当前位置:文档之家› 半导体发光二极管基本知识

半导体发光二极管基本知识

半导体发光二极管基本知识
半导体发光二极管基本知识

半导体发光二极管基本知识

自从60年代初期GaAsP 红色发光器件小批量出现进而十年后大批量生产以来,发光二极管新材料取得很大进展。最早发展包括用GaAs 1-x P x 制成的同质结器件,以及GaP 掺锌氧对的红色器件,GaAs 1-x P x 掺氮的红、橙、黄器件,GaP 掺氮的黄绿器件等等。到了80年代中期出现了GaAlAs 发光二极管,由于GaAlAs 材料为直接带材料,且具有高发光效率的双异质结结构,使LED 的发展达到一个新的阶段。这些GaAlAs 发光材料使LED 的发光效率可与白炽灯相媲美,到了1990年,Hewlett-Packard 公司和东芝公司分别提出了一种以AlGaIn 材料为基础的新型发光二极管。由于AlGaIn 在光谱的红到黄绿部分均可得到很高的发光效率,使LED 的应用得到大大发展,这些应用包括汽车灯(如尾灯和转弯灯等),户外可变信号,高速公路资料信号,户外大屏幕显示以及交通信号灯。近几年来,由于CaN 材料制造技术的迅速进步,使蓝、绿、白LED 的产业化成为现实,而且由于芯片亮度的不断提高和价格的不断下降,使得蓝、绿、白LED 在显示、照明等领域得到越来越广泛的应用。

本课程将介绍LED 的基本结构、LED 主要的电学、光度学和色度学参数,并简单介绍LED 制造主要工艺过程。

1. 发光二极管(Light Emitting Diode ) 的基本结构

图<1>是普通LED 的基本结构图。它是用银浆把管芯装在引线框架(支架)上,再用金线把管芯的另一侧连接到支架的另一极,然后用环氧树脂封装成型。

组成LED 的主要材料包括:管芯、粘合剂、金线、支架 和环氧树脂。

1.1 管芯

事实上,管芯是一个由化合物半导体组成的PN 结。由 不同材料制成的管芯可以发出不同的颜色。即使同一种材 料,通过改变掺入杂质的种类或浓度,或者改变材料的组 份,也可以得到不同的发光颜色。下表是不同颜色的发光

二极管所使用的发光材料。 图<1>普通LED 基本结构图

表<1> 不同颜色的发光二极管所使用的发光材料

发光颜色

使用材料 波长

Emission Area

0.254×0.254

N Electrode

P Electrode GaP P Epi Layer GaP N Epi Layer GaP N Substrate

普通红 磷化镓 (GaP ) 700 高亮度红 磷砷镓 (GaAsP) 630 超高亮红 镓铝砷 (GaAlAs) 660 超高亮红 镓铟铝磷 (AlGaInP)

625-640 普通绿、黄绿 磷化镓 (GaP ) 565-572 高亮绿 镓铟铝磷 (AlGaInP)

572 超高亮绿 氮化镓 ( InGaN ) 505-540 普通黄、橙 磷砷镓 (GaAsP) 590,610 超高亮黄、橙 镓铟铝磷 (AlGaInP)

590-610 蓝 氮化镓 ( InGaN ) 455-480 紫 氮化镓 ( GaN ) 400,430 白 氮化镓+荧光粉 460+YAG 红外 砷化镓 (GaAs) >780

图<2>是LED 芯片图形。多数管芯正面为P 面,连接到电源的正极,背面为N 面,连接到电源的负极((GaAlAs 芯片正面为N ,背面为P ; 以蓝宝石衬底的蓝、绿芯片P 、N 都在正面)。约在管芯 2/3高处,是P 区和N 区的交界处,称PN 结。当有电 流通过PN 结时产生发光,发光颜色取决于芯片材料, 而发光强度除了和材料有关外,还和通过PN 结电流的 大小以及封装形式有关。电流越大,发光强度越高,但 当电流达到一定程度时出现光的饱和,这时电流再增加, 光强不再增加。

1.2 粘合剂

粘合剂的作用是把管芯粘在支架的反射杯上,一般使用导电银浆作为粘合剂,但对于蓝宝石衬底的芯片,因两个电极都在正面,因此使用绝缘胶作为粘合剂。银浆有单组份和双组份两种,目前使用的银浆大都为单组份银浆,这种银浆必须在低温下保存。粘合剂的性能对制品的可靠性及透光效果有直接影响,因此,必须根据实际情况,选择合适的粘合剂,并注意应在规定的期限内使用。

1.3 金线

金线的作用是把管芯的电极连接到支架上。主要有φ25μm 和φ30μm 两种规格,一般场合使用φ25μm 金线,对于通过电流较大,可靠性要求较高的场合,则使用φ30μm 金线。

1.4 支架

支架也即LED的外引线,一般使用基体为铁并镀银的支架,但有时为了提高制品的散热性能,则使用基体为铜的支架,当然,其材料成本也相应增加。

1.5 环氧树脂

LED采用环氧树脂作为封装材料。环氧树脂的性能对LED的光电特性尤其是可靠性有很大影响。它的选择必须充分考虑其可靠性、出光效果、工艺可行性及价格等。目前国内较常用的是台湾产的EP系列环氧树脂,而我公司外加工线则较多使用日本产的502、512、514等树脂。502树脂的流动性较好,但出光效果较差,512树脂的出光效果好,但粘度较高,工艺可行性差,可靠性也较差,514树脂的最大优点是耐热性能好,因此,常用于可靠性要求较高的制品。树脂分为主剂和硬化剂两部分,有的树脂在主剂中加入了颜料,因此得到了各种颜色的主剂,而大多数树脂主剂出厂时是一种淡蓝色的液体,封装时根据需要加入不同颜料,硬化剂是一种无色透明的液体。在树脂中加入适量的散射剂可以提高发光的均匀性,增大散射角,但同时法向发光强度降低。

2. LED的主要技术参数

2.1 电学参数

2.1.1 正向压降指每个LED通过的正向电流为规定值时,正、负极之间产生的电压降,用符号V

F

表示。

由不同材料制成的LED具有不同的V

F

值。此外电极材料的选择以及电极制造过程

工艺条件的控制也对V

F 值有着重要影响。组装过程影响V

F

值的因素主要是银浆的质

量。银浆过期变质,使用双组份银浆时搅拌不均匀都可能造成V

F

值增加。

2.1.2 反向漏电流是指给LED加上规定的反向电压时,通过LED的电流,

用符号I

R 表示。正常的LED,I

R

值应接近0。

反向漏电流的产生除了和管芯本身的质量有关外,还和组装时管芯安放状态有关。银浆粘污PN结和管芯崩裂是造成漏电的最主要因素。当银浆沾污PN结时,好像有一个电阻并联到结上,形成漏电通路,从而产生漏电。管芯崩裂是因为安放管芯时设备顶针位置调校不当,使管芯受损从而产生漏电,由于管芯崩裂现象镜检时较难发现且由此造成的漏电现象呈不稳定状态,使得在成品检测时易出现漏判,成为影响产品质量的一大隐患。

2.2 光度学及光度学参数

2.2.1 能量的辐射分布

光源的总辐射能量是各种波长能量之和,波长不同能量也不同。我们称发光器件的辐射能量随波长而变化的情况为发光器件辐射能量的光谱分布,以P λ表示。发光器件在λ1和λ2范围内的辐射功率可表示为:

P λ1P λ 2 = ∫ P λd λ (1 )

P λ是一个相对的分布函数。光谱分布的两个主要参数是它的峰值波长和光谱带宽。

(1) 峰值波长λp

峰值波长λp 是指光谱强度最大处的波长, 它可以由光谱图很容易地确定。图<3>是CaN 绿色LED 的光谱曲线, 由曲线可见, 其峰值波长是505 nm 。

(2) 半波宽度Δλ0.5

半波宽度Δλ

0.5

由λp 两边的两个波长

λ0. 5 -Δλ0. 5 求得:

Δλ0. 5 =λ0. 5

-λ0. 5

(2)

图<3> CaN 绿色LED 的光谱曲线

2.2.2 辐射度量及单位

辐射度学是有关某一给定辐射体的光辐射能量或功率的, 光谱涉及从紫外光到红外光的整个范围, 与人眼对亮度和颜色的灵敏度无关。

基本的辐射度参数有4个:

λ1

λ2

’ ” ’

(1)辐射通量或辐射功率

辐射功率P 定义为一个光源在单位时间内发射的总功率:

P = (3) 辐射功率的单位为瓦特(W )。 (2) 辐射强度

辐射强度J 定义为单位时间、单位立体角内发射的功率:

J = (4)

J 的单位是:瓦/球面度 (W/Sr )

这里的立体角就是以点光源为顶点的一个封闭锥体的锥角,其大小等于锥体底面积A 与锥体的斜边边长r 的平方成之比,即:

d ω = (5)

(3) 辐射照度

落在单位面积上通量的数值,称为辐射照度H 。

H = ( 6 )

dp 是落在元表面上的通量值。辐射照度H 用瓦/平方米(W/m 2)作单位。 由以上公式可推得某一点光源的辐射强度J 和辐射照度之间的关系:

H = = = J/r 2 (7)

(4) 辐射亮度

考虑辐射源上表面d σ,以此为顶点的立体角内d ω内的辐射通量为dp ,d ω的轴线v 与dA 的法线n 成θ角,如图(4)所示。

dp 与d ω及d σ在v 方向的有效截面积d σcos θ 有关,即:

dp = R θd σcos θd ω (8) 或:

R θ= (9)

图<4>

R θ就称为面辐射源在角θ所决定方向v 上的亮度,也就是在给定方向上单位有效

dQe

dt dP

d ω d σ r 2

d σ dP dP d σ Jd ω d σ

dp

d σcos θ d

ω

截面积在单位立体角内的辐射通量值。R θ的数值与辐射面的性质有关,并且随给定方向而改变,通常以W/·Sr 为单位。

2.2.3 光度量及单位 2.2.

3.1 视见函数

对于可见光的辐射通常采用光度学的量来描述。为此,必须首先了解视见函数。 一般发光器件的辐射都不是单色光,各有一定宽度的光谱分布曲线,人眼对各种波长的辐射的灵敏度是不同的,它不能感觉到红外线和紫外线,只能感受从380~760 nm 范围的可见光,而且在可见光中对各种波长的光的响应程度也是不同的。我们把人眼响应随波长而变化的函数关系称为视见函数,用V (λ)表示。

度量辐射能的各个量是仅与客观条件有关的物理量,但光度学的量不仅与客观条件有关,而且还与人的视见函数有关。在辐射度学中引入的各个量,乘上一个与视觉有关的比例系数——即视见度K λ,就得到光度学中的各个量。

2.2.

3.2 光度学参数 (1) 光通量

假定某辐射体发出的光线是波长为λ的单色光,该辐射体单位时间内所辐射的能量就是辐射通量P λ, 由该量中能为人眼所感觉的那部分称为光通量F λ, 它表示单位时间内流出光能的大小, 单位是流明(lm )。

P λ与F λ之间的关系可用下式表示: F λ= K λP λ= V (λ)KmP λ (10)

式中,K λ表示波长为λ的辐射通量每瓦可以产生多少流明的光通量,即同一波长下所测得的光通量与辐射通量之比。Km = 680 lm/W 表示人的日间视觉在550nm 处能将1W 功率转变成680 lm 的光能。

各波长发出的总光通则为:

F = Km ∫ V (λ)·P λd λ ( 11 )

由它可以计算器件的效率, 用以判别发光器件或材料的性能好坏。 (2)发光强度

一光源在单位立体角内所发出的光通量称为该光源的光强I 。 I = (12)

一个点光源所发出的光强是各向相同的,则总光通量

380nm

780nm

dF

d ω

F = 4πI (13)

就是说,一个光源的发光强度I 确定后,它的总光输出也就完全确定了,其它的光学结构(如反射腔等)不能使它增大,而只是可以将光从其它方向往某一方向集中,以提高该方向的光强。在芯片法向上的发光强度称为法向光强。

发光强度的单位是坎德拉(cd ), 一单位立体角内发出一流明的光称为一坎德拉。坎德拉是一个光源在给定方向上的发光强度。

(3)半值角

在发光强度分布图形中,发光强度等于最大强度一半构成的角度称为半值角。如图<5>所示。图中,沿LED 法向为机械轴方向,最大发光强度方向为光轴方向,机械轴与光轴之间的夹角成为偏差角。

芯片的厚度、封装模条的外形尺寸、 支架反射杯的深度以及支架在模腔中的 插入深度都对半值角的大小有直接影响。 制造中,可以根据客户要求,通过选取 不同的材料及选用不同的封装尺寸来得

到不同大小的半值角。 图<5> LED 光强分布图

(4)亮度

亮度B 与辐射亮度类似。发光体之表面d σ在与其法向成θ角的方向上的亮度B θ等于:

B θ= (14)

其中dF 为立体角d ω的光通量,如图(6)所示。 亮度单位cd/m 2

(尼特),也即每平方米表面沿法 线方向产生一坎德拉的光强。

(5)照度 图<6> 照度E 表示被照明物体的单位面积所接受的总光通量,即:

E = (15)

照度的单位是勒克斯。1勒克斯为1平方米面积上接受一流明的光通量,即:lm/ m 2。

dF

d σcos θd ω

dF

d σ

θ

C

d σ

d ω

d

N

2.3 色度学及色度学参数

显示器件的多色化显然可以大大增加显示的信息与功能, 要了解和分析发光器件的颜色问题, 就必须了解色度学。

实验证明,大多数颜色可以由三种基本的颜色以适当的比例合成,这三种基本的颜色可以任意选定,但它们之间是互相独立的,即其中的一种不能由另外二种以适当的比例合并而成,一般选择红、绿、蓝三种颜色为三个基色,这就是所谓的三基色原理。

根据三基色原理,任意颜色C 可表示成:

C = XR + YG + ZB (16)

X 、Y 、Z 就是某一颜色C 的三个分量,采用归一化的方法消去其中一个非独立变量而引入二个新的变量。令:

x =

y = (17)

z =

x + y + z = 1

只要确定其中的x 和y ,则z 随之确定,因此颜色就可按图(6)所示的二维图形的某一点确定,其中的x 和y 都是从0变到1。图(6)就是国际照明协会提出的CIE 色度图,x ,y ,z 称三色系数。X ,Y ,Z 又称三色视觉值。各单色光的三色视觉 值见表<2>。

图<7>

由表<2>结合(17)式即可计算出各单色光的三个

X X + Y + Z Z X + Y + Z X + Y + Z

系数x 、y 、z 。

例如λ= 590 nm 的单色光,从表<2>得:

X = 1.0263 Y= 0.7570 Z = 0.0011有

则 x = = 0.5752

y = = 0.4242

z = = 0.0006

表<2>

将可见光各波长的的x 、y 值均在CIE 色度图上画出,则得所有可见光的色坐标, 其轨迹为一舌形曲线,见图(6)。

自然界中任何一种可能的颜色都在舌形及其下端连线之内,此范围外的点均为不存在的颜色。两种颜色合成的颜色位于这两个点的连线上。从色度图上可看到红色和绿 色部分接近为一直线,这就表示从红到绿之橙、黄、黄绿等色都可以由红、绿两种光

X X + Y + Z Y X + Y + Z Z X + Y + Z 0 0.0021 0.0058 710 0.0203 0.9540 0.2904 540

0.0089

0.9950

0.5945

560 0.0087 0.9950 0.4334 550 0 0.0041 0.0114 700 0.0422 0.8620 0.1655

530 0 0.0082 0.0227 690 0.0782 0.7100 0.0633 520 0 0.0170 0.0468 680 0.1582 0.5030 0.0093 510 0 0.0320 0.0874 670 0.2720 0.3230 0.0049 500 0 0.0610 0.1649 660 0.4562 0.2080 0.0320 490 0 0.1070 0.2835 650 0.8130 0.1390 0.0956 480 0 0.1750 0.4479 640 1.2876 0.0910 0.1954 470 0 0.2650 0.6424 630 1.6692 0.0600 0.2908 460 0.0002 0.3810 0.8544 620 1.7721 0.0380 0.3362 450 0.0003 0.5030 1.0026 610 1.7471 0.0230 0.3483 440 0.0008 0.6310 1.0622 600 1.3856 0.0116 0.2839 430

0.0011 0.7570 1.0263 590 0.6456 0.0040 0.1344 420 0.0011 0.8700 0.9163 580 0.2074 0.0012 0.0435 410 0.0021 0.9520 0.7621 570 0.0679 0.0004 0.0143 400 Z Y X 波长Z Y X 波

合成。白光是三种成分光的均匀混合,其x 、y 值分别为1/3,故CIE 色度图中的W ( , )点便代表白色光。由于互补色的定义是它们之和组成白光,故通过W 点而与舌形轨迹线相交的λ1λ2两点所代表的颜色便是互补色。

色度学的主要参数 (1) 纯度和主波长

纯度和主波长是色度学中的两个重要参数,它描述颜色的色调。在图(6)中给出了色坐标点为F 的光源在色度图上的位置。我们通常选定白光W 作照明光源,因此光源F 的纯度定义为,自W 向F 作一直线,与单色光轴相交于G ,距离WF 占总长WG 的百分数即为F 的纯度:

PF = (18)

图(6)中F 点的纯度为75%,由此相应在光谱轨迹上的G 点,其纯度为100%。此外还定义G 点处光谱轨迹上的波长为光源F 的主波长λD ,在图(6)中,F 点的主波长为600 nm 。而当F 连线的交点落在直线PQ 上时,则其主波长的数值以其补偿波长来代表,而在其补偿波长下附以注脚“C ”表示。例如光源H ,从W 向H 作直线的交点在PQ 上,因此即由H 向相反方向与W 连直线,并延长与轨迹线相交于I ,H 的主波长即为502C nm ,而H 点的纯度仍以502C nm 的I 点为准,与F 点纯度求法相同。

(2) 色温

当某辐射体与绝对黑体在可见光区域(0.4

~0.7μ)具有相同形状的光谱能量分布时的温 度, 称为该辐射体的色温。即在此温度下,该 辐射体的辐射色调与绝对黑体的辐射色调相同。 所谓黑体,是指能够完全吸收由任何方向入射 的任何波长的辐射的热辐射体。不同温度下, 绝对黑体的色坐标见表<3>

将表<3>色坐标画于色度图上, 即得到 图中的黑体迹线。当某一光源的色坐标(x,y ) 位于色度图上黑体迹线时,就以黑体的绝对 温度定义为该光源的色温。但是,有许多光

源的色坐标并不在黑体迹线上,而是在此轨迹的附近。于是,我们又定义了相关色温, 即在色度图上,和某一光源的色坐标点相距最近的那个黑体的绝对温度就定义为该光

WF WG

表<3> 绝对黑体的色坐标

T °K x y 500 0.721 0.279 1000 0.652 0.345 1500 0.586 0.393 1800 0.549 0.408 2000 0.526 0.413 2300 0.495 0.415 5000 0.345 0.351 6000 0.322 0.331 7000 0.306 0.316 10000 0.280 0.288 24000 0.250 0.253 ∞

0.240

0.234

源的相关色温。

实际应用中,有时为方便起见,采用色温来表示颜色,显然,这是一种近似的表示方法。

(3) 显色指数

显色指数:灯光下所显示的颜色与阳光下的颜色相比较之数值。

3. LED 生产工艺简介

3.1 支架式普通LED

支架式普通LED 制造工艺流程如下:

3.1.1

管芯安放

管芯安放工序的目的是用粘合剂把管芯放在支架的发射 杯中。粘合剂高度不可超过PN 结位置(管芯2/3高度处), 一般以1/3~1/2个管芯高为宜, 见图<7>。管芯安放后应在 硬化炉中进行粘合剂硬化,硬化后用推力计抽测其推力,一

般要求推力大于150g ,否则视为粘附不牢。 图<8> 管芯安放示意图 3.1.2 金线键合

金线键合的目的是用金线把管芯的电极连接到支架上。本工序对产品的可靠性有着重要影响。键合后,要求A 点应2/3以上在管芯电极内,E 点应在管芯中间且呈鱼尾状,金线弧度约1/2~1个管芯高(见图<8>)。键合后用拉力 计抽测拉力,要求拉力必须大于7 g ,且断点不能为A 、E 点, 否则视为键合不良。 3.1.3 封装成型

本工序的目的是使用环氧树脂把完成金线键合的半成品

封装成型,使用不同的模具,可以得到不同规格的LED 。 图<9> 金线键合示意图

本工序对成品率影响重大,重点必须注意以下问题:

封装成型

金线键合 热老化

管芯安放 除披锋 尺寸检查

上连筋切断

点灯检查

特性检查 包装

抽检入库

1)确保树脂配方正确无误,树脂配好后要进行脱泡处理;

2)树脂配好后存放时间不宜太长,一般不得超过4小时;

3)模具使用前要进行除尘处理,并视使用次数决定是否需要喷涂离型剂,离型剂喷涂量应适中,太少可造成脱模困难,太多则可使制品表面变形;

4)掌握好树脂注入份量,部分品种树脂注入后要做脱泡处理;

5)支架插入前要先“点树脂”否则会造成杯内气泡;

6)注意支架插入方向的正确性,同时确保支架完全插入模条定位槽中;

7)根据使用树脂的要求设定硬化条件,完成制品的硬化步骤;

8)注意对硬化完成品表面的检查,发现有伤痕或变形时应及时更换模具;

3.1.4 热老化

热老化的目的是使树脂彻底硬化,从而确保树脂有良好的可靠性。

3.1.5 除披锋和尺寸检查

除披锋的目的是使用专门的器具除去制品裙边的毛刺。尺寸检查则是使用专门的检查工具,将支架插入深度不足部分不良品分开。

3.1.6 连筋切断

连筋切断的目的是切除支架的上连筋,并将支架的正、负极分开,以便进行点灯检查。

3.1.7 点灯检查

点灯检查是将LED成排点亮后,剔除NL(不亮)及外观不良品,有的检查机还可

同时剔除V

F 和I

R

不良品。

3.1.8 特性检查

特性检查就是使用特性检查机,对经过点灯检查剔除了外观不良品的制品进行光

电参数检测,剔除V

F 和I

R

不良品,并将光强分为若干个档次。使用台湾T620测试机,

还可对主波长或峰值波长以及色度坐标进行分档。

为了确保分档的正确性,通常使用更为准确的检测机对分档结果进行监控和校正。

3.1.9 包装

包装就是按规定的每包、每盒数量将制品包装好,通常使用电子称称重的方法进行计数。

3.1.10 抽检入库

抽检是由质量监督部门对准备入库的产品进行抽检,以确保符合质量标准。

通常采用AQL(合格质量水平)抽样方案,如抽检不合格,则应退回生产部门进行

复检,复检后再行抽检。

3.1.11 LED 命名方法 下面举例说明LED 的命名方法: BT – 104GEK-31-505E-C6

“BT ”是本公司生产的半导体发光二极管的代码,后面第1位数表示发光颜色,“1”为绿色,“2”为红色,“3”为黄色,“4”为橙色,“5”为蓝色,“6”为双色,“7”为红外管,“9”为白色;第2、3位数是产品的系列号,该系列号决定了应该采用哪一种模具;第3位数后面的两个字母表示使用芯片的种类,如“GE ”为 的芯片,“BE ”为台湾晶元芯片,“BU ”为UOE 公司的芯片等等。第3个字母表示封装树脂种类,“K ”为无色透明,“N ”为有色透明,“W ”为无色散射,“D ”为有色散射等等;“31”表示连筋切断位不带卡位,如带卡位则为“30”;“505”表示芯片波长为505,“E ”为芯片光强档次,C6表示使用模具卡位尺寸。 3.2 LED 显示板 3.2.1 外型图

LED 显示板的外形图参见图<9> 3.2.2 工艺流程

LED 显示板工艺流程如下: 图<10> LED 显示板外形图

3.2.3 与支架式LED 的主要区别

由工艺流程图可见,LED 显示板的工艺流程与支架式LED 工艺流程的主要区别主要在于:

(1) 支架式LED 采用金线作为内引线,显示板则更多的是采用铝线,这一方面是出于成本考虑,另一方面是因为在PCB 上键合金线对PCB 的质量要求较苛刻,而键合铝线则较易进行;

(2) 显示板无须树脂封装,而采用热压的方式,将反射腔与PCB 嵌合在一块,然后在其表面贴上散射膜;

(3)显示板不良品可进行翻修,LED 则不能;

(4)为确保各笔段发光效果尽量一致,显示板对芯片的一致性要求较高。

管芯安放

初 测 铝(金)线键合

热 压

终 测 包 装

抽检入库

3.3 几种主要新产品介绍(器件类) 3.3.1 一体化红外接收器

一体化红外接收器是为红外遥控系统生产的小型化器件,它将接收红外信号的光敏二极管芯片和前置放大器芯片组装在同一支架上,然后用环氧树脂封装成型。经前置放大器放大和检波后的输出信号可以直接送入微处理器解码,其主要优点是体积小,能克服各种光和电磁干扰,成本较低。

一体化红外接收器主要工艺流程如下:

在一体化红外接收器的研制中,材料的选择十分重要,尤其是IC 的性能在很大程度上决定了制品质量。本公司现有产品主要使用两大类IC ,一类是日本NEC 的μpc 系列IC ,其优点是价格便宜,但其抗光干扰和抗电磁干扰能力以及抗静电破坏能力都存在着一些问题,与整机的兼容性也不是很好。另一类是美国Atmel 公司的T2525系列IC ,其各方面性能明显由于μpc 系列IC ,但由于价格高,且对中国市场限制出售,采购困难,因此目前生产量并不大。

除了IC 以外,环氧树脂也是影响产品性能的关键材料。与普通LED 封装材料不同,用于一体化红外接收器的树脂必须只能够使波长为850nm 以上的红外光透过,对低于该波长的杂散光必须能够起很好的阻挡作用。否则不能保证制品有良好的抗光干扰性能。

我公司于1999年开始一体化红外接收器的研制,2000年1月通过省电子机械工业厅组织的科学技术成果鉴定,2001年被评为佛山市科技进步三等奖。

3.3.2 片式LED

片式LED 是一种新型表面贴装式半导体发光器件,具有体积小、散射角大,发光均匀性好、功耗低、可靠性好的优点,发光颜色和光强具有多种选择,可满足表面贴装结构的各种电子产品的需要。特别是在手机市场的应用十分广泛。由于片式LED 结构微型化,技术含量较高,生产工艺较之传统LED 难度大,目前国内尚无厂家批量生产。

划 片

光敏管安放

IC 安放

金线键合

支架打弯

封 装

打 印

切 筋 工艺筛选

测 试

粘合剂固化

包 装

图<11> 0603片式LED外形图图<12> 0603片式LED PCB 板示意图我公司目前主要生产规格为0603的片式LED ,其外形如图<10>所示。图<11>为用于0603片式LED的PCB板,其尺寸为56mm×126mm。在它上面设计了41组封装结构,每组由44只片式LED连为一个整体(共1804只产品)。封装采用塑封工艺以满足其体积小,精度高的要求。封装后采用半导体芯片的划片工艺,对PCB板进行划片切割。另外采用专用的测试包装设备对成品进行测试包装(编带)。其工艺流程如下:

管芯安放粘合剂固化金线键合封装

硬化划片测试筛选编带包装

我公司于2000年开始研制片式LED,项目立项后得到省、市科技管理部门的大力支持,被列为佛山市2001年十大创新工程项目,广东省2001年重大科技专项。今年5月份通过了广东省科技厅组织的科技成果鉴定和项目结题验收。目前项目进入中试阶段,正在增购设备,准备扩大生产规模和增加品种。

3.3.3 白光LED系列产品

本项目参加了最近广东省科技厅组织的广东省2002年重大科技项目竞标(与中山大学合作),通过投标文件评审、现场考察及答辩、公开讲座等程序后一举中标,获得共200万元的高新技术产业化专项资金资助。项目包括支架式白光LED、片式白光LED和功率型白光LED。

众所周知,白光是一种混合光,获得白光的技术途径主要有以下几种:

(1)在氮化镓蓝色或紫色发光二极管芯片上涂敷稀土发光材料(荧光粉),当荧光粉受蓝(紫)光激发时发出黄光,与另一部分透过荧光粉的蓝(紫)光复合成白光,如图<12>所示;

(2)在氮化镓蓝色或紫色发光二极管芯片上,涂敷发射红光、绿光的稀土发光材料,通过调整红、绿、蓝光三基色的发射强度比,使之发射白光。

(3)利用红、绿、蓝三基色LED混色或黄、蓝LED

混色产生白光;

(4)在ZnSe单晶基板上形成ZnCdSe薄膜,通电

后薄膜发蓝光,同时部分蓝光与基板产生连锁反应而发

出黄光,与另一部分蓝光混合生成白光。

本公司现阶段主要采用以在氮化镓蓝色芯片激发

黄色荧光粉的方法制造白光LED,另外采用以紫光激

发荧光粉以及用蓝光激发三基色荧光粉的方法,也已图<13> 支架式白光LED示意图经作出了

样品。

支架式白光LED目前主要用于装饰照明、小夜灯、矿工灯、玩具、汽车、仪器设备等小功率照明领域,其制造工艺与普通LED不同之处主要有几方面:(1)芯片必须经过挑选,要求主波长尽可能一致,否则将严重影响制品性能的一致性;

(2)金线键合后要在芯片上涂敷荧光粉。荧光胶的配方、涂敷方法以及工艺的控制对制品的性能都有重大影响;

(3)成品测试时必须进行色度坐标分档。

片式白光LED主要用在手机、便携电脑等产品的液晶背光源等领域。与普通片式LED不同之处在于所使用的固态胶不同,前者使用的是已经混入荧光粉的胶饼。

功率型白光LED一般采用大尺寸的功率LED蓝光芯片,器件结构与传统LED完全不同,由于功率LED可在300mA以上的大电流下工作,器件的热设计和光学设计尤为重要。美国LumiLED采用特别的器件热沉和管座设计,配合优良的光学系统,其代表产品功率型白光LED,在350mA电流下,白光光通达到18 lm;我公司功率LED目前尚出于研发阶段,已经进行了热学、光学结构分析和研究,并且利用与国外公司良好的合作关系,由国外公司提供大尺寸、大功率LED芯片,研制出单管光通达6 lm的白光LED。设计、制作良好的功率型LED单管的光通输出相当于几十只引线结构LED,在家用照明和应用产品设计中使用功率LED可以降低应用产品的设计难度、提高产品的可靠性、降低产品生产成本,被认为是白光LED走进通用照明领域的必然选择。

二极管知识讲解

二极管知识讲解

1、基本概念 二极管由管芯、管壳和两个电极构成。管芯就是一个PN结,在PN结的两端各引出一个引线,并用塑料、玻璃或金属材料作为封装外壳,就构成了晶体二极管,如下图所示。P区的引出的电极称为正极或阳极,N区的引出的电极称为负极或阴极。 1.1、二极管的伏安特性 二极管的伏安特性是指加在二极管两端电压和流过二极管的电 流之间的关系,用于定性描述这两者关系的曲线称为伏安特性曲线。通过晶体管图示仪观察到硅二极管的伏安特性如下图所示。 1.2、正向特性

1)外加正向电压较小时,二极管呈现的电阻较大,正向电流几乎为零,曲线OA段称为不导通区或死区。一般硅管的死区电压约为0.5伏, 锗的死区电压约为0.2伏,该电压值又称门坎电压或阈值电压。 2)当外加正向电压超过死区电压时,PN结内电场几乎被抵消, 二极管呈现的电阻很小,正向电流开始增加,进入正向导通区,但此时电压与电流不成比例如AB段。随外加电压的增加正向电流迅速增加,如BC段特性曲线陡直,伏安关系近似线性,处于充分导通状态。 3)二极管导通后两端的正向电压称为正向压降(或管压降),且几乎恒定。硅管的管压降约为0.7V,锗管的管压降约为0.3V。 1.3、反向特性 1)二极管承受反向电压时,加强了PN结的内电场,二极管呈现 很大电阻,此时仅有很小的反向电流。如曲线OD段称为反向截止区,此时电流称为反向饱和电流。实际应用中,反向电流越小说明二极管的反向电阻越大,反向截止性能越好。一般硅二极管的反向饱和电流在几十微安以下,锗二极管则达几百微安,大功率二极管稍大些。 2)当反向电压增大到一定数值时(图中D点),反向电流急剧加大,进入反向击穿区,D点对应的电压称为反向击穿电压。二极管被击穿后电流过大将使管子损坏,因此除稳压管外,二极管的反向电压不能超过击穿电压。 2、整流电路 2.1、单向半波整流电路 二极管就像一个自动开关,u2为正半周时,自动把电源与负载

半导体发光二极管标准分解

半导体发光二极管 1 范围 本标准规定了冰箱事业部半导体发光二极管的设计选用要求、试验方法、检验规则和包装、贮存。 本标准适用于冰箱事业部控制器、照明指示灯等所选用的半导体发光二极管。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191 包装储运图示标志 GB/T 2423.3-1993 电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法(idt IEC 68-2-3:1984) GB/T 4937-1995 半导体分立器件机械和气候试验方法(idt IEC 749:1995) GB/T 4938-1985 半导体分立器件接收和可靠性 GB/T 17626.2-1998 电磁兼容试验和测量技术静电放电抗扰度试验(idt IEC 61000-4-2:1995) QMB-J10.010 关于规范RoHS标识的操作指引 QMB-J10.011 逐批检查计数抽样程序及抽样表 3 半导体发光二极管分类 3.1 按颜色分类 a)红色发光二极管( D:620-660nm) b)橙色发光二极管( D:600-620nm) c)黄色发光二极管( D:580-600nm) d)绿色发光二极管( D:500-577nm) e)兰色发光二极管( D:430-480nm) f)紫色发光二极管( P:380-410nm) g)白色发光二极管(T C:3000-25000K) 3.2 按芯片材料分类 a)InGaAlP/GaAs b)GaN/ Al2O3或SiC衬底 c)InGaN/ Al2O3或SiC衬底 4 要求 4.1 静电防护工艺要求 因产品易受静电破坏,生产及运输过程中应做好静电防护工作, ImGaAlP/GaAs系列及GaN基/SiC衬

半导体发光二极管工作原理、特性及应

LED发光二极管 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、M字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、M字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。(二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。(2)最大正向直流

二极管知识大全

二极管的结构特性 (1) 二极管的工作原理 (2) 二极管的分类………………………………………………………………………3-4 二极管的主要技术参数指标…………………………………………………………5. 二极管的主要作用 (6) 怎样选择合适的二极管 (7) 时间:2012-2-24

1 二极管的结构 半导体二极管主要由一个PN结加上电极、引出断线和管壳构成的。P型半导体引出的电极为二极管的正极,N型半导体引出的电极为负极。二极管的基本特性与PN结的基本特性相同。 , 图 1结构图(可双击该图用AUTOCAD软件观看) 2 二极管的特性 普通二极管最显著的特点是其单向导电性,根据此特性二极管常用于电子线路中,起到整流、

图 2典型二极管的特性曲线及其分区 3 工作原理 二极管的基本原理是根据二极管的伏安特性,正向导通反向截止,可将双向变化的交流电转换成单向脉动的直流电,此转换过程称为整流;利用PN结反向击穿时,电流在较大的范围内变化而端电压基本不变的特性,制成特殊二极管,称为稳压二极管。 2中1区为正向死区。PN结上加了正向偏压但仍无电流,该区宽度随材料而不同:硅管是,锗管是。 2中2区为正向导通区。PN结上加了正向偏压后,正向电流呈指数规律明显上升。 2中3区为反向截止区。PN结上加了较大的反向偏压后,在很大的电压范围内维持一个很小的固定的反向漏电流。 2中4区为反向击穿区。PN结上加了较大的反向偏压后,在某个电压值上,PN结被击穿引起迅速上升的反向电流。一般的整流、检波二极管一到此区就被加在其上的高压大电流烧毁。但是,专门设计用来工作在此区的二极管,只要设法将热量及时导出,同时在电路中限制电流的最大值,它就可以正常工作,一般应用该区的二极管是专门生产的稳压二极管。 4 二极管的分类 二极管按制造材料不同,分为硅和锗二极管。 表 1列出了两种材料的区别。 表 1 两种材料的区别

二极管基本知识介绍18页

二极管 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 一、二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二、二极管的类型

二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge 管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 三、二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1.正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当

《电子技术基础》二极管的基础知识

课题:晶体二极管 教学目标: 知识目标:1、掌握晶体二极管的构成、符号 2、掌握晶体二极管的导电特性 3、分析使用二极管时的主要参数及伏安特性 能力目标:1、培养学生分析、探究问题的能力 2、培养学生灵活运用知识的能力 3、培养学生的动手和实践能力 情感目标:使学生在学习过程中,获得知识的同时进一步激发学生学习的动机和兴趣 教学重点:晶体二极管的构成、符号、导电特性及伏安特性的分析 教学难点:1、伏安特性分析。 2、几个参数的记忆及区分。 教学方法:启发、引导、观察、讨论、讲解、实验结合 课时安排: 2课时 (教学用具:多媒体课件,实验用器材) 教学过程: 新课导入:提出学习目标,复习提问导入新课 1、什么是半导体?常见的的半导体材料有哪几种? 2、半导体根据内部载流子的不同分为哪几种? 新课讲授: 一、二极管的结构和符号 (一)结构 在本征半导体上利用特殊工艺分别渗入硼元素和磷元素加工出P型半导体和N型半导体,在P型和N型半导体的结合部位形成一个特殊的结构,即PN结,PN结是构成各种半导体器件的基础。 在P区和N区两侧各接上电极引线,并将其封装在密封的壳体中,即构成半导体二极管,如图。接在P区的引线称为阳极(正极)用a表示,接在N区的引线称为阴极或负极,用k表示。 二极管的核心即是一个PN结。 (二)符号 电子技术中的元件在电路图中都是用符号来表示的,如电阻用什么符号表示? 二极管的符号如下图: 图中三角箭头代表二极管正向导电时电流的方向。

(三)分类 1、二极管根据所用半导体材料不同分为锗管和硅管。 2、根据内部结构不同可分为点接触型和面接触型。点接触型主要用于高频小电流场合如:检波、混频、小电流整流。面接触型主要用于低频大电流场合如:大电流整流。 知识拓展 认识常见的几种二极管:小功率二极管、大功率二极管、贴片二极管、发光二极管等。 要求:学生课后利用网络查找更多形式的二极管。 二、二极管的导电特性 通过实验来探究学习二极管的导电特性,在做实验之前首先了解一下实验所用的元件 (一)认识元件 认识实验中使用的元件:电池、电阻、开关、二极管、指示灯。 (二)实验一 实验电路如下图:讲解电路构成。 请实验小组说明指示灯情况,说明了什么? 结论:指示灯亮,说明二极管导通,称为导通状态。 二极管导通时,其阳极电位高于阴极电位,此时的外加电压称为正向电压,二极管处于正向偏置状态,简称“正偏”。 (三)实验二 实验电路如下图:讲解电路构成。 请实验小组说明指示灯情况,说明了什么? 结论:灯泡不亮,说明二极管不导通,称为截止状态

二极管入门知识二极管结构和工作原理

二极管入门知识二极管结 构和工作原理 This model paper was revised by the Standardization Office on December 10, 2020

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜 和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会 听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子 PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低

半导体发光二极管工作原理、特性及应用(精)

(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP (磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光! 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。(二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED 两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。(2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。(4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。2.电参数的意义(1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。(2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。(3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为 视角(或称半功率角)给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。(5)正向工作电流If:它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在 0.6·IFm以下。(6)正向工作电压VF:参数表中给出的工作电压是在给定的正

极管入门知识:二极管结构和工作原理

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子

PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN 结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低于二极管正常导通的电压降,则二极管将不能导通。这个原理的重要性在二极管你可能体会不到,但是到了三极管就显的非常重要了。 (2)反向截止:当PN结加上反正电压,即P区接蓄电池负极,N区接蓄电池正极时,PN结处于截止状态,如图所示,试灯没有电流通过,不能点亮。 二极管反向截止示意图 二极管接反向电压时,存在着一个耐压的问题:如果加在二极管的反向电压过高,二极管受不了,就会击穿,此时二极管不在处于截止状态,而是处于导通状态。如果我们设定一个击穿电压,当达到反向击穿电压时,二极管会击穿导通。如果现在电压又小于了

二极管的知识点总结

半导体二极管 基本结构 PN 结加上管壳和引线,就成为半导体二极管。电路符号: 伏安特性

主要参数(直流,主要利用它的单向导电性,主要应用于整流、限幅、保护等等。) 1.最大整流电流I F 二极管长期使用时,允许流过二极管的最大正向平均电流。 2.反向击穿电压VBR 二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。 3.反向电流IR 指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。 主要参数(交流) 1.微变电阻 r D r D 是二极管特性曲线上工作点Q 附近电压的变化与电流的变化之 比: D D D i v r ??=

2.二极管的极间电容 势垒电容:势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。扩散电容:为了形成正向电流(扩散电流),注入P 区的少子(电子)在P 区有浓度差,越靠近PN结浓度越大,即在P 区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。这样所产生的电容就是扩散电容CD。 PN结高频小信号时的等效电路 晶体二极管模型

二极管分类按结构材料分: (1)锗二极管 (2)硅二极管 按制作工艺分:

(1)点接触型二极管:pn结面积小,结电容小,用于检波和变频等高频电路。 (2)面接触型二极管:结面积大,用于工频大电流整流电路。 (3)平面型二极管:往往用于集成电路制造工艺中。pn结面积可大可小,用于高频整流和开关电路中。 按功能用途分: (1)硅整流二极管:硅整流二极管除主要应用于电源电路做整流元件外,还可用作限幅、保护、钳位等。(常用整流二极管主要是1n、2cz 系列) (2)检波二极管:检波二极管的结点容小、工作频率高、正向压降小,但允许流过的最大正向电流小、内阻大。多用于小信号、高频率的电路,用作检波、鉴频、限幅。(常用检波二极管主要是2ap系列) (3)稳压二极管:利用稳压二极管的反向击穿特性,用作稳压基准电压、保护、限幅、电平转换等。其中2dw230~2dw232稳压管内部具有温度补偿,电压温度系数低,可用于精密稳压电路。(常用稳压二极管主要是1n、2cw、2dw系列) (4)光敏二极管:利用光敏二极管在光的照射下,反向电流与光照成正比的特性,应用于光电转换及光控、测光等自动控制电路中。(常用硅光敏二极管主要是2cu、2du系列) (5)变容二极管:变容二极管的结电容可以随外加偏压的不同而变化,主要应用于lc调谐、自动频率控制稳频等场合。(常用变容二极管主要是2cc、1n系列)

发光二极管主要参数与特性(精)

发光二极管主要参数与特性 LED 是利用化合物材料制成 pn 结的光电器件。它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性 1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa 或oa ′段)a 点对于V 0 为开启电压,当V <Va ,外加电 场尚克服 不少因载 流子扩散 而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系 I F = I S (e qV F /KT –1) -------------------------I S 为反向饱和电流 。 V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT (3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性 鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压) C ≈n+pf 左右。 C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

半导体发光器件包括半导体发光二极管(简称LED)(精)

半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般 P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是

在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关, 即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV 之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。

二极管知识大全

封面 二极管的结构特性 (1) 二极管的工作原理 (2) 二极管的分类.................................................................................3-4 二极管的主要技术参数指标..................................................................5. 二极管的主要作用 (6) 怎样选择合适的二极管 (7) 时间:2012-2-24

1 二极管的结构 半导体二极管主要由一个PN结加上电极、引出断线和管壳构成的。P型半导体引出的电极为二极管的正极,N型半导体引出的电极为负极。二极管的基本特性与PN结的基本特性相同。 , 图 1结构图(可双击该图用AUTOCAD软件观看) 2 二极管的特性 普通二极管最显著的特点是其单向导电性,根据此特性二极管常用于电子线路中,起到整流、

图 2典型二极管的特性曲线及其分区 3 工作原理 二极管的基本原理是根据二极管的伏安特性,正向导通反向截止,可将双向变化的交流电转换成单向脉动的直流电,此转换过程称为整流;利用PN结反向击穿时,电流在较大的范围内变化而端电压基本不变的特性,制成特殊二极管,称为稳压二极管。 3.1 2中1区为正向死区。PN结上加了正向偏压但仍无电流,该区宽度随材料而不同:硅管是0.5V, 锗管是0.7V。 3.2 2中2区为正向导通区。PN结上加了正向偏压后,正向电流呈指数规律明显上升。 3.3 2中3区为反向截止区。PN结上加了较大的反向偏压后,在很大的电压范围内维持一个很小 的固定的反向漏电流。 3.4 2中4区为反向击穿区。PN结上加了较大的反向偏压后,在某个电压值上,PN结被击穿引起 迅速上升的反向电流。一般的整流、检波二极管一到此区就被加在其上的高压大电流烧毁。但是,专门设计用来工作在此区的二极管,只要设法将热量及时导出,同时在电路中限制电流的最大值,它就可以正常工作,一般应用该区的二极管是专门生产的稳压二极管。 4 二极管的分类 4.1二极管按制造材料不同,分为硅和锗二极管。 表 1列出了两种材料的区别。 表 1 两种材料的区别

电子元器件基础知识

电子元器件基础知识 一、电阻 电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为:分流、限流、分压、偏置等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧 电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如:472 表示 47×100Ω(即4.7K);104则表示100K b、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻) 2、电阻的色标位置和倍率关系如下表所示: 颜色有效数字倍率允许偏差(%) 银色 / x0.01 ±10 金色 / x0.1 ±5 黑色 0 +0 / 棕色 1 x10 ±1 红色 2 x100 ±2 橙色 3 x1000 / 黄色 4 x10000 / 绿色 5 x100000 ±0.5 蓝色 6 x1000000 ±0.2 紫色 7 x10000000 ±0.1 灰色 / x100000000 / 白色 9 x1000000000 / 二、电容 1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位 还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法 容量大的电容其容量值在电容上直接标明,如10 uF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF 3、电容容量误差表符号 F G J K L M 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%。

LED发光二极管技术参数常识

LED发光二极管技术参数常识 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)、LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg 的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在 3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)、LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长。 (2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

二极管知识总结

二极管 PN结的单向导电性 PN结的电路特征表现为正向电阻很小,反向电阻很大,这便是PN结的单向导电性。 二极管 二极管特性、参数 二极管的伏安特性 二极管的伏安特性分为三个区段:正向特性、反向特性、击穿特性。 硅二极管门坎电压Uth≈0.5V,正向压降Ud≈0.7V; 锗二极管门坎电压Uth≈0.1V,正向压降Ud≈0.3V。 二极管的主要参数: 1、最大整流电流:允许通过的最大正向平均电流 2、最大反向工作电压Ur:允许承受的最大反向电压,其值为约为击穿电压Ubr的一半 3、反向电流Ir 4、最高工作频率fm 注:用万用表“欧姆档”测二极管,指针型万用表的黑表笔接直流电源的正端,红笔接负端,二极管正向导通电阻一般在几百欧~几千欧,反向偏置电阻一般在几百千欧以上。 二极管应用电路 1、限幅电路-----利用二极管单向导电性和导通后两端电压基本不变的特点组成,将信号限定在某一范围中变化,分为单限幅和双限幅,多用于信号处理电路中 2、钳位电路-----将输出电压钳位在一定数值上

3、开关电路-----利用二极管单向导电性以接通和关断电路,广泛应用与数字电路 4、整流电流-----利用二极管单向导电性,将交流信号变成直流信号,广泛应用于直流稳压电源中 5、低电压稳压电路-----利用二极管导通后两端电压几乎不变的特点,采用几只二极管串联,获得3V以下电压输出特殊二极管 稳压管 稳压管的伏安特性 稳压管的伏安特性曲线也分为正向特性、反向特性、击穿特性三个区域。 稳压管工作在反向击穿状态,动态电阻rz=△uz/△iz越小,稳压性能越好。 稳压管主要参数: 1、稳定电压:即稳压管的击穿电压 2、耗散功率PM 3、稳定电压的温度系数 4、动态电阻rz 发光二极管 发光二极管将电能转化成光能的特殊二极管,简称LED。 正向导通电压一般为1~2V,正向工作电流一般为几~几十毫安。 不同颜色LED灯电压和电流: 普通二极管:红黄一般是1.8~2.2V,蓝绿一般3~3.6V,电流小功率的一般都控制在20mA。

半导体二极管和三极管分析

第7章半导体二极管和三极管 7.1 半导体的基本知识 7.2 PN结 7.3 半导体二极管 7.4 稳压二极管 7.5 半导体三极管

第7章半导体二极管和三极管 本章要求: 一、理解PN结的单向导电性,三极管的电流分配和 电流放大作用; 二、了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义;三、会分析含有二极管的电路。

对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。 学会用工程观点分析问题,就是根据实际情况,对器件的数学模型和电路的工作条件进行合理的近似,以便用简便的分析方法获得具有实际意义的结果。 对电路进行分析计算时,只要能满足技术指标,就不要过分追究精确的数值。 器件是非线性的、特性有分散性、RC 的值有误差、工程上允许一定的误差、采用合理估算的方法。

7.1 半导体的基本知识 半导体的导电特性: (可做成温度敏感元件,如热敏电阻)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。 光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。 热敏性:当环境温度升高时,导电能力显著增强

7.1.1 本征半导体 完全纯净的、具有晶体结构的半导体,称为本征半导体。 晶体中原子的排列方式 硅单晶中的共价健结构 共价健 共价键中的两个电子,称为价电子。 Si Si Si Si 价电子

Si Si Si Si 价电子 价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。 本征半导体的导电机理这一现象称为本征激发。 空穴温度愈高,晶体中产 生的自由电子便愈多。 自由电子 在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。

半导体发光二极管基本知识

半导体发光二极管基本知识 自从60年代初期GaAsP红色发光器件小批量出现进而十年后大批量生产以来,发 光二极管新材料取得很大进展。最早发展包括用GaAs 1-x P x 制成的同质结器件,以及GaP 掺锌氧对的红色器件,GaAs 1-x P x 掺氮的红、橙、黄器件,GaP掺氮的黄绿器件等等。到了 80年代中期出现了GaAlAs发光二极管,由于GaAlAs材料为直接带材料,且具有高发光效率的双异质结结构,使LED的发展达到一个新的阶段。这些GaAlAs发光材料使LED 的发光效率可与白炽灯相媲美,到了1990年,Hewlett-Packard公司和东芝公司分别提出了一种以AlGaIn材料为基础的新型发光二极管。由于AlGaIn在光谱的红到黄绿部分均可得到很高的发光效率,使LED的应用得到大大发展,这些应用包括汽车灯(如尾灯和转弯灯等),户外可变信号,高速公路资料信号,户外大屏幕显示以及交通信号灯。近几年来,由于CaN材料制造技术的迅速进步,使蓝、绿、白LED的产业化成为现实,而且由于芯片亮度的不断提高和价格的不断下降,使得蓝、绿、白LED在显示、照明等领域得到越来越广泛的应用。 本课程将介绍LED的基本结构、LED主要的电学、光度学和色度学参数,并简单介绍LED制造主要工艺过程。 1. 发光二极管(Light Emitting Diode)的基本结构 图<1>是普通LED的基本结构图。它是用银浆把管芯装在引线框架(支架)上,再用金线把管芯的另一侧连接到支架的另一极,然后用环氧树脂封装成型。 组成LED的主要材料包括:管芯、粘合剂、金线、支架 和环氧树脂。 1.1 管芯 事实上,管芯是一个由化合物半导体组成的PN结。由 不同材料制成的管芯可以发出不同的颜色。即使同一种材 料,通过改变掺入杂质的种类或浓度,或者改变材料的组 份,也可以得到不同的发光颜色。下表是不同颜色的发光 二极管所使用的发光材料。图<1>普通LED基本结构图

二极管基本知识

二极管基本知识 1. 基本概念 二极管由管芯、管壳和两个电极构成。管芯就是一个PN结,在PN结的两端各引出一个引线,并用塑料、玻璃或金属材料作为封装外壳,就构成了晶体二极管,如下图所示。P区的引出的电极称为正极或阳极,N区的引出的电极称为负极或阴极。 1.1 二极管的伏安特性 二极管的伏安特性是指加在二极管两端电压和流过二极管的电流之间的关系,用于定性描述这两者关系的曲线称为伏安特性曲线。通过晶体管图示仪观察到硅二极管的伏安特性如下图所示。 1.2 正向特性 1)外加正向电压较小时,二极管呈现的电阻较大,正向电流几乎为零,曲线OA段称为不导通区或死区。一般硅管的死区电压约为0.5伏, 锗的死区电压约为0.2伏,该电压值又称门坎电压或阈值电压。 2)当外加正向电压超过死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流开始增加,进入正向导通区,但此时电压与电流不成比例如AB段。随外加电压的增加正向电流迅速增加,如BC段特性曲线陡直,伏安关系近似线性,处于充分导通状态。 3)二极管导通后两端的正向电压称为正向压降(或管压降),且几乎恒定。硅管的管压降约为0.7V,锗管的管压降约为0.3V。

1.3 反向特性 1)二极管承受反向电压时,加强了PN结的内电场,二极管呈现很大电阻,此时仅有很小的反向电流。如曲线OD段称为反向截止区,此时电流称为反向饱和电流。实际应用中,反向电流越小说明二极管的反向电阻越大,反向截止性能越好。一般硅二极管的反向饱和电流在几十微安以下,锗二极管则达几百微安,大功率二极管稍大些。 2)当反向电压增大到一定数值时(图中D点),反向电流急剧加大,进入反向击穿区,D点对应的电压称为反向击穿电压。二极管被击穿后电流过大将使管子损坏,因此除稳压管外,二极管的反向电压不能超过击穿电压。 2. 整流电路 2.1 单向半波整流电路 二极管就像一个自动开关,u2为正半周时,自动把电源与负载接通,u2为负半周时,自动将电源与负载切断。因此,由下图可见,负载上得到方向不变、大小变化的脉动直流电压uo如下图所示。由于该电路只在u2的正半周有输出,所以称为半波整流电路。如果将整流二极管的极性对调,可获得负极性的直流脉动电压。 2.2 全波整流电路 整流原理: 设变压器二次侧的电压为:

相关主题
文本预览
相关文档 最新文档