当前位置:文档之家› 天体物理学讲座第一讲恒星的演化

天体物理学讲座第一讲恒星的演化

天体物理学讲座第一讲恒星的演化
天体物理学讲座第一讲恒星的演化

恒星演变论文

恒星演变论文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

恒星的演变 距离我们最近的恒星,太阳,是我们地球生命循环的最原始动力。无论地球本身的存在是那么的巧合,但是太阳始终是驱动着这个太阳系的最原始的动力,如果太阳不亮了,那会怎样所以自古以来,人们就开始观察太阳,了解我们的世界。 通过科学家观察天空所得,太阳只是无数在天空中闪耀的恒星的其中之一。我们对宇宙和天空的探索,绝不仅仅止于了解太阳。而是了解我们的宇宙,了解恒星,了解恒星从哪里来,而又会到哪里去。 恒星的诞生 恒星的演化开始于之中。此时,太空中的粒子大约是每立方厘米到1个氢原子,但是巨分子云的密度是每立方厘米数千到百万个氢原子。一个巨分子云包含数十万到数千万个,直径甚至为50到300。 在巨分子云环绕星系旋转时,某些事件可能造成它的。坍缩过程中的会造成巨分子云碎片不断分解为更小的片断。质量少于约50太阳质量的碎片会形成恒星。在这个过程中,气体被释放的所加热,而也会造成星云开始产生之后形成。 恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。通常,正在产生恒星的星源会通过在四周光亮的气体云上造成阴影而被观测到,这被称为。质量非常小的原恒星温度不能达到足够开始氢的反应,它们会成为。质量更高的原恒星,核心的温度可以达到1,000万,可以开始将氢先融合成氘,再融合成氦。在质量略大于的恒星,在能量

的产生上贡献了可观的数量。新诞生的恒星有各种不同的大小和颜色。的范围从高热的蓝色到低温的红色,质量则从最低的太阳质量到数十倍于太阳质量。恒星的亮度和颜色取决于表面的温度,而表面温度又由质量来决定。 恒星的成熟 根据恒星质量的大小,分别为低质量恒星的成熟,中等质量恒星的成熟,和大质量恒星的成熟,都是各有不同。 质量低于太阳质量的恒星,属于低质量恒星。这些恒星在核心的氢融合停止之后,很单纯的仅仅因为没有足够的质量在核心产生足够的压力,因此不能进行氦核的融合反应。这类恒星在消耗掉氢元素之前,被称作,像是,其中有些的寿命会比太阳长上数千倍。 目前的天文物理学模型认为太阳质量的恒星,在主序带上停留的时间可以长达6万亿年,并且要再耗上数千亿年或更多的时间,才会慢慢的塌缩成为。如果恒星的核心缺少对流(被认为有点像现在的太阳),它将始终都被数层氢的外层包围着,这些也许都是在演化中产生的氢层;但是,如果恒星有着完全的对流(这种想法被认为是低质量恒星的主角),在它的周围就不会分出层次。如果真的这样,它将如同下面所说的中等质量恒星一样,它将在不引起氦融合的情况下发展成为;否则,它将单纯的收缩,直到电子简并压力阻止重力的崩溃,然后直接转变成为白矮星。

The evolution of stars(恒星的演化)

The evolution of stars Stars are the most noticeable objects in the vast universe except the sun, moon and a few planets. In ancient times, people were full of curiosity and fantasy about stars, and very moving myths and legends were popular in China and abroad. However, it was not until the telescope appeared that people had the most basic understanding of stars and realized that stars were not constant in the sky.At the beginning of the 20th century, Einstein published the famous mass-energy relationship, people gradually realized the huge energy produced by the nuclear reaction and knew the source of the star's energy before they gradually realized that the star itself also had a life cycle, they would be born, grow, and die just like people. However, the birth of stars was still a mystery for a long time. It was not until the 1960s that astronomers discovered molecular gas in interstellar space that they had the most preliminary understanding of the evolution process of stars. Next, I’d like to share it. Gravitational contraction stage The star was originally born from interstellar dust in space. Scientists call it "nebula" or " interstellar cloud" vividly. Its main component is hydrogen, which is extremely small in

恒星演化

恒星的演化 原恒星的形成 原恒星被认为形成于星际介质中。 广阔的恒星之间的空间存在着气体和尘埃。星际物质在宇宙空间的分布并不均匀。在引力作用下,某些地方的气体和尘埃可能相互吸引而密集起来,形成云雾状。称为“星云”。而星云在适当的条件下便孕育着原始的恒星。 星云的主要成分是氢气和氮气,还有少量的尘埃。星云的温度很低,约100K左右。在忽略旋转,,磁场等因素的前提下,由于温度低,向内引力作用超过向外的压力星云将塌缩,星云塌缩的最小质量称为jeans质量。 当星云质量大于jeans质量时,星云的热压力不足以抵抗引力,便发生塌缩,并分裂成小云块,随着密度的升高,jeans质量下降,星云不断碎裂,持续时间(f- f时标)约为几百万年。随着密度的上升,核心区域变得不透明,温度迅速上升,金斯质量增大,星云停止分裂。开始塌缩,形成原恒星。原恒星以Kelvin-Helmhotz 时标收缩,自引力势能转化为内能,温度进一步升高。随着温度升高,原恒星逐渐达到准流体静力学平衡的慢收缩阶段。此时虽然原恒星内部温度升高但还没有达到H点火的温度,称为前主序星阶段。 前主序星演化 在最开始的百万年里,因星体内部的温度很低,不透明度比较大,星体内部完全对流传能。随着坦缩不断地进行,核心温度逐渐升高,不透明度下降,形成一个辐射核心。当辐射核心大到一定的程度,能量能够从对流包层传输出来,光度增加。直到核心氢燃烧开始。进入零龄主序(zero-age main sequence star)。恒星的光度温度有所增加,半径略微减小。 前主序星的有效温度与半径,光度与有效温度的关系为: 在H-R 图上的演化是一条斜率为12/5的斜线 半径随时间的演化为:

九年级科学下册第1章演化的自然第2节太阳系的形成和恒星的演化教案(新版)浙教版

第2节太阳系的形成和恒星的演化 教学目标 【知识与技能】 1.知道太阳系的构成及太阳系中行星运动的共同特点。 2.了解太阳系形成的主要学说——“星云说”,知道太阳系形成各阶段的不同特点。 3.知道地球等行星是随太阳系的形成而产生的。 【情感、态度与价值观】 1.观察太阳系中行星运动的共同特点来了解科学家是如何进行思考和探究。 2.通过用沙子模拟太阳系形成的三个阶段并画图帮助学生了解“星云说”,培养学生动手和画图分析的能力。 3.体验科学家探索的进步和发展和科学探索的精神。 学情分析 学生从一些科普书或科普影片中对于宇宙空间有一定的了解,但是宇宙中各种星系的形成以及形成过程中的特点并不是很清楚,而且天体运动和形成与学生生活有太大的距离,因此要了解宇宙中的星系有一定的困难。关于太阳系的形成也存在很多学说,形成过程中涉及更复杂的天体学,所以要让学生了解主要的学说以及重要的特点。 重点难点 重点是太阳系形成的主要学说“星云说”的各个阶段以及各个阶段中的特点;科学家是如何通过现象和研究进行推理;难点是理解太阳系中行星的运动特点来推测出太阳系如何形成,各阶段中太阳系发生的变化是怎么样的。 教学过程 教学活动 活动1【导入】九下第一章第2节太阳系的形成和恒星的演化教案。 教学内容 教师、学生活动。 设计意图 教学引入 【提问】幽静的夜晚,仰望星空,繁星点点,我们看到的能发光的大多是什么星? 【学生】恒星。 【提问】与地球息息相关的恒星以及地球是什么星体?

【学生】太阳是恒星,地球是行星。 【说一说】太阳系的成员。 复习回顾太阳系的构成。 一、太阳系的构成 【观察】通过动画和图片观察太阳系中八大行星绕太阳公转的运动特点。 1.八大行星绕太阳公转方向和太阳自转方向一致。(同向性) 2.八大行星绕日公转的轨道平面大多接近于同一平面。(共面性) 行星绕日公转的运动特点是科学家推测太阳系形成的理论依据,学生体会从现象进行推测的科学过程。 【提问】为什么八大行星会绕日公转?地球等行星从太阳获得什么?这些能量来自于哪里?【学生】行星受到太阳的吸引力。从太阳获取能量(热量)。能量来自于太阳内部燃料的燃烧。 【了解】太阳内部氢核聚变在高温高压的条件下进行,氢元素聚变为氦元素的过程释放出巨大的能量。 【提问】早期的太阳也是如此吗? 【学生】不是。 那么太阳究竟是如何形成的,太阳的轻核聚变如何发生的?行星受到吸引力,为先形成太阳再形成行星的过程做好铺垫。让学生知道太阳内部燃料燃烧是氢核聚变的过程,条件是高温高压,为后面太阳系形成过程中温度升高达到条件发生氢核聚变做好铺垫。 二、太阳系的形成 【说一说】太阳系中的太阳和行星是如何形成的。 【学生】猜想、推测太阳和八大行星的形成过程。 【小结】从古至今的科学家们都在探索太阳系的形成,这是一个漫长的发展的过程。让学生表述自己所知道的关于太阳系形成的过程。 【介绍】18世纪,德国康德(哲学家)和法国拉普拉斯(数学家)先后提出自己关于太阳系形成的观点,拉普拉斯在不知情的状况下从数学计算的角度提出的观点与康德有很多一致的地方,这就是著名的“康德——拉普拉斯星云说”。 学生了解“康德——拉普拉斯星云说”产生的由来。 【观察、分析、小结】太阳系形成的不同阶段和特点。

恒星演变论文

恒星的演变 距离我们最近的恒星,太阳,是我们地球生命循环的最原始动力。无论地球本身的存在是那么的巧合,但是太阳始终是驱动着这个太阳系的最原始的动力,如果太阳不亮了,那会怎样?所以自古以来,人们就开始观察太阳,了解我们的世界。 通过科学家观察天空所得,太阳只是无数在天空中闪耀的恒星的其中之一。我们对宇宙和天空的探索,绝不仅仅止于了解太阳。而是了解我们的宇宙,了解恒星,了解恒星从哪里来,而又会到哪里去。 恒星的诞生 恒星的演化开始于巨分子云之中。此时,太空中的粒子密度大约是每立方厘米0.1到1个氢原子,但是巨分子云的密度是每立方厘米数千到百万个氢原子。一个巨分子云包含数十万到数千万个太阳质量,直径甚至为50到300光年。 在巨分子云环绕星系旋转时,某些事件可能造成它的重力坍缩。坍缩过程中的角动量守恒会造成巨分子云碎片不断分解为更小的片断。质量少于约50太阳质量的碎片会形成恒星。在这个过程中,气体被释放的势能所加热,而角动量守恒也会造成星云开始产生自转之后形成原恒星。 恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。通常,正在产生恒星的星源会通过在四周光亮的气体云上造成阴影而被观测到,这被称为包克球。质量非常小的原恒星温度不能达到足够开始氢的核融合反应,它们会成为棕矮星。质量更高的原恒星,核心的温度可以达到1,000万K,可以开始质子-质子链反应将氢先融合成氘,再融合成氦。在质量略大于太阳质量的恒星,碳氮氧循环在能量的产生上贡献了可观的数量。新诞生的恒星有各种不同的大小和颜色。光谱类型的范围从高热的蓝色到低温的红色,质量则从最低的0.085太阳质量到数十倍于太阳质量。恒星的亮度和颜色取决于表面的温度,而表面温度又由质量来决定。 恒星的成熟 根据恒星质量的大小,分别为低质量恒星的成熟,中等质量恒星的成熟,和大质量恒星的成熟,都是各有不同。 质量低于0.5太阳质量的恒星,属于低质量恒星。这些恒星在核心的氢融合停止之后,很单纯的仅仅因为没有足够的质量在核心产生足够的压力,因此不能进行氦核的融合反应。这类恒星在消耗掉氢元素之前,被称作红矮星,像是比邻星,其中有些的寿命会比太阳长上数千倍。 目前的天文物理学模型认为0.1太阳质量的恒星,在主序带上停留的时间可以长达6万亿年,并且要再耗上数千亿年或更多的时间,才会慢慢的塌缩成为白矮星。如果恒星的核心

宇宙天体第一章:恒星以及演化过程

目录 1.1恒星 1.1.1太阳 1.2黑体 1. 2.1黑体辐射 1.3变星 1.3.1食变星 1.3.2脉冲星 1.3.3爆发星 1.3. 2.1脉动变星 1.4恒星的归宿 1.4.1红巨星 1.4.2白矮星 1.4.3超新星 1.4.3.1中子星 1.4.3.1.1脉冲星 1.4.3.1.2磁星 1.4.3.1.3夸克星 1.4.3.2黑洞 1.4.3. 2.1类星体 1.4. 2.1黑矮星 注:前一数字相同表示同一个分类 前言 当你仰望天空,使用望远镜,用电脑模拟,碰到一个从来未见过的天体,你一定会感到疑惑。你或许会想了解,这是什么“天体”? 天体,就是指宇宙空间中的宏观物体。 这些物体一般指恒星,行星,卫星,星云,彗星,陨石,黑洞等。如果你想学好天体物理,亦或是想学好量子力学,了解这些天体是有很大作用的。这些天体,不光是与宏观的天体物理,或是与量子力学都有关。从光谱,从类型,到发光原理,再到支撑方式,一切都需要这些学科的支撑。想要详细了解,就至少需要理解这些基础天体的知识。

为了解开你心中的种种关于“天体”的疑惑,现在,就让我们一起来讲述,关于“天体”的故事吧! 就从我们的造物主开始。我们的故事,都围绕它而展开——太阳。 假如我们没有这个母亲,我们很难想象我们是如何出现的,我们的地球可能一直一直漂浮在宇宙空间里,我们没有受到可照光的眷顾,我们的一切一切都存在黑暗里。 好好想想,这是多么的恐怖,这可能导致生物也无法出现。那么我们的地球就不可以称之为地球了,我们的地球可能只是一片冰冻,毫无生机。总之,快感谢我们的太阳母亲吧!

1.1恒星 回归正题,像这样发光发亮,却很稳定的星体,我们就称之为恒星,如果没有恒星,我们的宇宙可能是黑的。 谈到黑,我又想起了一件事,恒星又是黑体。 1. 2黑体 什么是黑体? —黑体就是不反射不透射任何电磁波,任何辐射和能量的物体,听起来

恒星的演化过程

恒星的演化过程 1. 恒星的形成 在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定造成塌缩。这样恒星便进入形成阶段。在塌缩开始阶段,气体云内部压力很微小,物质在自引力作用下加速向中心坠落。一方面,气体的密度有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力正比于它的密度与温度的乘积,因而在塌缩过程中,压力增长更快,这样,在气体内部很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力塌缩,从而建立起一个新的力学平衡位形,称之为星坯。 2.恒星的稳定期——主序星 主序星阶段在收缩过程中密度增加,收缩气云的一部分又达到新条件下的临界,小扰动可以造成新的局部塌缩。如此下去在一定的条件下,大块气云收缩为一个凝聚体成为原恒星,原恒星吸附周围气云后继续收缩,表面温度不变,中心温度不断升高,引起温度、密度和气体成分的各种核反应。产生热能使气温升的极高,气体压力抵抗引力使原恒星稳定下来成为恒星,恒星的演化是从主序星开始的。

3.恒星的晚年 主序后的演化由于恒星形成是它的主要成份是氢,而氢的点火温度又比其他元素都低,所以恒星演化的第一阶段总是氢的燃烧阶段,即主序阶段。在主序阶段,恒星内部维持着稳衡的压力分布和表面温度分布,所以在整个漫长的阶段,它的光度和表面温度都只有很小的变化。下面我们讨论,当星核区的氢燃烧完毕后,恒星有将怎么进一步演化?氦燃烧的产物是碳,在氦熄火后恒星将有一个碳核心区氦外壳,由于剩下的质量太小引力收缩已不能达到碳的点火温度,于是他就结束了以氦燃烧的演化,而走向热死亡。 4.恒星的终局 抛掉它的一部分或大部分质量而变成一个白矮星。8→10M⊙以上的恒星最终将通过星核的引力塌缩而变成中子星或黑洞。

恒星演化

恒星 摘要:本文分为两大部分,前部分将介绍恒星的各个参数,包括亮度、视星等、光度、大小、质量等基本特征以及恒星彼此之间的联系等等(也适当包含了一些对恒星参数测定的方法)。后半部分则将着重介绍恒星的起源与演化过程。 关键词:恒星、起源与演化。 1.前言 在美丽而又浩瀚的夜空中,我们痴迷于若隐若现的点点繁星,向它们寄托着我们难以磨灭的情感,它们也因此成为了我们心中永远的美丽传说。而实际上,那点点繁星大都是离我们十分遥远的恒星,我们对它们仍知之甚少。因此,研究恒星与恒星系统已势在必行:它是解决现代最基本理论----天体的起源与演化问题所不可缺少的;同时它也有助于解决物理学中的基本理论,寻找新能源;甚至于对这个问题的研究,对哲学的进步与发展同样起着积极作用,因为恒星和恒星系统是唯物主义宇宙观和唯心主义宇宙观激烈斗争的重要方面。 2.恒星的基本参数 2-1恒星观测的发展历程 恒星是指由内部能源产生辐射而发光的大质量球状天体。太阳就是一颗典型的恒星。自古以来,恒星一直是人们探索大自然的一个重要研究对象。人类研究恒星最初是依靠眼睛,但“最好”的眼睛最多只能看到6000余颗恒星。望远镜发明后,人类可以观测到眼睛看不到的恒星,早先美国帕洛马山天文台的直径5米的望远镜可以观测到20亿颗恒星,而在哈勃望眼镜升空后已经把人眼识别天体的范围提高了40亿倍。与此同时,人类还通过射电,x射线,红外线等多种电磁波去了解和研究恒星。 2-2恒星的距离 恒星离我们是十分遥远的,除去太阳外,离我们最近的恒星是半人马座比邻星,距离大约有4*10^13千米,而其他恒星更是远远大于这个距离。那么,应该怎样进行恒星距离的测量呢?

恒星的演化

恒星的演化 宝佳琦 摘要:1. 黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦希小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。 2. 脉冲星,就是变星的一种。脉冲星是在1967年首次被发现的。当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星发出一种周期性的电波。经过仔细分析,科学家认为这是一种未知的天体。因为这种星体不断地发出电磁脉冲信号,人们就把它命名为脉冲星。它对恒星的演化有一定的影响。 3.根据现在的认识,超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的8~20倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。 4. 赫罗图是丹麦天文学家赫茨普龙及由美国天文学家罗素分别于1911年和1913年各自独立提出的。后来的研究发现,这张图是研究恒星演化的重要工具,因此把这样一张图以当时两位天文学家的名字来命名,称为赫罗图。赫罗图是恒星的光谱类型与光度之关系图,赫罗图的纵轴是光度与绝对星等,而横轴则是光谱类型及恒星的表面温度,从左向右递减。恒星的光谱型通常可大致分为O.B.A.F.G.K.M 七种。 5.白矮星(White Dwarf)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。白矮星是一种晚期的恒星。根据现代恒星演化理论,白矮星是在红巨星的中心形成的。白矮星是一种很特殊的天体,它的体积小、亮度低,但质量大、密度极高。比如天狼星伴星(它是最早被发现的白矮星),体积和地球相当,但质量却和太阳差不多,它的密度在1000万吨/立方米左右。 关键词:黑洞脉冲星超新星的爆发赫罗图白矮星

恒星的演化 (2)

恒星是由炽热气体组成的、能自身发光的球状或类球状天体。它同自然界一切事物一样,也经历着从诞生、发展到衰亡和转化的过程。 恒星演化即恒星形成后,在引力、压力和核反应的作用下,恒星结构随时间而变化,直至能量耗尽,变为简并星或黑洞的过程。 恒星演化就是一颗恒星诞生,成长成熟到衰老死亡的过程,恒星演化是是十分缓慢的过程。天文学家根据对各种各样的恒星的观测和理论研究,弄清楚了恒星的一生是怎样从孕育到诞生,再从成长到成熟,最后到衰老、死亡的整个过程。恒星演化论,是天文学中,关于恒星在其生命期内演化的理论。 恒星的总质量是决定恒星演化和最后命运的主要因素。描述许多恒星的温度对光度关系的图,也就是赫罗图,可以测量恒星的年龄和演化的阶段。 赫罗图可显示恒星的演化过程, 太约90%的恒星位于赫罗图左上角至右下角的带状上,这条线称为主序带。位于主序带上的恒星为主序星。形成恒星的分子云是位于图中极右的区域,但随著分子云开始收缩,其温度开始上升,慢慢移至主序。恒星临终时会离开主序,除质量极低的恒星会往左下方移动,大质量恒星会往右上方移动,这里是红巨星及超红巨星的区域,都是表面温度低而光度高的恒星。未经过超星星爆炸的恒星会移向左下方,这里是表面温度低而光度高的区域,是白矮星的所在区域,接著会因为能量的损失,渐渐变暗成为黑矮星恒星的诞生:恒星的演化开始于巨分子云。一个星系中大多数虚空的密度是每立方厘米大约0.1到1个原子,但是巨分子云的密度是每立方厘米数百万个原子。一个巨分子云包含数十万到数千万个太阳质量,直径为50到300光年。 在巨分子云环绕星系旋转时,一些事件可能造成它的引力坍缩。巨分子云可能互相冲撞,或者穿越旋臂的稠密部分。邻近的超新星爆发抛出的高速物质也可能是触发因素之一。最后,星系碰撞造成的星云压缩和扰动也可能形成大量恒星。 坍缩过程中的角动量守恒会造成巨分子云碎片不断分解为更小的片断。质量少于约50太阳质量的碎片会形成恒星。在这个过程中,气体被释放的势能所加热,而角动量守恒也会造成星云开始产生自转之后形成原始星。 恒星形成的初始阶段几乎完全被密集的星云气体和灰尘所掩盖。 质量非常小(小于一个太阳质量)的原始星的温度不会到达足够开始核聚变的程度,它们会成为棕矮星,在数亿年的时光中慢慢变凉。大部分的质量更高的原始星的中心温度会达到一千万开氏度,这时氢会开始聚变成氦,恒星开始自行发光。核心的核聚变会产生足够的能量停止引力坍缩,达到一个静态平衡。恒星从此进入一个相对稳定的阶段。如果恒星附近仍有残留巨分子云碎片,那么这些碎片可能会在一个更小的尺度上继续坍缩,成为行星、小行星和彗星等行星际天体。如果巨分子云碎片形成的恒星足够接近,那么可能形成双星和多星系统。 恒星有不同的颜色和大小。从高热的蓝色到冷却的红色,从0.5到20个太阳质量。 恒星的亮度和颜色依赖于其表面温度,而表面温度则依赖于恒星的质量。大质量的恒星需要比较多的能量来抵抗对外壳的引力,燃烧氢的速度也快得多。 中年时候的恒星 恒星形成之后会落在赫罗图的主星序的特定点上。小而冷的红矮星(指表面温度低、颜色偏红的矮星,尤指主序星中比较“冷”的M型及K型恒星)会缓慢地燃烧氢,可能在此序列上停留数千亿年,而大而热的超巨星会在仅仅几百万年之后就离开主星序。像太阳这样的中等恒星会在此序列上停留一百亿年。太阳也

太阳的形成(恒星的演化过程 )

太阳的形成(恒星的演化过程) 【摘要】恒星的演化史可为四大阶段:引力收缩阶段,主星序阶段,红巨星阶段和晚期阶段,在恒星演化过程中还伴随着元素的形成和生命物质的产生。本文简单叙述了恒星的诞生、演化及衰亡过程,展示了恒星的存在历程,同时表明了恒星这类重要天体的起源及演化规律。描绘了恒星在星际气体尘埃中诞生,在主星序阶段稳定演化并伴随着各种重元素的形成,最后以白矮星,中子星或黑洞结束一生画面。 本文讨论了恒星的演化和元素的形成以及生命物质的产生的关系,认为元素演化、天体演化、生命的起源与演化三者密切相关。在恒星的演化过程中,引力塌缩和热核反应交替进行为演化提供能源,在这个过程伴随有微观粒子的反应过程,亦即元素形成过程。另外超新星爆发等恒星演化事件为比铁更重的重元素的形成提供了基本条件。而恒星随着自身的诞生、死亡,就在恒星和星云之间相互转换。 【关键词】赫罗图(HR图);红巨星;白矮星;中子星;黑洞;元素 I

The process of the fixed star 【Abstract】The fixed star evolution history may be four stages mark: The gravitation contracts a stage , betokens the order star stage , red giant star stage and later period stage. In the process of the fixed star evolution ,element formed and living matters came into being. The Fixed star coming into being the main body of a book has been narrated simply, evolves and becomes feeble and die ,creation of element and living matters came into being. have shown the law there existing course , origin and evolution having indicated fixed star this kind of the important celestial body at the same time in fixed star's. Have described out a fixed star coming into being in interstellar gas dust, before primary component order stage stabilize evolution, a lifetime coming to an end finally with the white dwarf , neutron star or black hole experiences an outline. This article discusses the evolution of stars and the formation of elements, as well as the lives of the relationship between the emergence of material that the elements of evolution, the evolution of celestial bodies, the origin and evolution of life are closely related. In the course of stellar evolution, gravitational collapse and thermonuclear reaction to the evolution of alternate energy, in the process accompanied by the reaction of the process of micro-particles, that is, the process of element formation. In addition, such as supernova stellar evolution of the outbreak of the incident even heavier than iron the formation of heavy elements provide the basic conditions. And the birth of stars with their own, death stars and nebulae in the conversion between. 【Key Words】:hertzsprung russel diagram; red giant star;white dwarf;neutron star; collapsar;element.

恒星的演化全解

一、恒星的诞生 ............................................................................ 二 (一)成年期 .......................................................................... 四(二)中年期 .......................................................................... 四(三)衰退期 .......................................................................... 五二、恒星的演化形态.................................................................... 五 ①低质量恒星 .......................................................................... 五 ②中等质量恒星 ...................................................................... 六 ③大质量恒星 .......................................................................... 七 ④中子星................................................................................... 八 ⑤黑洞....................................................................................... 九 三、演化的原因 ............................................................................ 十 四、演化的结果 ........................................................................ 十二 五、巨大质量的恒星列表及恒星形成过程示意图(部分)十三 .......................................................................... 错误!未定义书签。

九年级科学下册第1章演化的自然第2节太阳系的形成和恒星的演化练习新版浙教版.doc

(太 r 小恒星㈡展应片!白矮星 第2节太阳系的形成和恒星的演化 (见A 本67页) 聚焦教材)? 1. 太阳系的形成:“康德一拉普拉斯星云说”。 内容为太阳系是由一块星云收缩形成的,先形成的是 太阳,然后,剩余的星云物质 进一步收缩演化,形成地球等行星。 理论依据:八大行星绕日运行的特征。 (1)同向性:公转方向与自转方向相同;(2)共面性:公转轨道平面大多接近于— 同一平面;(3)近圆性:八大行星的轨道接近圆形。 2. 太阳的光和热是靠太阳内部的氢核发生核聚变产生的。 3. 恒星的演化 中子星I 4. 一颗恒星寿命的长短取决于它的—大小,质量越大,寿命越短。 VC 分层训练 A 练就好基础基础达标 1. 在下列天体系统中,不含地球的是(D ) A. 地月系 B.银河系 C.太阳系 D.河外星系 2. 下列说法正确的是(B ) A. 太阳是宇宙的中心 B. 太阳活动会对人类的生产生活造成影响 C. 太阳系的八大行星都没有卫星 D. 太阳是银河系中唯一的恒星 3. 组成星云的物质是(D ) A. 气体 B.尘埃 C.固体 D.气体和尘埃 4. 有关恒星发光的能量来源,下列说法正确的是(C ) A. 核裂变反应释放的核能 B. 恒星上的煤燃烧释放的化学能 C. 核聚变反应释放的核能 D. 恒星由于自转机械能转化为内能 5. 下列有关恒星的说法,正确的是(D ) A. “红巨星”相当于恒星的“少年”阶段 B. “恒星”意思是“永恒不变的星”,恒星在星空的位置是固定不变的 C. 恒星离太阳太近,因阳光强烈以致我们难以觉察到它们位置的变动

D.天文学家能够测出黑洞的存在,但人们无法看见黑洞 6.人类认识黑洞,最有可能了解到的事实是(C ) A.航天探测器近距离接近黑洞 B.用射电望远镜看不到黑洞 C.黑洞附近的恒星可能会受黑洞引力的影响而有特别的分布 D.黑洞发出的光能被我们接收到 7.在恒星的演化过程中不可能形成的是(A ) A.行星 B.中子星 C.黑洞 D.红巨星 & “一闪一闪亮晶晶,满天都是小星星”,晴朗的夜空中的满天星斗是(D ) A.行星 B.彗星 C.卫星 D.恒星 9.在下列物质中密度最大的是(C ) A.太阳 B.白矮星 C.黑洞 D.中子星 10.比太阳更大的恒星最终将演化成(D ) A.红巨星 B.白矮星 C.超新星 D.中子星或黑洞 11.我们常常看到这样的情形:在生铁的锻造过程中,随着生铁温度的升高,生铁颜色存 根据表中的资料,你认为恒星表面的颜色可能与温度有关。 B更上一层楼能力提升 12.下列依据与“星云说”的提出有关的是(D ) A.太阳系的行星绕日公转的方向和太阳自转的方向不一致 B.太阳系的行星绕日公转的轨道面不在同一平面上 C.太阳系的行星绕日公转的轨道是近似圆形的椭圆 D.星云是由气体和尘埃物质组成的巨大云雾状天体 13.关于太阳系的起源有多种假说,最主要的有两类,它们分别是(B ) A.“星云说”和“地心说” B.“灾变说”和'‘星云说” C.大爆炸学说和“日心说” D.“灾星说”和“星云说” 14.关于白矮星的说法,不正确的是(D ) A.白矮星是中等质量恒星演化的终点 B.白矮星在银河系中随处可见 C.它的质量越大,半径就越小 D.137亿年前宇宙诞生和第一批恒星出现以来,恐怕还没有一个白矮星形成 15.根据科学家预测,大恒星的演变过程为(C ) A.大恒星一红巨星一中子星一黑洞 B.大恒星一中子星一超红巨星一超新星 C.大恒星一超红巨星?超新星一中子星或黑洞

恒星演化的可能归宿与估算

11 恒星演化的可能归宿与估算 任何恒星都不能永远存活下去,在烧尽了核燃料后恒星根据它们自身的质量大小,其最终演变结果通常有白矮星、中子星和黑洞三种可能归宿。 1、较小的恒星(象太阳大小的恒星)通常演化为白矮星,这是人类最早发现的致密天体。 远在170年前(1834年)德国天文学家贝塞尔就注意到天空中最亮的恒星-开狼星是在以“波浪式”的轨迹向前运动,根据其独特的运动方式,贝塞尔猜想它可能有一颗暗的伴星,这一伴星后来果然被美国天文学家克拉克在28年后(1862年)发现,最初人们认为它是一颗直径很大而又很冷姝红巨星。然而到了1915年,主要从事光谱研究的美国天文学家沃尔特·亚当斯在威尔逊天文台观察这颗伴星的光谱时竟然意外地发现这颗伴星实际上根本 不冷:它是白色的,表面温度达到800K ,比太阳的表面温度还高2000K 。根据推算,这是一颗直径仅为地球直径两倍大小的的恒星,尽管其光度只有太阳的百分之一,但的质量却与太阳相差无几,其密度更高达73710/kg m ?(是水的密度的70000倍)。后来人们把这类体积小、密度大、表面温度高的而光度低的简并态恒星称为白矮星。理论上的研究结果表明,当恒星经历红巨星阶段发生较大的质量损失后,这颗恒星便穿过主序星阶段而演化成白矮星。 1924年英国物理学爱丁顿根据质量与光度的关系推测,白矮星是质量与太阳相当不能适应致密天体,具有谱线较宽的引力红移效应。1926年美国物理学福勒用“量子力学”建立白矮星的简并态电子气理论,证明了第四态物态:简并物态(即等离子态)的存在。1931年美藉印度天体物理学家钱德拉塞卡更进一步从理论上推算出,无自转白矮星质量的上限约为1.44个太阳质量,这就是著名的“钱德拉塞卡极限”(迄今为止人类已发现了一千多颗白矮星,没有一颗质量超过上述极限的)。白矮星有很强表面引力和很强的磁场() 31010T :,科学家们早期就是对白矮星谱线的引力红移的观察中,找出验证相对论的实测数据。 太阳中的主要元素是氢和氦,这两种元素加起来占到太阳总质量的98%以上。现在太 阳内部的核反应主要是氢氢核结合成氦核,即01411224e H He -?+?→。若取电子质量310.9110e m kg -=?,质子质量271.672610p m kg -=?,α粒子质量294.654810m kg α-=?,则上述核反应每发生一次的质量亏损为

恒星的形成与演化

恒星的形成与演化 一、恒星的形成 恒星是茫茫宇宙中除太阳、月亮和少数行星之外最引人注目的天体.早在上古时代,人们就对恒星充满了好奇与幻想,中外都流行着非常动人的神话传说.然而,直到望远镜出现后,人们才对恒星有了最基本的认识,了解到恒星在天空中并不是恒定不变的.到了 2 0世纪初,爱因斯坦发表了著名的质能关系,人们对原子核反应所产生的巨大能量逐步认识,知道了恒星能量的来源,才渐渐认识到恒星本身也有生命周期,它们像人一样会出生、生长、老去直至死亡.然而,恒星的出生在相当长的时间里还是个谜,直到2 0世纪6 0年代,天文学家在星际空间发现了分子气体,以及嵌埋其中的低温原恒星( p r o t o s t a r) ,才对恒星的出生场所及过程有了最初步的了解. 经过 4 0年的研究,天文学家对恒星的出生过程有了相当充分的理解,特别对小质量恒星而言更是如此.现在已经很清楚,恒星是在以分子气体为主的星际分子云中生成的,由于分子云自身的引力作用,开始自身的塌缩并形成所谓的年轻星天体( y o u n g s t e l l a r o b j e c t s ) ,这些年轻星天体经过快速演化最终形成恒星.为了对恒星进行分类,天文学家将小于太阳质量3倍的恒星称为小质量星,3 —8倍的称为中等质量星,而大于8倍太阳质量的则称为大质量星.这一分类并不仅仅是表象的不同,事实上它代表了不同类型的恒星形成时不同的物理过程. (一)小质量恒星形成的理论与观测 一般认为,恒星是通过分子云核( mo l e c u l a r c o r e )的塌缩而形成的.在银河系内,存在一类由分子气体组成的天体,由于它们呈弥散的云雾状形态,因此被称为分子云( mo l e c u l a r c l o u d ),其总质量约占银河系可视物质质量的1%,其温度很低,大约为1 0 K .分子云在星际空间缓慢演化,在某些局部形成密度相对较高的区域,被称为分子云核.随着分子云核的进一步演化,其内部的热运动压力不能再抵御自身的引力,便开始了所谓引力塌缩,最终形成恒星.根据研究,从分子云核演化成一颗恒星经过了以下4个阶段:( 1 )云核阶段:分子云核内气体运动压力、磁压、引力及外部压力处于基本平衡状态,云核缓慢收缩,温度开始缓慢上升,形成热分子云核; ( 2 )主塌缩阶段:当分子云核的内部压力不能抵抗自身引力时,就开始了塌缩.由于云核中心密度较高,塌缩区域最初位于中心,并以当地声速向外扩张,这就构成“先内后外”的塌缩( i n s i d e—o u t c o 1 .1 a p s e ).塌缩形成一个致密的核心,巨大的引力能使中心温度迅速升高.由于云核的自转,外部物质不会直接落到核心,而是在核心周围形成一个致密的盘状结构,称为吸积盘( a c c r e t i o n d i s k ); ( 3 )主吸积阶段:由于角动量及磁通量守恒原理,最终成为恒星组成部分的物质并不能直接落到中心星上,而是落在吸积盘上,吸积盘通过一系列复杂的过程,将多余的角动量向外传递,使中心星的质量得以继续增加,因此,吸积盘在恒星形成活动中起了至关重要的作用.在此期间,为了释放角动量,系统还通过目前尚不可知的机制向两极方向抛射物质,形成质量外流(outflow).恒星的大部分质量都是通过吸积获得的,巨大的引力能使中心星的温度急剧上升,从而点燃了星中心区域的氘. ( 4 )残余物质驱散阶段:质量外流在这一阶段继续存在,外流与星风的作用使恒星形成的残余物质远离中心星,星周物质以及盘物质变得稀薄,外流的开口张角渐渐变大.中心星仍然从盘中吸积物质但其速率已经很小,中心星的质量不会再有实质性的增长,更多的是准静态收缩.中心星的核心部分这时可能已经开始了氢燃烧,外部出现了对流层.当这一阶段结束时,我们就可以在宇宙空间看见一颗性质不同的恒星,被称为主序星.

恒星的演化

恒星的演化 §主序星的演化 1、恒星演化的基本原理: 恒星在一生的演化中总是试图处于稳定状态(流体静力学平衡和热平衡)。当恒星无法产生足够多的能量时,它们就无法维持热平衡和流体静力学平衡,于是开始演化。引力在其中起了关键的作用。恒星从星云中诞生,这个结果是引力造成的,因为引力使得星云中的物质聚集成了恒星。但是另一方面,引力会使得它在体积上不断收缩,为了使得引力作用在某种程度上达到平衡,恒星需要在内部产生能量,产生能量的目的是为了抗衡引力,否则它会持续收缩。在达到平衡的过程里,恒星要付出代价,恒星要不断消耗自身物质,产生新的元素,元素在转化的过程中能量释放出来,内部结构也会发生变化,最终有一天恒星没有任何能源可以供给,它的生命就结束了。所以说恒星的一生是一部与引力斗争的历史。 2、Russel-Vogt原理 如果恒星处于流体静力学平衡和热平衡,而且它的能量来自内部的核反应,它们的结构和演化就会完全唯一地由初始质量和化学丰度决定。这个原理在实际上可能不是非常符合,因为恒星的质量会不可避免地发生变化,但是初始质量和化学丰度仍然是决定恒星结构和演化的重要因素。这里我们主要谈质量的影响。 3、恒星演化时标 核时标(Nuclear Timescale):恒星内部通过核心区(约占恒星质量的十分之一)核反应的产能时间。比如太阳,它并不是把所有的质量都烧光了,它其实只有0.1倍太阳质量作为可用的燃料。我们有下面的结果: E是它总的能量,L是光度,也就是它能量消耗的速率,E可以写成ΔMc2,,其中ΔM是恒星核心区的质量,并不是恒星的总质量,η是能量转换的效率。上式是以太阳质量和太阳光度作为单位的。一旦恒星的核燃料烧光了,它会快速地变化,进入新的平衡状态,新的平衡状态转变的时标比核反应时标要快得多。 热时标(Thermal Timescale):恒星辐射自身热能的时间,或光子从恒星内部到达表面的时间,是指恒星把自身能量或热量全部辐射光了。这个发生在恒星把自身燃料烧完了,没有新的燃料供给,它完全通过把原来储藏的热量散发出去。

相关主题
文本预览
相关文档 最新文档