当前位置:文档之家› 卧式LNG贮罐液位换算表

卧式LNG贮罐液位换算表

卧式LNG贮罐液位换算表

60M3卧式LNG贮罐液位换算表

生活给水定压罐容积的计算方法

生活给水定压罐容积的计算方法

稳压罐各种容积计算 默认分类2009-12-29 08:16:52 阅读164 评论0 字号:大中小订阅 气压给水设备的设计: 1. 气压罐总容积: VZ=βVω/(1-α)=1.1×045/(1-0.75)=1.98m3 式中:VZ——气压罐总容积(m3); α——压缩空气充装比,取α=0.75;

β——容积附加系数,取β=1.1 2. 气压水罐非调节水容积: △Vω=(1-1/β)VZ =(1-1/1.1)×1.98=0.18m3 3. 气压水罐空气部分容积: Vk=αVZ/β =0.75×1.98/1.1=1.35m3 4. 立式气压水罐设计水位的计算 设计最高水位: hmax=(1-α/β)H=(1-0.75/1.1)×1.75=0.557m 式中:H——立式气压罐总高度(m); 设计最低水位: hmin=(1-1/β)H =(1-1/1.1)×1.75=0.159m;

5. 设计最小工作压力和设计最大工作压力的计算: 为保证消防供水安全可靠,气压罐设计最小工作压力,应满足最不利点灭火设备或用水设备的水压要求: Pmin=HC+∑hω+HZ 式中:Pmin——气压罐设计最小工作压力(MPa); HC——最不利点灭火设备或用水设备所需的水压(MPa); ∑hω——最不利管路的沿程和局部水头损失(MPa); HZ——最不利点灭火设备或用水设备与气压给水设备最低水位间的静水压(MPa); (1)消火栓系统: Pmin=HC+∑hω+HZ=0.50MPa P max=Pmin/α=0.50/0.75=0.667MPa (2)自动喷洒系统:

卧式储罐不同液位下的容积(质量)计算

卧式储罐不同液位容积(质量)计算椭圆形封头卧式储罐图 参数: l:椭圆封头曲面高度(m); l i:椭圆封头直边长度(m); L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3); ρ:储液密度(kg/m3) V h:对应h高度卧罐内储液体积(m3); m h:对应h高度卧罐内储液重量(kg); 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。

以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量)

该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。 以储罐中心为起点的液高

(1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 2222221x y z a b c ++= 其中a=b=r ,则有222 221x y z a c ++= 垂直于y 轴分成无限小微元,任一微元面积为: 22()yi c S a y a π= - 当液面高度为h 时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-?33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为222x y a += 任一微元的面积为 yj S = 则筒体部分容积为: 2h yj a V S -=?h a L -=?2 (arcsin )2 h La a π =+ (arcsin )2 2 h a π π- ≤≤ (3)卧式储罐储液总体积 总容积为V=V1+V2,

各种常见油罐储油量的计算方法

各种常见油罐储油量的计算方法 摘要:本文介绍了一些常见形状的储油罐油量的计算方法,并给出了每种形状的储油罐容积的计算公式和整个推导过程,供各位同仁共同探讨和分享。 现实生活中,尽管储油罐的形状各式各样,仔细分析无非存在以下两种结构:卧式结构和立式结构。无论是卧式结构还是立式结构,都有可能存在半椭圆形封头、平面封头、半圆形封头、圆锥形封头等。笔者在计算储油罐的过程中,积累了大量的经验,现简要做一介绍。 一、椭圆封头卧式椭圆形油罐 这种油罐的形状一般是两端封头为半椭球形,中间为截面积是椭圆形的椭圆柱体,如图1-1、图1-2所示。 计算时,可以把这种油罐的容积看成两部分,一部分为椭球体(把两端的封头看作是一个椭球),另一部分为平面封头中间截面为椭圆形的椭圆柱体,见图1-3、图1-4所示,然后,采用微积分计算任一液面高度时油罐内的容积。 我们建立如图1-3、图1-4所示的坐标系,设油罐除封头以外的长度为L ,其截面长半轴为 A ,短半轴为 B 。椭球部分的长半轴为B ,短半轴 为C ,则在图1-3、图1-4所示的坐标系中,分别得到椭圆的方程为: 在某一液面高度H 时,油罐内油的容积为: 由(1)得: L C B A y 图1-2:椭圆封头卧式椭圆形油罐结构图 图1-1:椭圆封头卧式椭圆形油罐实体图 H (0,2b) a Δy - a (0,b) 0 x y 图1-3:椭圆柱体剖面图 L H (0,2b) C Δy - C (0,b) 0 z 图1-4:封头椭球体剖面图 dy x z x L 2V H ?π+=)(2 y By 2B A x -= 2y By 2B C Z -= (3) (4) (5) ??π+=H 0 H x zdy x dy L 21B B y A x 2 222=-+) ((1) (2) 1C z B B y 2 2 22=+-)(

储罐液位控制系统程序

储罐液位控制系统 ——计算机控制技术课程设计 ①核心:单片机89s52 ②片外扩展:8KB RAM存储器6264,I/O口扩展8155 ③转换器:ADC0809,DAC0832 ④锁存器等:74HC373,74H377,74HC245和3-8译码器74HC138 ⑤输入/输出部件:6个LED,4个按键 89S52的RD及PSEN用与门接在一起后送入6264的OE端,使得

6264既可以作为数据存储器,也可以作为程序存储器。 ①液位信号(电压值)从ADC0809的IN0引脚输入,A/D 转换后存储。 ②液位给定值由键盘设定,与液位信号比较得出偏差值。若超限,则报警,LED4现实P,同时以P1.0驱动报警器,以P1.1驱动蜂鸣器。 ③按达林算法计算控制器的输出值。 ④输出值经D/A 转换得到模拟电压值并输出。 ⑤液位信号的电压值经标度转换后,变为液位值存储,送LED 显示。 6

个LED显示如图a所示。LED5显示H或L,LED4为超限指示,LED3~LED0显示液位值,LED1数码管加小数点,显示围为000.0~999.9。 显示器与键盘设置 LED5 LED4 LED3 LED2 LED1 LED0 H 1 9 9. 5 ⑥键盘设定液位的高低报警限。采用4键方式,4个按键的功能如图b所示。显示与键盘循环扫描,无键按下时,LED显示实时液位,右键按下时,进入液位报警限的修改。先按选择键方可进入修改,先按其他3个键无效。进入修改状态后,待修改的显示位LED5闪动,按+或-键可循环选择H或L,同时后4位LED显示对应的液位值。按确认件后调到下一个待修改的显示为LED3并闪动,按+或-键循环修改0~9数字,再按确认键调到下一位置,如此进行,知道4个数字修改完毕后退出修改状态。在修改状态时,若不按确认键,则8秒后退出修改状态。从视觉舒适的角度考虑,数字应为每0.4秒闪动一次。 显示器与键盘设计 选择+ - 确定 ①数据采集:A/D转换,采样周期为10s。

储罐液位监测系统

储 罐 液 位 检 测 系 统 专业: **** 班级: ***** 学号: ***** 姓名: ***** 摘要 超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速 度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光 学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、 电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系 统中的应用具有重要的现实意义。试设计储油罐(圆柱体型)液位、温度的实时监测系 统。

对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状

储油罐液位检测系统设计 一、设计要求 我国石油资源丰富,采油炼油企业众多,储油罐是储存油品的重要设备,储油罐液位的精确计量对生产厂库存管理及经济运行影响很大。但国内许多反应罐、大型储油罐的液位计量仍采用人工检尺和分析化验的方法,其他参数的测定也没有实行实时动态测量,这样易引发安全事故,无法为生产操作和管理决策提供准确的依据。采用计算机自动监测技术,实时监测储油罐液位、温度等参数,可以方便了解生产状况,及时监视、控制容器液位及温度等,保障安全平稳生产。试设计储油罐(圆柱体型)液位的实时监测系统。 二、方案设计 目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。 1、方案一 在光通信研究中发现,光纤受外界环境因素的影响,如压力、温度、电场、磁场等环境条件变化时,将引起光纤传输的光波量,如光强、相位、频率、偏振态等改变。如果能测量出光波变化的信息,就可以知道导致这些光波量变化的压力、温度、电场、磁场等物理量的大小,于是就出现了光纤传感器技术。光纤传感器的信号载体是在光纤中传输的光,而光纤本身是一种介质材料,这就赋予了光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高、响应速度快、动态范围大、防电磁干扰、超高压绝缘、无源性、防燃防爆、适用于远距离遥测、多路系统无地回路“串音”千扰、体积小、机械强度大、可灵活柔性挠曲、材料资源丰富、成本低等。

压差式液位仪用于LNG储罐的误差分析和修正方法

压差式液位仪表用于LNG储罐的误差分析和修正方法 大家知道,由于受到仪表技术和安装不便等原因的限制,目前在国内LNG中小型带压运行储罐均采用压差式液位仪表实现对储存LNG液位的就地和远传显示;压差式液位仪表被广泛运用于对液体液位的测量,为了分析其运用在LNG领域的情况,首先我们要非常清晰的了解其测量原理,这里将不惜篇章加以说明,因为这是后面分析的基础。 当被测容器敞口时,液体上表面气体压力为大气压,大气压力通过液体传递到液体底部,与液位高产生的压力叠加成为压差式液位仪正压引压管处的绝对压力,由于气体的密度通常远低于液体的密度,可以不考虑引压管中气体高差产生的压差,所以在敞口容器中差压计的负压室直接通大气即可抵消作用于液体表面的大气压力,此时也可用普通显示“表压”的压力计来测量液位(因为显示“表压”的压力计是不显示大气压力的,进口与大气相通时压力指示为零)。依据以上分析,我们不难理解,若容器是密闭的,则需将差压计的负压腔用引压管连接容器的气相空间,在液体底部压力为液体表面的压力(即带压容器气相空间的气体压力)与液位高产生的压力叠加数值,通过引压管接在压差仪表的正压腔上,基于上面描述过的情况,带压容器中气体的压力在压差仪表的测压元件中被抵消(同时作用于压差仪表的正压腔和负压腔),所测得的压力完全是由于液体液位高度所产生的。

在测量开口容器时,往往将压差测量仪表的测量元件安装在与测量液位的下限水平对齐的位置(如图1),这样可以准确地测量将该点作为起点的液位高所产生的压差,计算方法:ΔP=H*ρ,(其中H 是液位高度,ρ是液体的平均密度),这是基于阿基米德定律的衍生运用中的一种。 同样,在测量封闭容器即带压容器内液体液位的时候,也应该将压差测量仪表的测量元件安装在与测量液位的下限水平对齐的位置。 在这里先提一个问题:如果压差测量仪表的测量元件安装的位置高于(或低于)测量液位的下限水平,会发生什么情况?如图,液体会进入引压管中,这一段液柱高h1同样会产生压差!直接影响压差

卧式储罐不同液位下的容积计算

椭圆形封头卧式储罐图 参数: l:椭圆封头曲面高度(m); l :椭圆封头直边长度(m); i L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3); ρ:储液密度(kg/m3) V :对应h高度卧罐内储液体积(m3); h m :对应h高度卧罐内储液重量(kg); h 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。

以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量)

该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。

以储罐中心为起点的液高 (1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 2222221x y z a b c ++= 其中a=b=r ,则有222 221x y z a c ++= 垂直于y 轴分成无限小微元,任一微元面积为: 22()yi c S a y a π= - 当液面高度为h 时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-?33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为222x y a += 任一微元的面积为yj S = 则筒体部分容积为: 2h yj a V S -=?h a L -=?2 (arcsin )2 h La a π =+

卧罐体积计算公式

卧罐体积计算公式 设卧式储罐内部为椭圆柱,椭圆的两半轴为a(宽度方向),b(高度方向),长度为L,内部介质的高度为h,则内部介质体积V1的计算公式与h的关系推导如下: V1=2L∫(b-h,b)√(b^2-x^2)dx =(2aL/b)[(x/2)√(b^2-x^2)+(b^2/2)arcsin(x/b)]| (b-h,b) =(2aL/b)[πb^2/4-(b-h)√(2bh-h^2)/2-(b^2/2)arcsin(1-h/b)] 以上计算是假设卧式储罐为平封头时的情况,当卧式储罐带有两个半椭球封头时,内部介质体积计算公式需要修正: 设椭球封头的三个半轴为a(宽度方向),b(高度方向),c(长度方向),内部介质的高度为h,则椭球封头处内部介质体积V2的计算公式与h的关系推导如下: V2=4∫(b-h,b)∫(0,a√(1-x^2/b^2))c√(1-x^2/b^2-y^2/a^2)dydx =(4c/a)∫(b-h,b)∫(0,a√(1-x^2/b^2))√(a^2-a^2x^2/b^2-y^2)dydx =(4c/a)∫(b-h,b)y√(a^2-a^2x^2/b^2-y^2)/2 + arcsin(y/√(a^2-a^2x^2/b^2 ))(a^2-a^2x^2/b^2)/2 |(0,a√(1-x^2/b^2))dx =(4c/a)∫(b-h,b)π(a^2-a^2x^2/b^2)/4dx =πac∫(b-h,b) (1- x^2/b^2) dx =(πac/3)(3x- x^3/b^2)| (b-h,b) =(πac/3)[3h-b+(b-h)^3/b^2)] 故在有两个半椭球封头时,内部介质体积V的计算公式与h的关系如下:V=V1+V2 =(2aL/b)[πb^2/4-(b-h)√(2bh-h^2)/2-(b^2/2)arcsin(1-h/b)] +(πac/3)[3h-b+(b-h)^3/b^2)]

卧式储罐设计

摘要关键词:

第一章绪论 1.1 设计任务: 针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并便携设计说明书。 1.2设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。各项设计参数都正确参考了行业使用标准或国家标准,这样设计有章可循,并考虑到结构方面的要求,综合的进行设计。 1.3 设计特点: 容器的设计一般由筒体,封头,法兰,支座,接管等组成。常,低压化工设备通用零部件大都有标准,设计师可直接选用。本设计书主要介绍了液罐的筒体,封头的设计计算,低压通用零部件的选用。 各项设计参数都正确参考了行业使用标准或国家使用标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

第二章材料及结构的选择与论证 2.1材料选择 纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、 16MnR.这两种钢种。如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR 钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。所以在此选择16MnR钢板作为制造筒体和封头材料。 2.2结构选择与论证 2.2.1 封头的选择 从受力与制造方面分析来看,球形封头是最理想的结构形式。但缺点是深度大,冲压较为困难;椭圆封头浓度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。从钢材耗用量来年:球形封头用材最少,比椭圆开封头节约,平板封头用材最多。因此,从强度、结构和制造方面综合考虑,采用椭圆形封头最为合理。 2.2.2容器支座的选择 容器支座有鞍座,圈座和支腿三种,用来支撑容器的重量。鞍式支座是应用最广泛的一种卧式支座。从应力分析看,承受同样载且具有同样截面几何形状和尺寸的梁采用多个支承比采用两个支承优越,因为多支承在粱内产生的应力较小。所以,从理论上说卧式容器的支座数目越多越好。但在是实际上卧式容器应尽可能设计成双支座,这是因为当支点多于两个时,各支承平面的影响如容器简体的弯曲度和局部不圆度、支座的水平度、各支座基础下沉的不均匀性、容器不同部位抗局部交形的相对刚性等等,均会影响支座反力的分市。因此采用多支座不仅体现不出理论上的优越论反而会造成容器受力不均匀程度的增加,给容器的运行安全带来不利的影响。所以一台卧式容器支座一般情况不宜多于二个。圈座一般对于大直径薄壁容器和真空操作的容器。腿式支座简称支腿,因这种支座在与容器壳壁连接处会造成严重的局部应力,故只适合用于小型设备(DN≤1600,L≤≤5m)。综上考虑在此选择双个鞍式支座作为储罐的支座。

卧式储罐体积计算

卧式储罐不同液位体积计算 H/Di 系数K1 0 1 2 3 4 5 6 7 8 9 .00 .000000 .000053 .000151 .000279 .000429 .000600 .000788 .000992 .001212 .001445 .01 .001692 .001952 .002223 .002507 .002800 .003104 .003419 .003743 .004077 .004421 .02 .004773 .005134 .005503 .005881 .006267 .006660 .007061 .007470 .007886 .008310 .03 .008742 .009179 .009625 .010076 .010534 .010999 .011470 .011947 .012432 .012920 .04 .013417 .013919 .014427 .014940 .015459 .015985 .016515 .017052 .017593 .018141 .05 .018692 .019250 .019813 .020382 .020955 .021533 .022115 .022703 .023296 .023894 .06 .024496 .025103 .025715 .026331 .026952 .027578 .028208 .028842 .029481 .030124 .07 .030772 .031424 .032081 .032740 .033405 .034073 .034747 .035423 .036104 .036789 .08 .037478 .038171 .038867 .039569 .040273 .040981 .041694 .042410 .043129 .043852 .09 .044579 .045310 .046043 .046782 .047523 .048268 .049017 .049768 .050524 .051283 .10 .052044 .052810 .053579 .054351 .055126 .055905 .056688 .057474 .058262 .059054 .11 .059850 .060648 .061449 .062253 .063062 .063872 .064687 .065503 .066323 .067147 .12 .067972 .068802 .069633 .070469 .071307 .072147 .072991 .073836 .074868 .075539 .13 .076393 .077251 .078112 .078975 .079841 .080709 .081581 .082456 .083332 .084212 .14 .085094 .085979 .086866 .087756 .088650 .089545 .090443 .091343 .092246 .093153 .15 .094061 .094971 .095884 .096799 .097717 .098638 .099560 .100486 .101414 .102343 .16 .103275 .104211 .105147 .106087 .107029 .107973 .108920 .109869 .110820 .111773 .17 .112728 .113686 .114646 .115607 .116572 .117538 .118506 .119477 .120450 .121425 .18 .122403 .123382 .124364 .125347 .126333 .127321 .128310 .129302 .130296 .131292 .19 .132290 .133291 .134292 .135296 .136302 .137310 .138320 .139332 .140345 .141361 .20 .142378 .143398 .144419 .145443 .146468 .147494 .148524 .149554 .150587 .151622 .21 .152659 .153697 .154737 .155779 .156822 .157867 .158915 .159963 .161013 .162066 .22 .163120 .164176 .165233 .166292 .167353 .168416 .169480 .170546 .171613 .172682. .23 .173753 .174825 .175900 .176976 .178053 .179131 .180212. .181294 .182378 .183463 .24 .184550 .185639 .186729 .187820 .188912 .190007 .191102 .192200 .193299 .194400 .25 .195501 .196604 .197709 .198814 .199922 .201031 .202141 .203253 .204368 .205483 .26 .206600 .207718 .208837 .209957 .211079 .212202 .213326 .214453 .215580 .216708 .27 .217839 .218970 .220102 .221235 .222371 .223507 .224645 .225783 .226924 .228065 .28 .229209 .230352 .231498 .232644 .233791 .234941 .236091 .237242 .238395 .239548. .29 .240703 .241859 .243016 .244173 .245333 .246494 .247655 .248819 .249983 .251148 .30 .252315 .253483 .254652 .255822 .256992 .258165 .259338 .260512 .261687 .262863 .31 .264039 .265218 .266397 .267578 .268760 .269942 .271126 .272310 .273495 .274682 .32 .275869 .277058 .278247 .279437 .280627 .281820 .283013 .284207 .285401 .286598 .33 .287795 .288992 .290191 .291390 .292591 .293793 .294995 .296198 .297403 .298605 .34 .299814 .301021 .302228 .303438 .304646 .305857 .307068 .308280 .309492 .301705 .35 .311918 .313134 .314350 .315566 .316783 .318001 .319219 .320439 .321660 .322881 .36 .324104 .325326 .326550 .327774 .328999 .330225 .331451 .332678 .333905 .335134. .37 .336363 .337593 .338823 .340054 .341286 .342519 .343751 .344985 .346220 .347455 .38 .348690 .349926 .351164 .352402 .353640 .354879 .356119 .357359 .358599 .359840 .39 .361082 .362325 .363568 .364811 .366056 .367300 .368545 .369790 .371036 .372282 .40 .373530 .374778 .376036 .377275 .378524 .379774 .381024 .382274 .383526 .384778 .41 .386030 .387283 .388537 .389790 .391044 .392298 .393553 .394808 .396063 .397320 .42 .398577 .399834 .401092 .402350 .403608 .404866 .406125 .407384 .408645 .409904

卧式储罐不同液位下的容积计算

卧式储罐不同液位下的容积计算卧式储罐不同液位容积(质量)计算 椭圆形封头卧式储罐图 h d r l L l i 参数: l:椭圆封头曲面高度(m); li:椭圆封头直边长度(m); L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3); ρ:储液密度(kg/m3) Vh:对应h高度卧罐内储液体积(m3);

m h :对应h高度卧罐内储液重量(kg ); 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。 o h r 以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量) ρ r L h V h mh 液体密度 (kg/m3) 储罐半径 (m ) 圆柱体部分长度(m ) 储液液位高度(m ) 储液体积 (m 3) 储液重量 (kg)

备注: 该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。

o h r h 尺 以储罐中心为起点的液高 (1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 2222221x y z a b c ++= 其中a=b=r,则有222 221x y z a c ++= 垂直于y轴分成无限小微元,任一微元面积为: 22() yi c S a y a π= - 当液面高度为h时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-? 33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为222 x y a += 任一微元的面积为 222yj S a y dy =- 则筒体部分容积为: 2h yj a V S -=?222h a L a y dy -=-?2 2 222 (arcsin ) 2h h La a h a a π =+-+

卧式储罐不同液位下的容积计算(精品)

卧式储罐不同液位下的容积计算卧式储罐不同液位容积(质量)计 算 椭圆形封头卧式储罐图 h d r l L l i 参数: l:椭圆封头曲面高度(m); li:椭圆封头直边长度(m); L:卧罐圆柱体部分长度(m); r:卧式储罐半径(d/2,m); d:卧式储罐内径,(m) h:储液液位高度(m); V:卧式储罐总体积(m3);

ρ:储液密度(kg/m 3 ) Vh :对应h 高度卧罐内储液体积(m3); m h :对应h高度卧罐内储液重量(kg ); 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。简化模型图如下。...文档交流 仅供参考... o h r 以储罐底部为起点的液高 卧式储罐内储液总体积计算公式: ()()()? ???????? ? ?++??? ??+=2----arcsin 3212 222πr h r r r h r r h Lr L r V h 若密度为ρ,则卧式储罐内储液总重量为: h h V m ρ= 表1 卧式储罐不同液位下容积(重量) ρ r L h Vh mh 液体密度 储罐半径 圆柱体部分储液液位 储液体积 储液重量

(kg/m3)(m)长度(m)高度(m)(m3)(kg) 备注: 该计算公式推导过程如下 卧式储罐不同液位 下的容积简化计算公 椭圆形封头卧式储罐由直段筒体及两侧封头组焊而成,去掉直段筒体,两侧封头可组成椭圆球体。

o h r h 尺 以储罐中心为起点的液高 (1)椭圆球体部分 该椭圆球体符合椭圆球体公式: 222 2221x y z a b c ++= 其中 a=b=r ,则有222 2 21x y z a c ++= 垂直于y轴分成无限小微元,任一微元面积为: 22() yi c S a y a π= - 当液面高度为h 时,椭圆球体内液氨容积为 V1=h yi a S dy -? 2 2 ()h a c a y dy a π-=-? 33 2 2()33c h a a h a π=-+ (2)直段筒体部分: 筒体的纵断面方程为2 22x y a += 任一微元的面积为 222yj S a y dy =- 则筒体部分容积为: 2h yj a V S -=?222h a L a y dy -=-?2 2 222 (arcsin ) 2h h La a h a a π =+-+

相关主题
文本预览
相关文档 最新文档