当前位置:文档之家› 超声波法提取青钱柳多糖

超声波法提取青钱柳多糖

超声波法提取青钱柳多糖
超声波法提取青钱柳多糖

第28卷第6期江西农业大学学报Vo.l 28,No. 6 2006年12月ActaAgriculturaeUniversitatis Jiangxiensis Dce., 2006

文章编号:1000-2286(2006)06-0809-04

超声波法提取青钱柳多糖

上官新晨,陈木森,徐睿庸,蒋艳,沈勇根

(江西农业大学植物资源开发与利用研究室,江西南昌330045)

摘要:利用超声波法提取青钱柳多糖,研究了超声时间、超声功率、料液比对青钱柳多糖得率的影响,并采用正

交试验对青钱柳多糖提取工艺进行优化设计。结果表明,超声波法提取青钱柳多糖的最佳条件为:超声时间

70 min,超声功率1 200W,料液比1∶10。超声功率和超声时间对提取青钱柳多糖的影响分别为显著差异和极

显著差异,因此利用超声波法提取青钱柳多糖可以缩短提取时间,提高得率。

关键词:青钱柳;超声波提取;多糖

中图分类号:TS101. 3+1文献标识码:A

Ultrasonicextraction ofPolysaccharide from

Cyclocarya paliurus(Batal)Ijinskaja

SHANGGUAN Xin-chen,CHENMu-sen,

XU Rui-yong, JIANG Yan, SHEN Yong-gen

(PlantResourcesExploitation andUtilization Laboratory, JAU,Nanchang 330045,China) Abstract:Ultrasonic wave was applied in extraction of polysaccharide fromCyclocarya paliurus(Batal)Ijinskaja. The effects of ultrasonic power, solid-liquid ratio, ultrasonication time on extraction efficiencywere studied. Based on single and orthogonal experiments, the optimum conditionswere established as fol-

lows: ultrasonic power1 200W, extracting time 70 minutes, solid to liquid ratio 1∶10. Analysis of variance showed that the effects ofultrasonication time and ultrasonic poweron extraction polysaccharide are statistically significant and highly significan,t respectively.

Key words:Cyclocarya paliurus(Batal)Ijinskaja; ultrasonic extraction; polysaccharide

青钱柳[Cyclocarya paliurus(Batal)Ijinskaja]又名青钱李、山麻柳、甜茶树、一串钱、摇钱树等,属双子叶植物胡桃科青钱柳属,是我国特有的单种属植物,也是国家重点保护的濒危植物之一,属三类保护植物[1]。经最近研究,青钱柳提取物具有以下生理活性:降血糖、降血压、降血脂、增强肌体免疫力、抗氧化防衰老等[1~7]。李磊等人从青钱柳水提取物中分离出多糖成分,用四氧嘧啶糖尿病小鼠动物试验证明青钱柳多糖具有显著的降血糖作用[3],所以开发青钱柳多糖具有很重要的意义。

目前,提取多糖的方法主要有水提法、稀碱提取法、酶提取法、超滤提取法、微波提取法、超声波提取法[8]。超声波作为一种先进的提取方法,具有提取时间短、能耗低、效率高等特点,在生产中得到了广泛的应用[9]。其主要原理就是超声波产生“空化作用”,这种空化作用能够产生局部的高温高压,并形成强大的冲击波或高速射流,这种强大的高速射流能够有效地减小、消除与水相之间的阻滞层,加大了传质效率。同时,高速射流对植物细胞组织产生一种物理剪切力,使之变形、破裂并释放出内含物,这就大大加速了萃取过程。另外,超声波的许多次级效应如热效应、溶化、扩散、击碎、化学效应、生物效应、凝聚效应等也能加速植物有效成分在溶剂中的扩散释放,促进植物有效成分与溶剂混合,有利于萃取[9]。目前国内外尚未见到有关超声波提取青钱柳多糖方面的研究报道。为此,本研究考察了不同因素对超声

波法提取青钱柳多糖的影响,并对提取工艺进行优化。

1实验材料与方法

1.1材料与设备

青钱柳叶(采自于江西省修水县); 723可见分光光度计(上海光谱仪器有限公司);HF-2. 5B超声循环提取机(北京弘祥隆生物技术开发有限公司);DTQ-100L型多功能提取器(湖南衡阳东泰医药机械制造有限公司)。

1.2实验方法

1.2.1青钱柳叶的预处理青钱柳叶经过干燥、除杂、粉碎后,用提取罐在60℃下石油醚脱色3 h,滤去石油醚,自然干燥后作为超声波提取原料。

1.2.2标准曲线的绘制用葡萄糖配成50μg/mL的标准溶液,准确移取100, 200, 300, 400, 500μL

标准溶液于各试管中,用蒸馏水补足500μL,空白管则加入蒸馏水500μL,各试管加入300μL 50 g/L苯酚溶液,混匀后快速加入2. 0 mL浓硫酸,振荡混匀后室温静置30 min,在490 nm处测其吸光度。以葡萄糖浓度作横坐标,吸光度为纵坐标绘制标准曲线,计算得出回归曲线方程为:C=91.149 4A-0.399 2,R2=0.999 7,浓度在0~50μg/mL之间呈现良好的线性关系。

1.2.3超声波不同条件的单因素试验(1)超声功率对青钱柳多糖得率的影响。分别称取200 g青钱柳叶预处理原料,按原料与蒸馏水质量比为1∶10加入蒸馏水,功率分别为400、600、800、1 000和1 200W超声提取30min,测定多糖的含量,平行试验3次。(2)时间对青钱柳多糖得率的影响。分别称取200 g青钱柳叶预处理原料,用1 000W功率,料液比为1∶10,超声时间分别为10, 30, 50和70 min,测定多糖的含量,平行试验3次。(3)料液比对青钱柳多糖得率的影响。分别称取200 g青钱柳叶预处理原料,料液比分别为1∶8、1∶10、1∶15、1∶20,用1 000W超声功率提取,时间为30 min,测定多糖的含量,平行试验3次。

1.2.4超声波法辅助提取最佳工艺条件的确定影响青钱柳多糖提取率的主要因素有料液比、提取时间和超声波功率,所以本实验采用3水平3因素正交试验方法,试验因素水平见表1。

1.2.5青钱柳多糖的测定[10]青钱柳预处理原料经过超声波提取后,过滤得到滤液,取1 mL 滤液加入3 mLφ=95%的乙醇,溶液在8 000 r/min转速下离心,弃去上层清液得到沉淀。用蒸馏水溶解沉淀,溶液转移至容量瓶中定容,准确移取该溶液0. 5 mL样品,按1. 2. 1中方法进行显色,在490 nm下测定其吸光值。根据所得回归曲线方程计算多糖含量,按以下公式计算多糖得率:青钱柳粗多糖得率=滤液中多糖的质量青钱柳叶质量×100%。

2结果与讨论

2.1超声功率对青钱柳多糖得率的影响

·810·第6期上官新晨等:超声波法提取青钱柳多糖

由图2可知,超声功率在400~1 000W时,多糖的得率随着功率的升高而升高。加大超声功率,超声空化作用加强,高速射流加强,从而有效地减小了青钱柳叶与水之间的阻滞层,提高了萃取效率;随着高速射流的加强,超声波的机械剪切作用也加强,青钱柳叶细胞破坏更充分,这有助于细胞多糖的溶出。但是功率超过了1 000W时,青钱柳多糖得率没有明显的增加,这可能是超声作用比较充分,细胞内的多糖物质已比较好地溶解出来。

2.2超声时间对青钱柳叶多糖提取效果的影响由图3可知,随着超声时间的延长,提取出的青钱柳总糖的得率逐渐增多,其中10~50 min的得率增幅较大,而超声时间到50 min时增加的幅度很小。

2.3料液比对青钱柳多糖得率的影响

多糖的得率随料液比的增加而增大(1∶8 ~1∶10)。这是因为随着料液比的增加,溶液与物料之间的多糖浓度差增大,有利于多糖的溶出;但当料液比增加到一定程度后,多糖的得率趋于稳定,变化幅度不大(图4)。

2.4超声波法辅助提取最佳工艺条件的确定

按照1. 2. 4所述超声波提取法提取青钱柳多糖,所得结果见表2。从表2的极差可知,超声波提取青钱柳多糖的影响因素依次为:超声时间>超声功率>料液比;从表3可知,超声功率和超声时间对提取青钱柳多糖影响分别为显著性差异和极显著性差异,而料液比差异不显著;结合表4可得出青钱柳多糖最佳的提取工艺为:超声时间70 min,超声功率

1 200W,料液比1∶10。

3结论

(1)超声波提取青钱柳多糖优化工艺条件为:超声时间70 min,超声功率1 200W,料液比1∶10,并且超声功率和超声时间对青钱柳多糖的提取影响分别为差异显著和差异极显著。·811·江西农业大学学报第28卷

(2)超声波提取的青钱柳多糖得率高,提取时间短,有着广阔的应用前景。

(3)

注:字母相同表示两者之间差异不显著;不同小写字母表示差异显著;不同大写字母表示差异极显著。

参考文献:

[1]上官新晨,郭春兰,杨武英,等.培养基及培养条件对青钱柳愈伤组织生长和黄酮含量的影响[J].福建农林大学学

报:自然科学版, 2006, 35(6): 456-460.

[2]上官新晨,郭春兰,蒋艳,等.培养基和植物激素质对青钱柳茎段和叶片愈伤组织诱导的研究[J].江西农业大学学

报, 2006, 28(5): 678-682.

[3]李磊,谢明勇,易醒,等.青钱柳多糖组分及其降血糖活性研究[J].江西农业大学学报, 2001, 23(4): 484-486.

[4]易醒,黄志勇,谢明勇,等.反相高效液相色谱法测定青钱柳中黄酮化合物含量[J].南昌大学学报, 2001, 25(2): 161-164.

[5]黄敬耀,楼兰英.摇钱树的药理研究[J].中药通报, 1986, 11(1): 61.

[6]冷任轩.青钱柳的基础理论研究和临床观察[J].江西中医药, 1994, 25(2): 64-65.

[7]易醒,谢明勇.青钱柳对胆固醇调节作用的初步研究[J].中国商办工业, 2000, 4: 51-52.

[8]赵宇,彭晓霞.多糖类化合物提取工艺研究[J].医药卫生, 2006, 35(2): 223-224.

[9]赵茜,李秉滔,刘欣,等.超声强化甘草酸的提取研究[J].食品科技, 2000(5): 38.

[10]张桂,赵国群.超声波萃取植物多糖的研究[J].食品科学, 2005, 26(9): 302-306.

[11]汤建国,汪秋安,单杨.从柑橘皮中超声提取橙皮甙[J],精细化工, 2004, 21(3): 171-173. ·812·

超声提取分离技术

超声分离提取技术 摘要:超声提取技术是一种具有极强物理和声化学效应的分离方法,在生物医药,食品,精细化工等方面有着广泛应用。本文主要介绍了超声提取分离技术的原理、特点以及应用前景等。 关键词:超声波;分离提取;应用 The Technology of Ultrasonic Separation and Extraction Abstraction:The technology of ultrasonic extraction is a way of separation with great physical and acoustochemistry effect.It is widely applied among biological medicine,food science,fine chemical industry and other aspects.This article mainly introduce the theory,characteristic and application prospect of the ultrasonic separation and extraction. Keywords:ultrasonic;separation and extraction;application 1.前言 超声波是一种振动频率大于20000Hz的弹性波,在物质介质中的相互作用效应可分为热效应、空化效应和机械传质效应。超声波振动能产生强大的能量,给予媒质点以很大的速度和加速度,使浸提剂和提取物不断震荡,形成空化效应,有助于溶质扩散,加速植物中的有效成分进入溶剂,同时作用于植物叶肉组织可高效粉碎细胞壁,从而释放出其内容物,提高有效成分的提取率[1-2]。 超声波热效应是通过介质的微粒间和分界面上的摩擦以及介质的吸收等使超声能量转化为热能,提高介质和生物体的温度,从而有利于有效成分的溶出;超声波的机械振动发生的位移、速度变化不大,但其加速度却相当大,能显著增大溶剂进入提取物细胞的渗透性,从而强化了萃取过程。超声波的空化效应通过形成强声波作用产生液胞的振荡、伸长、收缩乃至崩溃等,往往使生物组织受到严重的损伤和破裂,从而加速有效成分的溶出和浸提[3-4]。 超声波提取法是利用超声波的空化效应、机械传质效应和热效应,以提高细胞内容物的穿透力和传输能力,增大物质分子运动频率和速度,提高有效成分的浸出率。与传统提取分离方法相比,如熬煮法、压滤法、化学法、溶剂浸提法、生物酶法等,超声提取法具有提取效率高、提取时间短、有效成分活性高等优点[5]。 传统的机械破碎法难以将细胞有效破碎,提取效率低。而化学破碎方法易造成提取物结构的改变和活性降低或失活。超声提取技术是一种具有极强物理和声化学效应的分离方法,其在溶液中形成的冲击波和微射流可以形成空化效应,达到破碎细胞和最大限度地保存和提高反应分子反应活性。将超声提取技术应用于提取茶叶的有效成分,操作简便快捷、无需加

叶绿素的超声波辅助提取及组成分析

《叶绿素的超声波辅助提取及组成分析》个人实验方案设计报告及小组实验报告 实验小组人员 学院生物与化学工程学院专业化工 实验指导教师 开课学期2017 至2018 学年二学期 填报时间2018 年 6 月22 日

第二部分小组实验报告 一、实验部分 1、实验原料 名称规格产地 竹叶干燥、剪碎— 无水乙醇分析纯— 氧化铝颗粒— 石油醚分析纯— 丙酮分析纯— 2、实验仪器与装置(含装置图) 主要实验仪器: 仪器名称型号产地 超声波清洗仪—— 真空泵—— 烘箱—— 电热炉—— 布氏漏斗—— 紫外分光光度计—— 层析柱—— 比色皿—— 容量瓶25.00ml—另有烧杯、烧瓶、玻璃棒等。 装置图:

萃取瓶层析柱 蒸馏装置 过滤装置

3、竹叶中叶绿素提取实验步骤 1)开启超声波清洗器电源。加入适量水,调节温度50℃,调节功率200W,调节 超声频率28kHz。等待温度稳定。 2)准确称取2.00g毛竹叶粉末放入于玻璃瓶中,加入40ml乙醇使其完全浸没。盖 紧瓶盖。放入超声波清洗器中进行超声萃取。同时用手轻晃瓶子。 3)40min后,关闭超声波清洗器并取出瓶子。 4)将萃取液连同竹叶一并转入布氏漏斗进行真空抽滤。用适量乙醇洗涤瓶子及竹 叶。 5)将萃取液完全转移至烧瓶中,加入毛细管(防止暴沸),蒸馏浓缩。 6)待烧瓶中溶液冷却至室温。将烧瓶中溶液完全转移至25ml棕色容量瓶中,用 乙醇定容。 4、总叶绿素含量测定实验步骤 测定吸光度:采用紫外-可见分光光度计对它们的含量进行测定。叶绿素a和b的吸收光谱相互重叠,相互重叠的曲线在波长652 nm处,用这一波长可测定叶绿素的总含量。根据朗伯-比尔定律,取一定量的叶绿素提取液,经稀释后测定波长652 nm处的吸光度可用来计算叶绿素含量。 5、叶绿素各组分分离纯化实验步 叶绿素的柱层析分离: 1)湿法装柱:以石油醚为初始洗脱液,用湿法装柱的方法将适量中性氧化铝装入一洗净的、干燥的层析柱,排除气泡,保证装填紧密,放出石油醚,直到距柱表面仅1-2 mm 高,无论如何不能使液面低于柱表面。 2)上样:用长滴管将浓缩的叶绿素提取液沿柱壁小心的加到柱顶部。加完后,稍稍打开柱下部活塞,使液面下降至柱表面约1 mm处,关闭活塞,用少量石油醚冲洗柱壁,使液面下降至原高度。 3)洗脱:在柱顶装一储液器,先加入适量洗脱剂石油醚,打开柱下部活塞,让洗脱剂逐滴放出,层析开始,用锥型瓶收集流出液。注意观察流出液颜色,当橙黄色色带

超声波辅助提取木棉花多糖

超声波辅助提取木棉花多糖 木棉[Gossampinus malabarica(Dc.)Merr.]为木棉科木棉属植物,是华南地区特有的植物资源,主要分布于广西、广东、四川、贵州和云南等省。其花性味甘、淡、凉,有清热利湿以及解暑的功能,可治肠炎、痢疾。民间多在初春时拾其落花,晒干煎水服用。用来祛风除湿,活血消肿,散结止痛,治疗胃癌、食管癌等消化道肿瘤[1]。近年来,植物、海洋生物及菌类等来源的多糖已作为有生物活性的天然产物中的一个重要类型出现。而在菌多糖得到广泛研究的背景下,越来越多的工作人员将目光投向植物多糖,据文献报道,已有100种植物多糖被分离提取出来[2]。但对于木棉花的文献报道多是研究其药理作用,而对其多糖提取工艺的研究却鲜见报道。因此木棉花多糖的提取方法也日益成为人们关注的焦点。为了促进中国对木棉花的开发利用,有人对木棉花化学成分和药理作用进行了一些研究。 多糖的提取方法有碱提法、水提法、微波法、酶提法和超声波辅助提取法等。本试验采用的是超声波辅助提取法,它是应用超声波强化提取植物多糖的方法,是一种物理破碎过程。与常规提取法相比,超声波辅助提取可缩短提取时间,提高提取效率,所以超声波辅助提取法在植物多糖的提取中得到广泛应用[3]。 采用苯酚-硫酸法测定多糖的含量,苯酚-硫酸法简单、快速、灵敏、重现性好,且生成的颜色持久。用苯酚-硫酸法测定多糖含量时需注意苯酚浓度不宜太高[4],过高浓度的苯酚会使反应的稳定性不 好且易产生操作误差。本试验采用50 g/L的苯酚,同时保持较高的硫酸浓度,因此该呈色反应是以对多糖的水解和糠醛反应为基础的,硫酸浓度降低会影响两种反应的进行。测定吸光度时所用葡萄糖标准溶液与木棉花多糖都需现配现用才能保证结果的稳定性及准确性,每组需平行测定3次。用紫外分光光度法测定木棉花中多糖的浓度,此方法简单、准确率高[5]。

[超声波,辅助,提取]超声波辅助提取木棉花多糖

超声波辅助提取木棉花多糖 超声波辅助提取木棉花多糖 木棉 malabarica(Dc.)Merr.]为木棉科木棉属植物,是华南地区特有的植物资源,主 要分布于广西、广东、四川、贵州和云南等省。其花性味甘、淡、凉,有清热利湿以及解暑的功能,可治肠炎、痢疾。民间多在初春时拾其落花,晒干煎水服用。用来祛风除湿,活血消肿,散结止痛,治疗胃癌、食管癌等消化道肿瘤[1]。近年来,植物、海洋生物及菌类等来源的多糖已作为有生物活性的天然产物中的一个重要类型出现。而在菌多糖得到广泛研究的背景下,越来越多的工作人员将目光投向植物多糖,据文献报道,已有100种植物多糖被分离提取出来[2]。但对于木棉花的文献报道多是研究其药理作用,而对其多糖提取工艺的研究却鲜见报道。因此木棉花多糖的提取方法也日益成为人们关注的焦点。为了促进中国对木棉花的开发利用,有人对木棉花化学成分和药理作用进行了一些研究。 多糖的提取方法有碱提法、水提法、微波法、酶提法和超声波辅助提取法等。本试验采用的是超声波辅助提取法,它是应用超声波强化提取植物多糖的方法,是一种物理破碎过程。与常规提取法相比,超声波辅助提取可缩短提取时间,提高提取效率,所以超声波辅助提取法在植物多糖的提取中得到广泛应用[3]。 采用苯酚-硫酸法测定多糖的含量,苯酚-硫酸法简单、快速、灵敏、重现性好,且生成的颜色持久。用苯酚-硫酸法测定多糖含量时需注意苯酚浓度不宜太高[4],过高浓度的苯酚会使反应的稳定性不好且易产生操作误差。本试验采用50 g/L的苯酚,同时保持较高的硫酸浓度,因此该呈色反应是以对多糖的水解和糠醛反应为基础的,硫酸浓度降低会影响两种反应的进行。测定吸光度时所用葡萄糖标准溶液与木棉花多糖都需现配现用才能保证结果的稳定性及准确性,每组需平行测定3次。用紫外分光光度法测定木棉花中多糖的浓度,此方法简单、准确率高[5]。 1材料与方法 1.1材料 1.1.1原料将木棉[Gossampinus malabarica (Dc.) Merr.]花去除花蕊,在60℃左右烘干,粉碎,用500mL石油醚(60~90℃)回流脱脂2次,1h/次。再用体积分数为80%的乙醇溶液回流提取2次,2h/次,除去单糖和低聚糖, 将其烘干备用[6]。 1.1.2仪器与试剂JY96-Ⅱ超声波细胞粉碎机(上海新芝生物技术研究所/宁波新芝科器研究所);FA2004N精科电子分析天平(郑州南北仪器设备有限公司);752S紫外分光光度计(上海精密科学仪器有限公司);TDL80-2B型离心机(广州广一科学仪器有限公司);KDM型调温电热套(山东省鄄城永兴仪器厂);SHZ-D(Ⅲ)循环水式真空泵(巩义市英峪予华仪器厂);DJ-10A倾倒式粉碎机

超声波提取分离的原理

超声波在天然成分提取分离的应用原理初探 摘要超声因其具有多种物理和声化学效应,其在食品工业中有广泛的应用,包括超声提取、超声灭菌、超声干燥、超声乳化、超声过滤、超声清洗等。本文主要就超声波提取分离的原理、优点作一综述,并对其以后在提取分离中的发展进行展望。 关键词超声波提取分离原理 1 超声波概述 1.1超声波的概念 超声波指的是频率在2×104—2×109Hz的声波,是高于正常人类听觉范围的弹性机械振动。超声波与电磁波相似,可以被聚焦,反射和折射,其不同之处在于前者传播时需要弹性介质,而光波和其他类型的电磁辐射则可以自由地通过真空。众所周知,超声波在介质中主要产生二种形式的机械振荡,即横向振荡(横波)和纵向振荡(纵波),而超声波在液体介质中只能以纵波的方式进行传播。由于超声波频率高,波长短,因而在传播过程中具有定向性好、能量大、穿透力强等许多特性[1]。超声波与媒质的相互作用可分为热机制、机械(力学)机制和空化机制3种。[2]超声波在媒质中传播时,其振动能量不断被媒吸收转变为热量而使媒质温度升高,此效应称之为超声的热机制;超声波的机械机制主要是辐射压强和强声压强引起的;在液体中,当声波的功率相当大,液体受到的负压力足够强时,媒质分子间的平均距离就会增大并超过极限距离,从而将液体拉断形成空穴,在空化泡或空化的空腔激烈收缩与崩溃的瞬间,泡内可以产生局部的高压,以及数千度的高温,从而形成超声空化现象。空化现象包括气泡的形成、成长和崩溃过程。可见,空化机制是超声化学的主动力,使粒子运动速度大大加快,破坏粒子的力的形成,从而使许多物理化学和化学过程急剧加速,对乳化、分散、萃取以及其它各种工艺过程有很大作用。 对于超声波的研究及其在各个行业中的应用,研究较多,可是对于其应用的机理研究的却很少,能过查阅华南农业大学图书馆,SCI数据库,我们发现,对于超声波的研究有4680篇,可是对于其机理的研究却只有206,所占比例不到5%。如下图1。且大多数只停留在试验室阶段。

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波辅助法

超声波法-有机溶剂法提取薰衣草中的多酚 一实验原理 溶剂提取法是根据天然产物中各种化学成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要的溶出成分溶解度小的溶剂,将有效成分从药材组织内溶解出来的方法。本实验选取有机溶剂做提取液。 超声波法利用外力强化提取,超声波使提取液不断振荡,有助于溶质扩散,可以明显加速植物中有效成分的提取。 二实验材料及仪器(简略) (1)材料:优质薰衣草 (2)试剂:无水乙醇、蒸馏水、福林试剂、碳酸钠 (3)仪器:烘箱、可见分光光度仪、粉碎机、60目筛、电子天平、超声波萃取仪、pH计、移液管、容量瓶、玻璃棒、、烧杯 三实验步骤 1 样品的预处理 薰衣草用粉碎机粉碎并过60目筛,以提高提取效率,处理后的薰衣草粉末装袋密封冷藏保存,备用。 2 多酚提取率的测定 2.1没食子酸标准品溶液的制备 精确称没食子酸0.0250g,蒸馏水溶解,定容至1000ml容量瓶中,室温放置,储存。 2.2没食子酸标准曲线的建立 分别精确吸取没食子酸标准液0.5ml、1.0ml、2.0ml、3.0ml、4.0ml、5.0ml、6.0ml、7.0ml、8.0ml转入25ml比色管中,加入1ml福林试剂,再加入4ml15%NaHCO3,蒸馏水定容至刻线,摇匀,避光保存60min。测定没食子酸标准品在760nm波长处的吸光度值,以多酚浓度为横坐标,吸光度为纵坐标绘制标准曲线,得回归方程。 2.3供试品的制备 超声波法-有机溶剂法提取薰衣草中的多酚,过滤,得提取液,悬蒸至无乙醇味,定容至100ml容量瓶。 2.4(1)根据标准曲线可得供试品的质量浓度 (2)绿原酸的提取率:X=(C×25×200)/m

超声波提取法

四、超声波提取法 (一)超声波的概念 1.超声波的概念 ?超声波是指频率高于可听声频率范围的声波,是一种频率超过17KHz的声波。超声波在媒质中的反射、折射、衍射、散射等的传播规律,与可听声波的规律并没有 本质上的区别。超声波属于机械波,是机械振动在弹 性媒质中的传播 ?当声音在空气中传播时,会推动空气中的微粒作往复振动,即对微粒做功。声波功率就是表示声波作功快慢的 物理量。当强度相同时,声波的频率越高,它所具有的 功率就越大。由于超声波的频率很高,所以与一般的声 波相比,超声波的功率是很大的 (一)超声波的概念 ?超声波很像电磁波,能折射、聚焦和反射,但超声波又不同于 电磁波,电磁波可在真空中自由传播,而超声波的传播则要依 靠弹性介质。超声波在传播时,使弹性介质中的粒子产生振荡, 并通过弹性介质按超声波的传播方向传递能量 ?超声波可以产生空化效应、热效应和机械效应 (二)超声波提取原理 ?超声萃取(Utrasonic Solvent Extraction,USE)技术 是由溶剂萃取技术与超声波技术结合形成的新技术, 超声场的存在提高了溶剂萃取的效率 ?超声波是指频率为20千赫~50兆赫左右的电磁波, 它是一种机械波,需要能量载体--介质来进行传播。 超声萃取又称超声提取,即指从某一原料中提取所 需的物质或成分 ?超声作用于液液、液固两相、多相体系表面体系以 及膜界面体系会产生一系列的物理、化学作用,并 在微环境内产生各种附加效应,如湍动效应、微扰 效应、界面效应和聚能效应等,从而引起传播媒质 特有的变化 (1)空化效应 ?当大量的超声波作用于提取介质时,体系的液体内 存在着张力弱区,这些区域内的液体会被撕裂成许 多小空穴,这些小空穴会迅速胀大和闭合,使液体 微粒间发生猛烈的撞击作用 ?此外,也可以液体内溶有的气体为气核,在超声波的 作用下,气核膨胀长大形成微泡,并为周围的液体蒸 气所充满,然后在内外悬殊压差的作用下发生破裂, 将集中的声场能量在极短的时间和极小的空间内释 放出来 1、空化效应 ?当空穴闭合或微泡破裂时,会使介质局部形成几百到几 千K的高温和超过数百个大气压的高压环境,并产生很 大的冲击力,起到激烈搅拌的作用,同时生成大量的微 泡,这些微泡又作为新的气核,使该循环能够继续下去, 这就是空化效应 ?空化效应中产生的极大压力 造成被破碎物细胞壁及整个 生物体的破裂,且整个破裂 过程可在瞬间完成,因而提 高了破碎速度,缩短了破碎 时间,使提取效率显著提高

松蘑多糖超声波提取工艺研究

松蘑多糖超声波提取工艺研究 以松蘑为原料,采用超声波萃取技术提取松蘑多糖。以苯酚-硫酸比色法测定多糖含量,通过单因素试验和正交试验,确定松蘑多糖超声波提取技术的最佳工艺条件,即:料液比1:15,提取温度50℃,超声波处理时间40min,超声波功率60W。此工艺条件下,松蘑多糖提取率为10.56%。 标签:松蘑;多糖;超声波;提取 国内外研究证明,菌多糖为松蘑的主要成分之一,菌多糖是松蘑调节免疫功能的活性成分,是一种免疫增强剂。近年研究表明,菌多糖可明显增强免疫系统的功能并有免疫抗肿瘤和辅助抗肿瘤活性。另外,菌多糖还有降血糖以及调控血细胞生成的作用。目前多糖的提取多采用常规提取法,提取率低,且费时费力。故此,寻找较好的提取工艺,是目前有效地将松蘑中的活性物质菌多糖最大限度地提取和保留的关键。超声波提取技术适用于天然产物,且提取过程中无化学反应,大大的保持了生物活性物质的活性。本研究采用超声波萃取技术提取多糖,并对其提取工艺进行优化,旨在为松蘑多糖的工业化生产提供参考依据。 1 材料与方法 1.1 材料与试剂 松蘑(市售):无水乙醇、浓硫酸、苯酚等所用化学试剂均为市售分析纯;葡萄糖标准品Sigma公司。 1.2 仪器与设备 DS200高速度组织捣碎机-上海标本模型厂;GB1302型电子精密天平-梅特勒·托利多仪器有限公司;spectrumlab53紫外可见分光光度计-上海棱光技术有限公司;HH-S水浴箱-巩义市予华仪器限公司;TDL-5-A离心机-上海安亭科学仪器厂;KQ-100DB型数控超声波清洗器-昆山市超声仪器有限公司. 1.3 方法 1.3.1 工艺流程 松蘑→粉碎(过40目筛)→脱脂→超声波辅助浸提→离心分离(5000r/min,20min)→取上清液→去蛋白(加三氯乙酸)→离心分离(4500r/min,20min)→醇沉→离心(5000r/min,10min)→抽滤→真空干燥→粗多糖→稀释→样品液→苯酚——硫酸法测定多糖含量。 1.3.2 松蘑脱脂处理

超声波提取工艺的现状

超声波提取工艺的现状 摘要:超声波提取以其提取温度低、提取率高、超声时间短的独特优势被具有创新意识者应用于中药和各种动植物有效成分的提取中,是替代传统剪切工艺方法实现高效节能环保式提取的现代高新技术手段。植物茎、叶与花经超声波处理后,细胞膜已经破碎,叶粒运动加速,这回促进有效成分的溶出,因此用超声波法提取叶黄酮具有提取速度快、提取效率高、节省溶剂、节约能耗等特点,是提取植物黄酮的一种理想方法。 关键词:超声波黄酮提取 前言 红花为双子叶植物纲菊科1年生草本植物红花(Carthamus tinctorius,L)的花,又称:“草红花”、“红蓝花”等,具有活血化瘀、通脉止痛的功效,是传统的活血化瘀类中药。红花黄色素(saffbryellow,SY)是从红花中提取到的一种为红花中多种水溶性查尔酮成分的混合物。其中羟基红花黄色素A(HY—droxy safflower yellowA,HSYA)含量最高。是红花的有效部位。具有活血通络,散瘀止痛的功效,近几年药理研究结果表明它可以抑制血栓形成、抗心肌缺血,增加冠状动脉血流量,降血脂、镇痛、抗炎、抗氧化等 黄酮类化合物是一类重要的天然有机化合物,是植物长期自然选择过程中产生的一类次生代谢产物。它在植物的根、茎、叶、花、果实中广泛存在,且因为它存在于不同植物中、在同一植物的不同器官中构型也复杂多样,所以它具有较高的生物活性和理化作用。它可以止渴、解酒、抗疲劳,有的黄酮在疾病治疗上发挥了巨大的作用:它可以抗癌、抗病毒、抗肿瘤、抗糖尿病、抗抑郁、抗骨质疏松等。黄酮已成为国内外天然药物开发的研究热点。 有关黄酮类化合物的药理活性研究相对较多而对其的提取工艺的研究和优

多糖的提取和纯化

多糖的提取和纯化 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

多糖的提取和纯化→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或-1M氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。然后依次用乙醇、丙酮和乙醚洗涤。将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥)。干燥后可得粉末状的粗多糖。微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中[14]。由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方

法澄清[15]。聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(%)。超声辅助法:其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。超声波辅助法与常规提取法相比,具有提取时间短、产率高、无需加热等优点[17]。索氏提取法:将植物粉末置于索氏提取器中,加入石油醚,60℃-90℃条件下提取至无色(一般为6小时)。过滤,滤渣挥发干燥完溶媒后加入80%乙醇,再提取6小时,过滤,滤渣乙醇挥发干燥后加蒸馏水。回流提取2次,趁热过滤,滤液减压浓缩,再除蛋白,醇沉,除色素。60℃干燥,称重。醇提法:先后将90%和50%乙醇加入植物粉末中,振荡充分再抽滤。滤液中加入足量无水乙醇,至于4℃冰箱中过夜。减压抽滤,再除去色素,得多糖粗品,在60℃℃℃

超声波提取浓缩

设备介绍: 宇砚超声波提取浓缩机组适用于中药、保健品、生物制药、化妆品、食品等行业的常压常温超声波提取、索氏提取、动态热回流提取、植物精油提取及提取液真空浓缩等多种工艺。此设备非常适用于高校、研究所和企事业单位实验室及制药厂研发部门多品种、小批量试生产使用。 设备特点: 1.设备使用效率高:此设备是我公司研制的最新超小型超声波动态提取浓缩机 组,此设备在原超声波动态提取机的基础上优化产品结构将小型的真空减压浓缩设备整合在此设备中,使超声波动态萃取、提取、过滤、减压浓缩、精油冷凝等生产工艺一步完成,大大节省了原材料和工作时间,工作效率比一般多功能提取设备提高了100%~300%。 2.提取温度降 低20~30℃, 有利于热敏 性药物成分 的提取,减少 杂质含量,降 低能耗。 3.此设备可根 据客户实际 需要增加单 独的精油收 集器、精油分 离器这点是 科展在提取 设备上独有 的。 4.宇砚超声波 动态提取浓 缩机组设备 结构精巧,充 分发挥超声 波聚能式发 生器特点,超 声波直接作用物料,利用超声波强化中药提取的机械作用,空化作用,局部高振动、高冲击、高声压剪切作用,使提取时间较传统方法大大缩短4/5以上,药材原材料处理量大 5.Y-TN-C系列超声波动态提取浓缩机组在使用中超声波提取设备跟真空减压 浓缩设备可独立运作,也可联动运行。可最大程度的降低设备使用功耗。 6.避免添加剂的使用。例如从槐米中提取芦丁,在超声作用下,避免了传统方

法需在提取溶剂中添加硼砂、亚硫酸钠,不仅降低生产成本,而且减少污染环境。 7.物料转化率高:聚能超声波提 取为常温提取,物料有效成分 不容易丧失,并且在真空浓缩 过程中蒸发室在较低温度下 工作,使物料内热敏性有效成 分最大程度的保留。这样可更 好的保证物料的提取液的品 质。 8.实现全程密闭条件下运行,减 少过程损失,生产安全性提 高,特别适合于各种易燃、易 爆、毒性大等挥发性有机溶剂 的提取。 9.应性广:提取中药不受成分 极性、分子量大小的限制,适 用于绝大多数中药材和各类 成分的提取;此设备配有油水 分离器和高效冷凝器,可提取 芳香油等植物性精油。 10.浓缩设备:根据客户物料选配刮板浓缩,升膜浓缩,降膜浓缩,膜浓缩。 11.设备可选频率范围:15KHz、20KHz、28 KHz、30 KHz、35 KHz、40 KHz、 50 KHz、60 KHz、80KHz。 设备参数: 设备型号Y-TN-C- 5 Y-TN-C- 10 Y-TN-C- 30 Y-TN-C- 50 Y-TN-C- 100 Y-TN-C- 200 Y-TN-C- 300 Y-TN-C- 500 容量(L)5103555110220320550加热功 率(KW) 58.512.514.517.530电或蒸汽夹层压 力(Mpa) 常压 罐内压 力(Mpa) -0.09

多糖的超声波提取

1多糖的超声波提取 将干燥过的豆粉碎过40目筛,用滤纸包成圆柱形,中加入3倍体积的石油醚,用索氏抽提装置脱脂4h , 干燥后加入3倍体积分数为9 5 %乙醇浸泡2天,每天换2次乙醇。抽滤,以除去生物碱、低聚糖、挥发油等小分子物质。自然(冷冻)干燥后备用。称取5.0g 预处理过的豆粉,水复溶后按试验设定的条件进行超声波提取,将提取液离心(3000r/min,15min),沉淀物按照同样的提取条件重复提取2次,合并上清液进行旋转蒸发浓缩。向浓缩液加入Sevag 试剂去蛋白后加入3倍体积的95%乙醇,于4℃冷藏柜中静置过夜,离心(4000r/min,10min)得沉淀,依次用乙醇、丙酮,乙醚反复洗涤3次,真空冷冻干燥,得多糖粗提物。 2葡萄糖标准曲线的绘制 精确称取经105℃干燥至质量恒定的葡萄糖标准样品50.15mg ,用蒸馏水溶解并定溶于50mL 容量瓶,配制成质量浓度为1.003mg /mL 的葡萄糖标准溶液。依次吸取0、2.0、4.0、6.0、8.0、10.0、12.0mL 葡萄糖标准液于100mL 容量瓶中并加蒸馏水定容摇匀备用。然后精确移取上述各溶液2mL 置于具塞刻度试管中,各加入5%苯酚溶液1.0mL 和浓硫酸5mL ,充分混匀,室温静置30min ,于波长490nm 处测定吸光度。0号管为空白对照,以葡萄糖质量浓度为纵坐标,吸光度为横坐标绘制标准曲线。 3多糖得率计算 将粗多糖溶解并稀释至适当质量浓度,移取1.0mL 粗多糖样品液按2方法操作,于490nm 处测定其吸光度,重复3次,取平均值。按以下公式计算多糖得率。 100n %/0????=V m V C 状元豆多糖得率 式中:C 为提取的样品液多糖的质量浓度(mg /mL );V 0 为样品液的总体积/mL ;n 为稀释倍数;V 为样品测定液的体积/mL ;m 为称取的预处理豆粉的质量/g 。

超声波提取技术应用

超声波辅助提取技术的应用 摘要:综述了超声波提取技术的原理、特点,全面总结了有关超声波技术在活性成分提取中的应用,为进一步研究超声波提取技术提供参考。 关键词:超声波提取技术;活性成分 超声波是一种在水等介质和人体中具有良好穿透性的、以震动波的形式传播的一种机械能量。超声波辅助提取技术主要是依据物质中有效成分的存在状态、极性、溶解性等在超声波作用下快速地进入溶剂中,得到多成分混合的提取液,再将提取液以适当方法分开、精制、纯化处理,最后得到所需单体化学成分的一项新技术。超声辅助提取技术已经广泛应用于天然药物中各种有效成分的提取分离,并取得了很好的效果。本文就超声波提取技术及其应用进行综述。 1超声提取的原理 1.1空化效应 空化效应是超声提取的主要动力。液体中往往存在一些真空或含有少量气体或蒸汽的小泡,当一定频率的大量超声波作用在液体时,尺寸适宜的小泡能产生共振现象,它们在声波的稀疏阶段迅速胀大,在声波的压缩阶段又被绝热压缩,直至湮灭。小泡在湮灭过程中,能够产生几千摄氏度的高温和几千个大气压的高压冲击波,这就是空化现象。这种强烈的冲击作用能使物料破碎,也能造成生物细胞壁及整个生物体破裂从而加速细胞内物质的释放、扩散及溶解。 1.2 机械效应 超声在传播过程中,会引起介质质点交替的压缩与伸张,构成了压力的变化,这种压力的变化将引起机械效应。对于中药提取过程,这种机械效应包括简单的骚动效应和溶剂与药材组织之间的摩擦。这种骚动效应可使蛋白质变性,细胞组织变形;而超声波引起的介质质点的加速度与超声波振动频率的平方成正比,有时超过重力加速度的数万倍,由于溶剂和药材组织获得的加速度不同,即溶剂分子的速度远大于药材组织的速度,从而使它们之间产生摩擦,这种力量足以断开两碳原子之键,使生物分子解聚,使中药材中的有效成分溶解于溶剂之中。 1.3 热效应 由于介质吸收超声波以及介质内摩擦的消耗,分子产生剧烈振动,超声能转化为介质的内能,引起溶剂和药物组织温度升高,超声波在穿透溶剂和药物组织

第三章 超声波协助提取技术

超声波协助提取技术 摘要超声波协助提取技术因具有较常用煎煮法、回流法、水蒸气 蒸馏法等提取方法具有设备简单、操作方便、提取时间短、提取率高、无需 加热、成本低廉等优势。基于此,本文主要从超声波提取原理、提取特点、 影响因素、超声提取设备以及应用实例对其进行具体介绍。 关键词:超声波提取;原理;提取特点;应用实例 1.概述 1.1超声波的概念 “超声波”是指频率高于20000Hz的声波,它具有频率高、方向性好、穿透力强、能量集中等特点[1]。 1.2超声波的提取原理 超声波是一种弹性机械振动波,能破坏中药材的细胞,使溶媒渗透到中药材细胞中,从而加速中药材有效成分溶解,以提高其浸出率。超声波提取主要依据其三大效应:空化效应、机械效应和热效应。 在中药提取过程中,随药材在溶剂中受到超声作用而产生空化效应的过程,使溶剂在超声瞬时产生的空化泡的崩溃,随空化泡的爆破,而形成巨大的射流冲向植物固体表面,使其溶剂很快渗透到物质内部细胞之中,借以空化泡的爆破的冲击力打破细胞壁,使细胞内化学成分在超声作用下直接和药材接触,加速了溶剂和药材中的有效成分相互渗透、溶解,快速地向溶剂中溶解。 1.3超声波提取的特点 与常规的煎煮法、浸提法、渗漉法、回流提取法等提取技术相比,具有以下特点: 1.超声提取技术能增加所提取成分的提取率,缩短提取时间 2.超声提取技术在提取过程中无需加热,适合于热敏性物质的提取 3.超声提取技术不改变所提取成分的化学结构 4.减少能耗,提高经济效益 5.超声提取技术与各种分析仪器联用 超声提取技术与GC、IR、MS、HPLC分析仪器联合用于中药、食品等质量分析中,能客观地反映物质中的有效成分的真实含量。 2.影响超声提取的因素 2.1超声波参数的影响

实验四 超声波辅助提取实验

实验四超声波辅助提取实验 【实验目的】 1. 掌握超声波辅助萃取的一般方法; 2. 学习单因素实验的实验流程,为正交试验设计打下基础。 【实验原理】 超声波是指频率高于可听声频率范围的声波,是一种频率高于20kHz、人的听觉域以外的声波。超声波萃取技术的基本原理主要是利用超声波的空化作用来增大物质分子的运动频率和速度,从而增加溶剂的穿透力,提高被提取成分的溶出速度。此外,超声波的次级效应,如热效应、机械效应等也能加速被提取成分的扩散并充分与溶剂混合,因而也有利于提取。 单因素实验为常用的实验设计方法,此方法数据的获得可为正交试验设计做好基础。【实验仪器与材料】 超声波清洗器、粉碎机、天平、试管、山楂、烘箱、乙醇、漏斗等。 【实验步骤】 (一)取一定量的山楂,捣碎,备用。 (二)超声波辅助萃取技术单因素实验 1. 分别称取2g捣碎后的山楂20份于50mL试管中,加入适量溶剂,放入超声波清洗器,按下表具体操作。 2. 选取提取时间、料液比、乙醇浓度3个可能影响黄酮提取效率的因素,以芹菜总黄酮含量为考察指标,进行单因素试验。 (1) 乙醇浓度对样品黄酮提取的影响:精密称取干燥样品粗粉2.0000g,分别加入15 mL 体积分数为20%、40%、60%、80%、100% 的乙醇,室温下以100%超声功率提取15min。 (2) 料液比对样品黄酮提取的影响:精密称取干燥样品粗粉2. 0000g,加入80%乙醇,使料液比分别为1:10、1:15、1:20、1:25、1:30,在室温下以100%超声功率提取15min。 (3) 超声时间对样品黄酮提取的影响:精密称取干燥样品2.0000g,加入15mL 80%的乙醇,在室温下,以100%超声功率分别提取5、10、15、20、25min。 (4) 超声功率对样品黄酮提取的影响:精密称取干燥样品粗粉2.0000g,分别加入15 mL 体积分数为80%的乙醇,室温下以60%、70%、80%、90%、100%超声功率提取15min。 3. 经上述提取后得样品提取液,过滤、得清液,取此液体5mL置于60℃烘箱中,烘干至恒重。 【结果与讨论】

超声波辅助提取植物油脂

超声波辅助提取植物油脂 一、实验目的 1.了解超声波辅助提取的优点; 2.理解超声波辅助提取的原理; 3.初步掌握超声波辅助提取的操作方法及流程; 4.比较超声波辅助提取与索氏提取法的提油率。 二、实验原理 油脂是油和脂肪的总称,在常温下含不饱和脂肪酸的甘油呈液体状态,称为油,也叫脂肪油;含饱和脂肪酸的甘油酯呈固体状态,称为脂肪。植物油多存在于植物种子中,是油脂工业和化学工业的重要原料,在室温下呈液态。植物油在空气中久放易氧化,氧化后可产生过氧化物酮酸、醛等。使油脂具有特殊的臭气和苦味,不可食用。 目前,油脂工业中的提取方法普遍采用压榨法、浸出法或先压榨后浸出相结合的方法,但都存在提油速度慢、出油率低、耗时长、溶剂耗量大等缺点。而用超声波强化油脂浸出提取过程,则可以提高提油量、改善油脂品质、缩短提油时间、减少提取溶剂的用量。 三、试剂与仪器 1.仪器 超声波清洗器、分析天平、索氏提取器、电热恒温水浴锅、电热恒温干燥箱、磁研钵、干燥器、橡皮管(通冷水用)、滤纸、脱脂棉、镊子、表面皿 2.试剂:环己烷 四、实验步骤 1.样品采集:将核桃仁在研钵中研碎,并置于烘箱中烘干1h。 2.洗净并烘干索氏提取器,并将两个脂肪瓶置100~105℃烘箱内烘干1~2小时取出放入干燥器中冷却至室温再称重,直至恒重时为止(两次称重相差不大于0.0004克),分别记录脂肪瓶重量,并做好记号1、2。

3.制作滤纸筒:取20×8cm的滤纸一张,卷在光滑的试管或比色管上,将一端约1.5cm纸边摺入,用手捏紧作成筒底,纸筒外面用脱脂棉捆好,备用,用于盛装样品。 4.称去烘干的核桃仁 5.0000g,以环己烷为溶剂按料液比为1: 6.5放入脂肪瓶1中,在提取温度为65℃的温度下超声提取2.5h。 5.称取烘干的核桃仁5.0000g置于滤纸筒内,在筒内覆以脱脂棉,将滤纸放入抽提器的抽提管中。将抽提管与已恒重的脂肪瓶2接好,沿抽提管壁注入环己烷至超过虹吸管上部弯曲处,再接好冷凝管。通入冷却水,置50℃~60℃的恒温水浴中,回流抽提3~4h(控制速度为3~5分钟虹吸一次为宜),用滤纸片检验脂肪已提取完成后(滴在滤纸片上的环己烷挥发后无油迹残留),再用镊子取出滤纸筒。 6.重新装好冷凝管继续加热,利用提取器回收环己烷,待环己烷蒸汽冷凝液面稍低于虹吸管上面的弯曲部分时,取下脂肪瓶,将回收的环己烷倒入环己烷回收瓶中,待脂肪瓶内环己烷只剩1~2ml时,取下脂肪瓶放在水浴上蒸干,取出擦净脂肪瓶外壁的水分。 7.将提取的脂肪瓶置100℃~105℃烘箱中烘1~2h取出,置于干燥器中冷却。称重反复干燥至恒重,记录脂肪和脂肪瓶的总重量(前后两次误差不超过0.001g)。 8.计算并比较超声波辅助提取植物油脂和索氏抽提法提取植物油脂的提取率。 五、计算 粗脂肪%=((W1—W0)/ W)×100% 式中:W 样品重量(克) ——— W1———脂肪及脂肪瓶总含量(克) W0———脂肪瓶重(克)

超声波提取

超声波提取分离主要是依据物质中有效成分和有效成分群体的存在状态、极性、溶解性等设计的一项学科。合理利用超声波振动的方法进行提取的新工艺,使溶剂快速地进入固体物质中,将其物质所含的有机成分尽可能完全地溶于溶剂之中,得到多成分混合提取液,接下来就为大家详细的讲解一下,希望对大家有所帮助。 利用超声波技术来强化提取分离过程,可有效提高提取分离率,缩短提取时间、节约成本、甚至还可以提高产品的质量和产量。超声技术的应用和药物中化学成分的提取。即利用超声波所产生的的空化等特殊作用,将药物中所含化学成分快速高效地提取出来的一项新的提取技术。 原理 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。[1] 机械效应 超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物

蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 空化效应 通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 热效应 和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 杭州成功超声设备有限公司创立于1995年,是国内从事超声应用研究、大功率超声波换能器开发与生产的专业厂商及国家高新技术企业。公司主要产品有换能器、超声驱动电源等。这些产品作为功率超声应用行业的核心关键部件广泛应用于声化学、塑料焊接、金属焊接、橡胶切割、无纺布焊接等领域。

多糖的提取分离方法

1. 多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形 式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。 1.1 溶剂法 1.1.1 水提醇沉法水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数 和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。1.1.2 酸提法为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛 酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H +的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3 碱提法多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时 间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4 超临界流体萃取法超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活 性和无溶剂残留等优点。由于C02的超临界条件(TC= 304. 6 C, Tp= 7. 38 MPa容易达到,常用于超临界萃取的溶剂,在压力为8?40 MPa时的超临界CO2足以溶解 任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2 酶解法 1. 2. 1 单一酶解法单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解, 降低它们对原料的结合

相关主题
文本预览
相关文档 最新文档