5]张延华,许阳明.MATLAB使用指南.北京:科学技术文献出版社,1998.

[6]施阳,李俊等.MATLAB语言工具箱——TOOLBOX实用指南.西安:西北工业大学出版社,1998.

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

基于单纯形法的最优化方法的毕业设计论文

基于单纯形法的最优化方法的毕业设计论 文 Revised on November 25, 2020

摘要: 最优化方法普遍的应用于工业、农业、商业、交通运输、国防、通信、建设、等各个方面与我们的生活息息相关;最优化方法主要用来解决最优计划、最优决策、最优设计、最优分配等最优化问题。本文主要研究的内容是通过单纯形方法对最优化问题的解决进行归纳总结,分析最优化问题所涉及的原理和方法,使用软件对最优化问题进行实践仿真测试,并将最优化问题推广应用到生活当中去。 关键词: 最优化单纯形方法仿真 Abstract Optimization method is widely used in industry, agriculture, commerce, transportation, defense, communications, construction, and other aspects of our lives; the optimization method is used to solve the optimal planning, optimal decision-making, optimal design, optimal allocation optimization problem. The main research content of this paper is summarized by the simplex method to solve the optimization problem, the principle and method of optimization analysis of the problems involved in the use of software simulation test of practical optimization problems, and promote the use of the optimization problem to life. Keywords : optimization Simplex method Simulation

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

最优化方法论文

弹性约束下的线性规划之最优化方法 摘要:线性规划方法是解决最优化问题的有效方法之一,有着极其广泛的应用,在管理学的应用过程中也时常穿插着关于最优化的问题。本文将在古典的线性规划方法的基础上,引入弹性约束一词,以弹性约束下的线性规划类型为对象建立新的数学模型,在解决具体的管理学案例的过程中,寻求其最优化方法,同时为管理决策提供依据。 关键词:线性规划;最优化;单纯形法;弹性约束;保证率 前言 在生产过程、科学实验以及日常生活中,人们总希望用最少的人力、物力、财力和时间去办更多的事,活得最大的效益,在管理学中被看作是生产者的利润最大化和消费者的效用最大化,如果从数学的角度来看就被看作是“最优化问题”。在最优化的研究生教学中我们所说的最优化问题一般是在某些特定的“约束条件”下寻找某个“目标函数”的最大(或最小)值,其解法称为最优化方法。线性规划方法是最优化方法中的一个重要部分。但是,经典的线性规划方法,常将目标函数和约束条件都视为确定的。然而,在实际问题中不论目标函数还是约束条件都具有不同形式的不确定性。本文重点引入新的名词弹性约束,以弹性约束下的线性规划类型为对象建立新的数学模型,从而寻求其最优化方法。 1、问题的提出 某工厂生产甲、乙、丙、丁共4种产品,需用到A,B,C共3种原料,每种产品需要使用的各种原料的数量及其可能获得的利润如表1所示。又A,B两种原料供应量有限,单位生产周期内只能提供一定的数量,而C种原料一经开包使用就必须用足一定量后方可停止使用,且不能单独使用。现有关数据均见下表。问应如何安排生产,方能使该厂所获利润达到最大值? 表1:加工产品所需原料及可能获得的利润

相关主题
文本预览
相关文档 最新文档