当前位置:文档之家› 水质工程学课程设计

水质工程学课程设计

水质工程学课程设计
水质工程学课程设计

一.总论

1.1 设计任务及要求

净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。

课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。

1.2 基本资料

1.2.1 水厂规模

该水厂总设计规模为5万m3/d,分两期建设,近期工程供水能力5万m3/d,,远期工程供水能力为10万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。

1.2.2 原水水质资料

水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形

地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。

1.2.4 工程地质资料

土壤承载力:20 t/m2.

(2)地震计算强度为186.2kPa。

(3)地震烈度为9度以下。

(4)地下水质对各类水泥均无侵蚀作用。

地下水位:在地面以下1.8m

1.2.6 气象资料

该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

二.总体设计

2.1 净水工艺流程的确定

水厂原水色度约在20度,浊度一般介于65-2000NTU ,原水水质毒理学和放

射性指标全部达到《生活饮用水卫生标准》(GB 5749-2006)的要求。总体来说,原水水质较好,为我国《地面水环境质量标准》(GB3838-200)Ⅱ类水源。而水厂出水水质需满足《生活饮用水卫生标准》(GB 5749-2006)的要求。

综合以上考虑,设计初步采用常规水处理工艺,流程图如下: 原水混 合絮凝沉淀池滤 池混凝剂消毒剂

清水池二级泵房用户

图2-1 工艺流程图

2.2 处理构筑物及设备型式选择

2.2.1 药剂溶解池

1.药剂的选择

表2-1 常用混凝剂及其特点

PAM等有机高分子混凝剂有毒性,不易控制用量,由于在投混凝剂前加液氯进行预处理,如用硫酸亚铁作混凝剂,易被氧化成三价铁。本次设计的原水水源为河水,其浊度在65-2000之间,PH值为7.6,结合这些特点,选用聚合氯化铝为混凝剂,该混凝剂腐蚀性较小,原料易得,价格便宜,被大多数水厂所采用,有一定的管理经验,并且劳动条件有保障。

2.投加方式的确定

本设计采用湿投法,其优点为:容易与原水充分混合;不易阻塞入口,管理方便;投量易于调节。投加系统示意图见下图所示:

结合上述优缺点,采用计量泵投加混凝剂,因为其使用方便,操作简单,工作可靠,广泛应用于加药系统。

3.药剂溶解池

设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m左右,以减轻劳动强度,改善操作条件。溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。

由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。

2.2.2 混合设备

混合的主要作用是让药剂迅速而均匀地扩散到水中,使其水解产物与原水中的胶体颗粒充分作用完成脱体脱稳,以便进一步去除,对混合的基本要求是快速与均匀,一般混合时间10-30s,混合方式基本分为两大类:水力混合和机械混合,水力混合简单,但不能适应流量的变化,机械混合可进行调节,能适应各种流量的变化,具体采用何种混合方式,应根据净水工艺布置、水质、水量、投加药剂品种及数量以及维修条件等因素确定。

表2-3 各种混合方式比较

综上所述,因为水厂水量变化不大,并且考虑到尽可能的减少能量消耗,以整体经济效益而言是最具有优势的,本设计采用管式静态混合器,它较水泵混合和机械混合能耗低,并且混合效果比管道混合稳定,混合速度快。

2.2.3 絮凝处理构筑物的选择

不同形式的絮凝池的一般介绍如下所示:

表2-4 各种絮凝池的比较

综上所述,由于水厂水量变化不大,为了达到较好的处理效果,故采用机械絮凝池,可以在机械絮凝池的之间设置隔墙,在隔墙的不同位置开设过水方孔,这样不仅可以减少水流形成短流的可能,而且可以在检修时,利用水在隔墙内的曲线流动达到絮凝效果。

2.2.4 沉淀池

选择沉淀池类型时,应根据原水水质、设计生产能力、处理后水质要求,并考虑原水水湿变化、处理水量均匀程度以及是否连续运转等因素,结合当地条件通过技术经济比较确定沉淀池的个数或能够单独排空的分格数不宜少于2个。

经过混凝沉淀的水,在进入滤池前的浑浊度一般不宜超过10度,遇高浊度原水或低湿低浊度原水时,不宜超过15度。

设计沉淀池时需要考虑均匀配水和均匀集水,沉淀池积泥区的容积,应根据进出水的悬浮物含量、处理水量、排泥周期和浓度等因素通过计算确定。当沉淀池排泥次数较多时,宜采用机械化或自动化排泥装置,应设取样装置。

表2-5 各种沉淀池的比较

近年来,平流式沉淀池被越来越多地水厂所采用,它的沉淀效果较好,维护简单,采用机械除泥,除泥效果理想,管理方便等,所以本设计采用平流式沉淀池

2.2.5 滤池

供生活饮用水的滤池出水水质经消毒后应符合现行《生活饮用水卫生标准》的要求;供生产用水的过滤池出水水质,应符合生产工艺要求;滤池形式的选择,应根据设计生产能力、原水水质和工艺流程的高程布置等因素,结合当地条件,通过技术经济比较确定。

表2-6 各种滤池的比较

综上所述,V型滤池适用范围广且采用气水反冲洗,冲洗效果好,节水出水水质较好,虽然滤料较厚较粗,过滤周期长,但冲洗过程自动控制减少人工管理,操作方便。本设计采用V型滤池均质滤料。。

2.2.6 消毒方法

水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。常用消毒方法如下表所示:

表2-7 常用消毒方法

在上面所述的各种消毒剂中,液氯是最早被用来作为饮用水消毒的消毒剂,它除了以上的优点之外,在水厂消毒过程中积累的大量的实践经验,可以借鉴,劳动量较小,消毒效果比较稳定。所以,本次设计采用液氯作为消毒剂。

三.混凝沉淀

3.1 混凝剂投配设备的设计

3.1.1 溶液池的设计

采用聚合氯化铝混凝剂,根据给水排水设计手册(第三册),查得武汉长江

水的混凝剂最高投加量为64 mg/L ,平均投加量为24.7 mg/L ,采用计量泵投加。水的PH 和碱度恰好在混凝剂的最佳PH 值范围内,故不需要考虑对PH 进行调节。

溶液池一般以高架式设置,以便能依靠重力投加药剂。池周围应有工作台,

底部应设置放空管。必要时设溢流装置。

溶液池容积按下式计算:

cn

aQ 417W 2=; 式中2W -溶液池容积,3m ;

Q -处理水量,3/m h ;

a -混凝剂最大投加量,mg/L ;

c -溶液浓度,取10%;

n -每日调制次数,取n =2。 代入数据得:34206.2424

21041706.1101.764417W m cn aQ =??????==(考虑水厂的自用水量6%)

溶液池采用矩形钢筋混凝土结构,设置2个,每个容积为W 2(一备一用),

以便交替使用,保证连续投药。

取有效水深1.15m , 溶液池深度:H =H 1+H 2+H 3=1.15+0.15+0.10=1.40m 。

式中H 2为保护高,取0.15m ;H 3为贮渣深度,取0.1m 。

单池尺寸为L ×B ×H=5.0m ×4.2m ×1.4m ,溶液池实际有效容积:

W=5.0×4.2×1.15=24.15m 3

满足要求。

池旁设工作台,宽1.0-1.5m ,池底坡度为0.03。底部设置DN100mm 放空

管,采用硬聚氯乙烯塑料管。池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释给水管DN60mm ,按1h 放满考虑。

3.1.2 溶解池的设计

溶解池容积:W 1=0.3W 2=0.3×24.06=7.22m 3;

溶解池采用钢筋混凝土结构,设置2个,每个容积为W 1(一备一用)。

取有效水深0.95m, 溶解池深度:H =H 1+H 2+H 3=0.95+0.15+0.10=1.20m ,

式中H 2为保护高,取0.15m ;H 3为贮渣深度,取0.1m 。

单池尺寸为:L ×B ×H=2.8m ×2.8m ×1.2m ,溶液池实际有效容积:W=2.8

×2.8×0.95=7.45m 3满足要求。

溶解池的放水时间采用t =15min ,则放水流量:

q 0s L t W /14.4601521045.76023

1

=???=?=; 查水力计算表得放水管管径:d 0=80mm ,相应流速V=0.75m/s 。溶解池底部

设管径d =100mm 的排渣管一根,搅拌设备采用中心固定式平桨板式搅拌机。

溶解池搅拌装置采用中心固定式平桨板式搅拌机:以电动机驱动浆板或涡轮

搅动溶液。

3.1.3 投药管

投药管流量

q s L W /557.060

60241000206.246060241000

22=????=????=; 查水力计算表得投药管管径:d =25mm ,相应流速为0.83m/s 。

3.1.4 投加泵的选择

计量泵每小时投加药量:

q =122

W =12

06.22=1.84 m 3/h ; 式中:W 2——溶液池容积(m 3)

计量泵型号J-D2500/1.6选用2台,一备一用。

3.1.5 加药间及药库的设计

药剂仓库与加药间应连在一起,储存量一般按最大投药期间1-2个月用量

计算。仓库内应设有磅秤,并留有1.5m 的过道,尽可能考虑汽车运输的方便。

混凝剂选用聚合氯化铝,每袋质量是40kg ,每袋的体积为0.5×0.4×0.2m 3,药

剂储存期为30d ,药剂的堆放高度取2.0m 。

聚合氯化铝的袋数:

240.0241000Q u t Qut N W W

???==??; 式中: Q -水厂设计水量,3/m h ;

u -混凝剂最大投加量,/mg L ;

t -药剂的最大储存期,d ;

W -每袋药剂的质量,kg ;

将相关数据代入上式得,N=340840

243064101.7024.04=?????袋。 有效堆放面积A :

()

1NV A H e =-; 式中:H -药剂得堆放高度,m ;

V -每袋药剂得体积,3m ;

e -堆放孔隙率,袋堆时20%e =

代入数据得: A=2.85)

2.01(22.04.05.03408=-????m 2; 考虑目前使用及日后扩容,可按远期设计及,适当增加面积,取A=160m 2。

3.2 混合设备的设计

使用管式混合器对药剂与水进行混合。在混合方式上,由于混合池占地大,

基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。

在给排水处理过程中原水与混凝剂,助凝剂等药剂的充分混合是使反应完

善,从而使得后处理流程取得良好效果的最基本条件,同时只有原水与药剂的充分混合,才能有效提高药剂使用率,从而节约用药量,降低运行成本。

管式静态混合器是处理水与混凝剂、助凝剂、消毒剂实行瞬间混合的理想设备:具有高效混合、节约用药、设备小等特点,它是有二个一组的混合单元件组成,在不需外动力情况下,水流通过混合器产生对分流、交叉混合和反向旋流三个作用,混合效益达90-95%,构造如图3-1所示:

药剂静态混合器

图3-1 管式静态混合器

设计流量:

Q=436.03600

24206.1101.74=????m 3/s ; 静态混合器设在絮凝池进水管中,设计流速v=1.0m/s ,则管径为:

D=0

.114.3436.04??=0.74m ; 采用D=800mm ,则实际流速v=0.868m/s

混合单元数: N 36.2≥v -0.5D -0.3=2.36/(0.8680.5?0.80.3)=2.71取N=3,则混合

器的混合长度为:

L=1.1ND=1.18.03??=2.64m ;

混合时间:

T=L/v=2.64/0.868=3.04s ;

水头损失: m N D Q h 180.038

.0436.01184.01184.04.42

4.42=??==; 校核GT 值

G )700(8.75904

.310005.1180.0980013≥=???==--s T h μγ GT=759.804.3?=2310(≥2000)

水力条件符合要求。

3.3 反应设备的设计

3.3.1 机械絮凝池尺寸

采用2座机械搅拌絮凝池,则每座池的设计流量为: Q s m h m 334436.09.15672

2406.1101.7==???= ; 絮凝时间 T=20min ;絮凝池有效容积:

36.52260209.156760m QT

W =?==

; 为配合沉淀池尺寸,絮凝池分三组,每组四格,每格尺寸:3.4m ×3.4m ;

水深:H=3.7m ,絮凝池超高0.3m ,则池子总高度为4.0m ;

絮凝池实际容积:W=7.34.34.343????=513.3m 3;

实际絮凝时间:T=W /Q=513.3/0.436=1177s=19.62min ;

絮凝池分格隔墙上过水通道上下交错布置,每格设一台搅拌机。为加强搅拌

效果,于池子四周壁设置四块固定挡板。

3.3.2 搅拌设备尺寸

为保证叶轮边缘与池子侧壁间距不大于0.25m ,叶轮直径采用:D=3.0m ;

叶轮中心桨板线速度采用:v 1=0.5m ,v 2=0.4m ,v 3=0.3m ,v 4=0.2m ;

桨板长度取l=2.0m (桨板长度与叶轮直径

之比:l/D=2.0/3.0=66.7%<75%);

桨板宽度取:b=0.14m(1/15<b/l <1/10);

每根轴上桨板8块,内外各4块。装置尺

寸见右图:

旋转桨板面积与过水断面面积之比为:

81.177

.34.314.00.28=???%; 四块固定挡板宽×高=0.10m ×2.0m ,其面

积与过水断面面积之比为:

36.67

.34.310.00.24=???%; 桨板总面积占过水断面面积的百分比为: 图3—2 垂直轴搅拌设备

17.81%+6.36%=24.17%<25%;

叶轮桨板中心点旋转直径:

D 0=[(1500-680)/2+680]×2=2180mm=2.18m ;

叶轮旋转角速度分别为:w 1=2v 1/D 0=2×0.5/2.18=0.459rad/s ,w 2=0.367rad/s ,

w 3=0.275rad/s , w 4=0.183rad/s ;

桨板宽长比:b/l=0.14/2<1,查《给水排水设计手册.第三册》表7-25得:

ψ=1.10,则:

k=ψρ/2g=1.10×1000/2×9.81=56;

桨板旋转时克服水的阻力所耗功率:

第一格搅拌功率:

()()

kw r R r R yklw N 200.068.082.036.150.1408459.00.2564408

44443

4141424211=-+-????=-+-= 第二、三、四格搅拌功率分别为:0.102kw ,0.043kw ,0.013kw 。

四台搅拌机合用一台电动机,则絮凝池所消耗总功率为:

N=0.200+0.102+0.043+0.013=0.358kw 。

3.3.3 核算平均速度梯度G 值及GT 值

按水温t=200C ,μ=1.005×10-3N S/m 2

第一格G 1=12612.687

.34.3005.110200.0μ-=???=s v N 第二、三、四格G 值分别为:48.7s -1、31.6s -1、17.6s -1;

絮凝池平均速度梯度:G=1266.527

.34.3005.110358.03μ-=???=s v N GT=52.6×19.62×60=61920

经核算,G 值和GT 值较合适。

3.4 沉淀澄清设备的设计

3.4.1 平流式沉淀池尺寸

平流式沉淀池分设2座,每组设计流量:

s m h m Q 334436.09.15672

2406.1105==???= ; 沉淀时间T=2.0h ,沉淀池容积:W=QT=1567.9×2=3135.8m 3;

考虑絮凝池尺寸,沉淀池池宽B=3.4×3+0.2×2=10.6m ;

取沉淀池的有效水深:H=3.5m ,超高0.5m ,则池子总高度为4.0m ;

沉淀池长:L=W/Bh=3135.8/(10.6×3.5)=84.52m ,取L=85m ;

此时,沉淀池水平流速:v=L/3600T=85/(3600×2)=0.0118m/s=11.8mm/s

在10~25mm/s 范围内。

沉淀池长宽比:L/B=85/10.6=8.02>4,长深比:L/h=85/3.5=24.28>10

满足设计要求。

沉淀池放空时间以2小时计算,则放空管直径为:

m T B L H d 40.0360025.3856.107.

07.05

.05

.0=????==;

采用钢制DN500mm ,排泥管也采用同样的管径。

3.4.2 沉淀池水力条件复核

每池中间设两道200mm 的隔墙将沉淀池分成三格,每格宽3.4m 。

水力半径:R=ω/χ=3.5×3.4/(3.5×2+3.4)=1.14m

弗劳德数:F r =v 2/2g=0.01182/(2×9.81)=1.24×10-5 (在1×10-5~1×10-4之间)

雷诺数:Re=vR/γ=0.0118×1.14/(1.007×10-6)=1.33×104 (在4000~15000之间)

沉淀池示意见下图:

图3-3 平流沉淀池示意图

3.4.3 沉淀池的进水设计

进水采用穿孔墙布置,尽量做到在进水断面上水流的均匀分布,避免已形成

的絮体破碎。单座池墙长10.6m ,墙高4.0m ,有效水深3.5m ;

根据设计手册:当进水端用穿孔配水墙时,穿孔墙在池底积泥面以上0.3~

0.5m 处至池底部分不设孔眼,以免冲动沉泥。本设计采用0.5m ;

孔眼尺寸考虑施工方便,采用尺寸:15cm×8cm ;

单个孔眼的面积:200.150.080.012w m =?= ;

孔眼流速采用:10.1/v m s =;

孔眼总面积:0Ω=q/v 1=0.436/0.1=4.36m 2;

孔眼总数:0n =0Ω/ω0=4.36/0.012=363.3个,取364个;

孔眼实际流速:v=q/0n ω0=0.436/(364×0.012)= 0.100m/s ;

孔眼布置成7排,每排孔眼数为364/7=52个。水平方向孔眼的间距取100mm ,

则计算的水平长度为:52×0.08+51×0.1=9.26m ;

竖直方向的间距为150mm ,最上一排孔眼的淹没深度假定为0.5m ,最下一排

孔眼距池底为0.5m ,则竖向的计算高度为7×0.15+6×0.2+0.5+0.5=3.25m 。

3.4.4 沉淀池的集水系统设计

沉淀池的出口布置要求在池宽方向上均匀集水,并尽量滗取上层澄清水,减

小下层沉淀水的卷起,目前采用的办法多为采用指形槽出水。

1.指形槽的个数 : N=7;

2.指形槽的中心距 :a=B/N=10.6/7≈1.5m ;

3.指形槽中的流量:q 0=Q/N=0.436/7=0.0623m 3/s ,考虑到池子的超载系数

20%,故槽中流量为:q=1.2q 0=0.0623×1.2=0.0747 m 3/s ;

4.指形槽的尺寸

指形槽的槽宽:b=0.9q 00.4=0.9×0.07470.4=0.32m ,为便于施工,取0.4b m =;

取堰上负荷为q 0=250m 3/m.d ,则指形槽长度:

L=1.2Q/q 0=1.2×7.1×104×1.06/(250×2)=180.6m

7个集水槽,双侧进水。每根槽长:12.90m ,取13m ;

起点槽中水深:H 1=0.75b=0.75×0.4=0.3m ;

终点槽中水深:H 2=1.25b=1.25×0.4=0.5m ;

为便于施工,槽中水深统一取H 2=0.5m ;

5.总出水槽宽:B=0.9Q 0.4=0.9×0.4360.4=0.64m ,采用1.0m ,则出水渠起端

水深:H=1.73m gB Q 46.0181.9436.073.1322322=??=;

为保证自由落水,跌落高度采用0.1m ,溢流堰上淹没水头0.1m ,沉淀池超高0.5m ,则出水渠总深度为:

H=0.46+0.1+0.5+0.1+0.1+0.5=1.76m ;

6.槽的高度

集水方法采用锯齿形三角堰自由出流方式,跌落高度取0.05m ,槽的超高

取0.15m 。则指形槽的总高度H=0.5+0.15+0.05=0.70m (说明:该高度为三角堰底到槽底的距离)。

7.三角堰的计算

每个三角堰的流量:q 1=1.343h 2.47=1.343×0.052.47=0.00082m 3/s ;

三角堰的个数:n=Q/q 1=0.436/0.00082=530.8个;

每个指形槽上有530.8/7=75.8≈76个三角堰;

三角堰的中心距:d=13×2/76=0.34m 。

3.4.5 沉淀池排泥

排泥是否顺畅关系到沉淀池净水效果,当排泥不畅、泥渣淤积过多时,将严

重影响出水水质。排泥方法有多斗重力排泥、穿孔管排泥和机械排泥。机械排泥具有排泥效果好、可连续排泥、池底结构简单、劳动强度小、操作方便可以配合自动化等优点。故本设计采用虹吸式机械排泥。

采用SXH 型虹吸式吸泥机,轨距l =11000mm 。

排泥管采用和放空管相同的管径:DN500mm 。

四.过滤

4.1 设计参数

设计水量为:Q=7.1×104×1.06=75260m 3/d=0.871 m 3/s ;

设计滤速采用v=9.5m/h ,强制滤速v '≤20/m h ;

滤池采用单层石英砂均质滤料,冲洗方式采用:先气冲洗,再气-水同时冲洗,最后再用水单独冲洗。根据设计手册第三册P612表9-8确定各步气水冲洗强度和冲洗时间,参数具体如下:

1.冲洗强度

第一步气冲冲洗强度q 气1=16L/(sm 2);第二步气-水同时反冲洗,空气强度q

气2=16L/(sm 2),水冲洗强度q 水1=4L/(sm 2);第三步水冲洗强度q 水2=6L/(sm 2)。反冲洗横扫强度为q 反=2L/(sm 2)。

2.冲洗时间

第一步气冲洗时间t 气=3min ,第二步气-水同时反冲洗时间t 气水=4min ,单独水冲时间t 水=5min ;冲洗时间共计为:t =12min=0.2h ;冲洗周期T=48h 。

4.2 池体设计

1.滤池工作时间t ':

t '=24-24t/T=24-0.2 ×24/48=23.9h (式中未考虑排放初滤水);

2. 滤池总面积F :

F=Q /v t =75260/(9.5×23.9)=331.5m 2;

3. 滤池分格

选双格V 型滤池,池底板用混凝土,单格宽B=3.5m ,长L=12m ,面积42m 2,共四座,每座面积284f m =,总面积336m 2;

4. 校核强制滤速'v :

'v =N v /(N-1)=4×9.5/3=12.67m/h ﹤20m/h 的要求;

5. 滤池的高度确定

滤池超高H 6=0.4m ,滤层上水深5 1.5H m =,滤层厚度H 4=1.2m 。承托层厚取H 3=0.05m 。滤板采用H 2=0.1m 厚预制板。滤板下布水区高度取H 1=0.75m ;

滤池的总高度为:

H=H 1+H 2+H 3+H 4+H 5+H 6=0.75+0.1+0.05+1.2+1.5+0.4=4.0m ;

图4-1 滤池高度计算简图

6. 水封井的设计

滤池采用单层加厚均粒滤料,粒径0.95-1.35mm ,不均匀系数1.2-1.6。均粒滤料清洁滤料层的水头损失按下式计算:

()2

20030011180m H l v g m d ν?-???=?? ???清 式中: H ?-清水流通过清洁滤料层的水头损失,cm;

2,/,cm s ν-水的运动黏度20℃时为0.01012/;cm s

22,981/g cm s -重力加速度;

m 0-滤层空隙率,取0.5;

0,,0.1.d cm cm -与滤料体积相同的球体直径根据厂家提供的数据

l 0-滤层厚度,cm ,l 0=120cm ;

v-虑速,cm/s ,v=9.5m/h=0.26cm/s ;

?-滤料颗粒球度系数,天然砂粒为0.75-0.8,取0.8.

所以:

()cm H 07.1826.01201.08.015.05.0-19810101.01802

32清≈?????? ??????

=? 根据经验,滤速为9-10m/h 时,清洁滤料层水头损失一般为30-40cm ,计算值比经验值低,取经验值的底限30cm 为清洁滤料层的过滤水头损失。正常过滤时,

华中科技大学(水质工程学一)课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为***万m3/d,分两期建设,近期工程供水能力***万m3/d,,远期工程供水能力为***万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 (1) 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学2课程设计任务书

给排水14级《水质工程学2》课程设计任务书 一、课程设计的内容和深度 本课程设计的目的在于加深理解所学专业知识,培养运用所学专业知识的能力,在设 计、计算、绘图等方面得到锻炼。 针对一座城市污水二级处理厂,要求对主要污水处理构筑物的工艺尺寸进行设计计算, 确定污水厂的平面布置,最后完成设计计算说明书和设计图纸(污水处理厂平面布置图和污 水处理厂流程图)。设计深度为初步设计深度。 二、课程设计任务书 1、设计题目 某城市污水处理厂工艺设计 2、基本资料 (1)污水水量及水质 污水处理水量:30000+50000×% (m3/d)(横线上的数为学号末尾两位数) 污水水质:COD Cr =350+200×%(mg/L),BOD5 =220mg/L,SS =250mg/L,氨氮=15mg/L。(横线上的数为学号末尾两位数) (2)处理要求 城市污水经处理后应达到《污水综合排放标准》(GB8978-1996)一级标准,即:COD Cr ≤ 60mg/L,BOD5 ≤ 20mg/L,SS ≤ 20mg/L,氨氮≤ 5mg/L。 (3)处理工艺流程 污水拟采用传统活性污泥法工艺处理。 (4)气象及水文资料 风向:多年主导风向为东南风。 水文:降水量多年平均为每年728mm;蒸发量多年平均为每年1200mm;地下水位,地面下6~7m。 年平均水温:20℃。 (5)厂区地形 污水厂选址区域海拔标高在19~21m左右,平均地面标高为20m。平均地面坡度为0.3 ‰~0.5‰,地势为西北高,东南低。厂区征地面积为东西长224m,南北长276m。 3、设计内容

(1)对工艺构筑物选型作说明;(2)主要处理设施的工艺计算;(3)污水处理厂的平面布置;(4)污水处理厂工艺流程图的绘制。 4、设计成果 (1)设计计算说明书一份; (2)设计图纸:污水处理厂平面布置图和工艺流程图各一张。 三、污水处理工程设计指导书 1、总体要求 (1)在设计过程中,要发挥独立思考独立工作的能力。 (2)本课程设计重点训练的是污水处理主要构筑物的设计计算和总体布置。 (3)课程设计不要求对设计方案作比较,处理构筑物选型说明按其技术特征加以说明。(4)设计计算说明书应内容完整,简明扼要,文字通顺;设计图纸应按标准绘制、内容完整,主次分明。 2、设计要点 (1)污水处理设施设计的一般规定 ①该市排水系统为合流制,污水流量总变化系数取1.2 ②处理构筑物流量:曝气池之前,各种构筑物按最大日最大时流量设计;曝气池之后,构筑物按平均日平均时流量设计。 ③处理设备设计流量:各种设备选型计算时,按最大日最大时流量设计。 ④管渠设计流量:按最大日、最大时流量设计。 ⑤各处理构筑物不应少于2组。 (2)平面布置 ①功能明确、布置紧凑。布置时力求减少占地面积,减少连接管的长度,便于操作管理。 ②顺流排列,流程简便。指处理构筑物应尽量按流程方向布置,避免与进(出)水方向相反的安排;个构筑物之间的连接管应以最短线路布置,尽量避免不必要的转弯和用水泵提升。 ③充分利用地形,平衡土方,降低工程费用。 ④构筑物布置应注意风向和朝向。将排放异味和有害气体的构筑物布置在居住与办公场所的下风向;为保证良好的自然通风条件,构筑物布置应考虑主导风向。 ⑤污水厂厂区应适当规划设计机房、办公室、机修、仓库等辅助建筑。 3、对设计文件的内容和质量的要求 (1)设计计算说明书

水质工程学课程设计说明书(doc 32页)

水质工程学(一)课程设计说明书 1 设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 1.1 设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 城市用水量资料 1.2.2 原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2 水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3 水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程学下册试题

作业一 BOD:由于微生物的生活活动,将有机物氧化成无机物所消耗的溶解氧量,称为生化需氧量。 COD:在酸性条件下,将有机物氧化成CO2与水所消耗氧化剂中的氧量,称为化学需氧量。 TOC:在900℃高温下,以铂作催化剂,使水样氧化燃烧,测定气体中CO2的增量,从而确定水样中总的含碳量,表示水样中有机物总量的综合指标。 TOD:有机物主要组成元素被氧化后,分别产生二氧化碳,水,二氧化氮和二氧化硫所消耗的氧量称总需氧量TOD。 水体富营养化:水体富营养化是指由于大量的氮、磷、钾等元素排入到地表水体,使藻类等水生生物大量地生长繁殖,破坏水生生态平衡的过程。 水体自净:污水排入水体后,一方面对水体产生污染,另一方面水体本身有一定的净化污水的能力,即经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程 污泥沉降比:污泥沉降比(SV)是指混合液在量筒内静置沉淀30分钟沉淀污泥与所取混合液之体积比为污泥沉降比(%)。 MLSS:混合液悬浮固体浓度表示的是在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。

MLVSS:混合液挥发性悬浮固体浓度表示的是混合液中活性污泥有机性固体物资部分浓度。 氧转移效率 (EA):是指通过鼓风曝气系统转移到混合液中的氧量占总供氧量的百分比(%) BOD 污泥负荷率(标明公式,单位):表示曝气池内单位重量(kg)的活性污泥,在单位时间(d)内接受的有机物量(kgBOD)。P14 污泥容积指数(SVI):指从曝气池出口处取出的混合液经过30分钟静沉后,每克干污泥形成的沉淀污泥所占有的容积。SVI=SV(ml/L)/MLSS(g/L) 活性污泥的比耗氧速率:是指单位质量的活性污泥在单位时间内的耗氧量。 泥龄:是指在曝气池内,微生物从其生长到排出的平均停留时间。 污泥回流比:是指从二沉池返回到曝气池的回流污泥量Q R与污水流量Q的比值。 BOD—容积负荷率(标明单位):表示为单位曝气池容积(m3)在单位时间(d)内接受的有机物的量。P14 1、什么是活性污泥法?活性污泥法正常运行必须具备哪些条件?答:往生活污水中通入空气进行曝气,持续一段时间以后,污水中即生成一种褐色絮凝体,该絮凝体主要由繁殖的大量微生物所构成,可氧化分解污水中的有机物,并易于沉淀分离,从而得到澄清的处理出水,这种絮凝体就是活性污泥。具备的条件:P2

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

水质工程学课程设计实例

目录 设计任务书 (2) 设计计算说明书 (4) 第一章污水处理厂设计 第一节污水厂选址 (4) 第二节工艺流程 (4) 第二章处理构筑物工艺设计 第一节设计参数 (6) 第二节泵前中格栅设计 (6) 第三节污水提升泵房设计计 (8) 第四节泵后细格栅设计计算 (9) 第五节沉砂池设计计算 (10) 第六节辐流式初沉池设计计算 (12) 反应池设计计算 (14) 第七节O A/ 1 第八节向心辐流式二沉池设计计算 (16) 第九节剩余污泥泵房 (17) 第十节浓缩池 (18) 第十一节贮泥池 (20) 第十二节脱水机房 (21) 第三章处理厂设计 第一节污水处理厂的平面布置 (23) 第二节污水处理厂高程布置 (23) 参考文献 (26)

《水质工程学》课程设计任务书 一、设计题目 某计城市日处理污水量15万m 3污水处理工程设计 二、基本资料 1、污水水量、水质 (1)设计规模 设计日平均污水流量Q=150000m 3/d ; 设计最大小时流量Q max =8125m 3/h (2)进水水质 COD Cr =400mg/L ,BOD 5 =180mg/L ,SS = 300mg/L ,NH 3-N = 35mg/L 2、污水处理要求 污水经过二级处理后应符合《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B 标准 ,即: COD Cr ≤ 60mg/L ,BOD 5≤20mg/L ,SS≤20mg/L ,NH 3-N≤8mg/L 。 3、处理工艺流程 污水拟采用活性污泥法工艺处理,具体流程如下: 4、资料 市区全年主导风向为东北风,频率为18%,年平均风速2.55米/秒。污水处理厂场地标 高384.5~383.5米之间, 5、污水排水接纳河流资料: 该污水厂的出水直接排入厂区外部的河流,其最高洪水位(50年一遇)为380.0m ,常水位为378.0m ,枯水位为375.0m 。 三、设计任务 1、对处理构筑物选型做说明; 2、对主要处理设施(格栅、沉砂池、初沉池、生化池、污泥浓缩池)进行工艺计算(附必要的计算草图); 3、按扩初标准,画出污水处理厂平面布置图,内容包括表示出处理厂的范围,全部处理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性; 4、按扩初标准,画出污水处理厂工艺流程高程布置图,表示出原污水、各处理构筑物的高程关系、水位高度以及处理出水的出厂方式; 5、编写设计说明书、计算书。 四、设计成果 1、设计计算说明书一份; 2、设计图纸:污水处理厂平面布置图和污水处理厂工艺流程高程布置图各一张。 五、参考资料 1、《给水排水设计手册》第一、五、十、十一册 2、《环境工程设计手册》(水污染卷) 原污水 污泥浓缩池 污泥脱水机房 出水 格栅 污水泵房 沉砂池 二沉池 泥饼外运 曝气池 回流污泥

武汉理工大学水质工程学I课设

1.设计任务及资料 1.1设计原始资料 长垣镇最高日设计用水量为近期5万吨/天,远期10万吨/天,规划建造水厂一座。已知城区地形平坦,地面标高为21.00米;水源采用长江水;取水构筑物远离水厂,布置在厂外。管网最小服务水头为28.00米;二级泵站采用二级供水到管网系统,其中最大一级供水量占全天用水量的百分数为5.00%,时间为早上6:00~晚上10:00,此时管网系统及水厂到管网的输水管的总水头损失为11.00米;另一级供水时管网系统及水厂到管网的输水管的总水头损失为5.00米。常年主导风向:冬季为东北风、夏季为东南风。水厂大门朝向为北偏西15°。 1.2设计任务 1、设计计算说明书1本。 内容包括任务书、目录、正文、参考资料、成绩评定表等,按要求书写或打印并装订成册。 其中正文内容主要包括:工程项目和设计要求概述,方案比较情况,各构筑物及建筑物的形式、设计计算过程、尺寸和结构形式、各构筑物设计计算草图、人员编制、水厂平面高程设计计算和布置情况以及设计中尚存在的问题等。 2、手工绘制自来水厂平面高程布置图1张(1号铅笔图,图框和图签按标准绘制)。要求:比例选择恰当,图纸布局合理,制图规范、内容完整、线条分明,字体采用仿宋字书写。

2. 设计规模及工艺选择 2.1设计规模 根据所提供的已知资料:最高日用水量为近期5万吨/天,远期10万吨/天。 d Q=Q α α为自用水系数,取决于处理工艺、构筑物类型、原水水质及水厂是否设有 回收水设施等因素,一般在1.05-1.10之间,取α =1.07,则水厂生产水量 近期:Q 0=1.07Q d =1.07×50000=53500m 3/d=2229.2m 3/h 远期:Q 0=1.07Q d =1.07×100000=107000 m 3/d=4458.3m 3/h 水处理构筑物的设计,应按原水水质最不利情况时所需供水量进行校核。 2.2水厂工艺流程选择 2.2.1概述 给水处理的任务是通过必要的处理方法去除水中杂质,使之符合生活饮用或工业使用要求的水质。给水处理工艺方法和工艺的选择,应根据原水水质及设计生产生产能力等选择,由于水源不同,水质各异,生活饮用水处理系统的组成和工艺流程也多种多样。 2.2.2水处理流程选择 水处理方法应根据水源水质的要求确定。所给的设计资料中指出,水源采用 长江水,其水质应该较好,采用一般传统的水处理工艺,即:混合、絮凝、沉淀、过滤、消毒。混凝剂采用硫酸铝,设溶解池和溶液池,计量泵投加药剂,管式静态混合器混合。絮凝池采用水平轴机械絮凝池。沉淀池采用平流沉淀池。滤池采用普通快滤池。

水质工程学下复习提纲

一、名词解释4×5分 1、MLSS(混合液悬浮固体浓度):表示的是在曝气池单位容积混合液内所含有的活性污泥固体物的总质量。11页 MLSS=Ma+ Me+ Mi+ Mii ①具有代谢功能活性的微生物群体(Ma)(有活性的微生物) ②微生物内源代谢、自身氧化的残留物(Me)(微生物自身氧化残留物) ③由污水挟入的并被微生物所吸附的惰性有机物质(含难为细菌降解的惰性 有机物)(Mi)(吸附在活性污泥上未被微生物所降解的有机物) ④由污水挟入的无机物质(Mii)(无机悬浮物固体) 2、MLVSS(混合液挥发性悬浮固体浓度):、混合液中活性污泥有机性固体物质部分的浓度。MLVSS=Ma+ Me+ Mi 11页 MLVSS与MLSS 的比值用f表示,即f=MLVSS/MLSS;f 值一般取0.75左右。 3、SV(污泥沉降比又称30min沉降率):混合液在量筒内静置30min后形成沉淀污泥的容积占混合液溶剂的百分率,以“%”计。在一定条件下能够反映曝气池中的活性污泥量。12页 4、SVI污泥指数:是从曝气池出口处取出的混合液,经过30min静沉后,每克干污泥形成的沉淀污泥所占有的容积,以“mL”计。能够反映活性污泥的凝聚、沉降性能。12页 5、SRT污泥龄(生物固体平均停留时间):指在曝气池内,微生物从其生成到排出系统的平均停留时间,也就是曝气池内的微生物全部更新一次所需要的时间。从工程上来说,在稳定条件下,就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。14页 6、HRT(水力停留时间):指污水进入曝气池后,在曝气池的平均停留时间,也称曝气时间。 7、Lv(BOD容积负荷率):单位曝气池容积在单位时间内接受的有机物量。 P 14 8、Ls(BOD污泥负荷率):曝气池内单位重量的活性污泥,在单位时间内接受的有机物量。 P14

水质工程学课程设计

水质工程学课程设计

一.总论 1.1 设计任务及要求 净水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。 课程设计的内容是根据所给资料,设计一座城市净水厂,要求对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图和某个单项处理构筑物(絮凝沉淀池、澄清池或滤池)的工艺设计图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2 基本资料 1.2.1 水厂规模 该水厂总设计规模为5万m3/d,分两期建设,近期工程供水能力5万m3/d,,远期工程供水能力为10万m3/d。近期工程设计征地时考虑远期工程用地,预留出远期工程用地。 1.2.2 原水水质资料 水源为河流地面水,原水水质分析资料如下:

1.2.3 厂区地形 地形比例1:500,按平坦地形和平整后的设计地面高程32.00m设计,水源取水口位于水厂东北方向150m,水厂位于城市北面1km。 1.2.4 工程地质资料 表土砂质粘土细砂中砂粗砂粗砂砾石粘土砂岩石层 1m 1.5m 1 m 2 m 0.8m 1 m 2 m 土壤承载力:20 t/m2. (2)地震计算强度为186.2kPa。 (3)地震烈度为9度以下。 (4)地下水质对各类水泥均无侵蚀作用。 序号项目单位数量备注 1 历年最高水位m 34.38 黄海高程系统,下同 2 历年最低水位m 21.47 频率1% 3 历年平均水位m 24.64 4 历年最大流量m3/s 14600 5 历年最小流量m3/s 180 6 历年平均流量m3/s 1340 7 历年最大含砂量kg/m3 4.82 8 历年最大流速m/s 4.00 9 历年每日最大水位涨落m/d 5.69 10 历年三小时最大水位涨落m/3h 1.04 地下水位:在地面以下1.8m 1.2.6 气象资料 该市位于亚热带,气候温和,年平均气温15.90C,七月极端最高温度达390C,一月极端最低温度-15.30C,年平均降雨量954.1mm,年平均降雨日数117.6天,历年最大日量降雨量328.4mm。常年主导风向为东北偏北(NNE),静风频率为12%,年平均风速为3.4m/s。土壤冰冻深度:0.4m。

水质工程学课程设计

水质工程学(一)课程设计 说明书 学院:环境科学与工程学院系名:市政工程系专业:给水排水工程姓名: 学号: 班级:给排 1311 指导教师: 指导教师: 2015年12月25 日

目录 第一章设计基本资料和设计任务 0 1.1 设计基本资料........................................... 错误!未定义书签。 1。2设计任务?1 第二章水厂设计规模的确定?错误!未定义书签。 2.1 近期规模?错误!未定义书签。 2。2 水厂设计规模.......................................... 错误!未定义书签。第三章水厂工艺方案的确定. (3) 3。1初步选定两套方案....................................... 错误!未定义书签。 3.2方案构筑物特性比较?错误!未定义书签。 3。3方案确立?错误!未定义书签。 第四章水厂各个构筑物的设计计算?错误!未定义书签。 4。1 一级泵站.............................................. 错误!未定义书签。 4。2 混凝剂的选择和投加?错误!未定义书签。 4。3 管式静态混合器........................................ 错误!未定义书签。 4.4 水力循环澄清池....................................... 错误!未定义书签。 4。5 无阀滤池............................................. 错误!未定义书签。 4.6消毒.............................................. 错误!未定义书签。 4.7 清水池?错误!未定义书签。 4。8二级泵站............................................. 错误!未定义书签。 4.9 附属构筑物?错误!未定义书签。 第五章水厂平面和高程布置?错误!未定义书签。 5.1 平面布置.............................................. 错误!未定义书签。 5.2 高程布置?错误!未定义书签。 参考文献?错误!未定义书签。

水质工程学课程设计概述

水质工程学课程设 计概述

水质工程学课程设计 学生姓名: 学号: 班级: 指导老师: 20xx年6月

目录 1 任务指导 0 1.1 课程设计教学目的及基本要求 0 1.2 设计内容 0 1.3 设计资料 (1) 1.3.1 水源和水质 (1) 1.3.2 城市规划与供水规模 (1) 1.3.3 供水水质及水压 (1) 1.3.4 气象 (1) 2总体设计 (2) 2.1 净水工艺流程的确定 (2) 2.2 处理构筑物及设备型式选择 (2) 2.2.1 药剂溶解池 (2) 2.2.2 混合设备 (3) 2.2.3 絮凝池 (4) 2.2.4 沉淀池....................... 错误!未定义书签。 2.2.5滤池 (6) 2.2.6 消毒方法 (7) 3 混凝沉淀 (8) 3.1 混凝剂投配设备的设计 (8) 3.1.1 溶液池 (9) 3.1.2 溶解池 (10)

3.1.3 投药管 (11) 3.2 混合设备的设计 (11) 3.2.1设计流量 (12) 3.2.2设计流速 (12) 3.3.3 混合单元数 (12) 3.2.4混合时间 (12) 3.2.5水头损失 (12) 3.2.6 校核GT值 (12) 3.3 折板絮凝池的设计 (13) 3.3.1 设计水量 (13) 3.3.2 设计计算 (13) 3.3.3 折板絮凝池布置 (20) 4 斜管沉淀池设计计算 (20) 4.1 设计流量 (20) 4.2 平面尺寸计算 (21) 4.2.1 沉淀池清水区面积 (21) 4.2.2 沉淀池长度及宽度 (21) 4.2.3 沉淀池总高度 (21) 4.3 进出水系统 (22) 4.3.1 沉淀池进水设计 (22) 4.3.2 沉淀池出水设计 (23) 4.3.3 沉淀池斜管选择 (24)

水质工程学下册废水处理工程_试题库

《废水处理工程》试题库 一、名词解释 1、污水 指经过使用,其物理性质和化学成分发生变化的水,也包括降水。 2、生活污水 指人们在日常生活中使用过,并为生活废料所污染的水。 3、工业废水 指在工矿企业生产过程中所产生和排放的水。 5、生物化学需氧量(BOD) 指在微生物的作用下,将有机污染物稳定化所消耗的氧量。 6、化学需氧量(COD) 指用强氧化剂-重铬酸钾,在酸性条件下将有机污染物稳定化消耗的重铬酸钾量所折算成的氧量。 7、总需氧量(TOD) 指有机污染物完全被氧化时所需要的氧量。 8、总有机碳(TOC) 指污水中有机污染物的总含碳量。 9、水体自净作用 水体在其环境容量围,经过物理、化学和生物作用,使排入的污染物质的浓度,随时间的推移在向下游流动的过程中自然降低。 13、污水的物理处理法 指利用物理作用,分离污水中主要呈悬浮状态的污染物质,在处理过程中不改变其化学性质。 14、污水的化学处理法 指利用化学反应作用来分离、回收污水中的污染物,或使其转化为无害的物质。 15、污水的生物处理法 指利用微生物新代作用,使污水中呈溶解或胶体状态的有机污染物被降解并转化为无害的物质,使污水得以净化的法。 16、沉淀 水中的可沉物质在重力作用下下沉,从而与水分离的一种过程。 17、活性污泥法 以污水中的有机污染物为基质,在溶解氧存在的条件下,通过微生物群的连续培养,经凝聚、吸附、氧化分解,沉淀等过程去除有机物的一种法。 22、污泥龄 指曝气池中活性污泥总量与每日排放的剩余污泥量之比值。 23、BOD-污泥负荷率N S 指单位重量的污泥在单位时间所能代的有机物的量。 24、污泥膨胀现象 当污泥变质时,污泥不易沉淀,SVI值增高,污泥的结构松散和体积膨胀,含水率上升,澄清液变少,颜色也有变异,即为污泥膨胀现象。 25、容积负荷率Nv 指单位容积曝气区在单位时间所能承受的BOD数量。 26、表面负荷 指单位时间通过沉淀池单位表面积的流量。

水质工程学课程设计概述

水质工程学课程设计 学生姓名: 学号: 班级: 指导老师:

20xx年6月

目录 1 任务指导 (1) 1.1 课程设计教学目的及差不多要求 (1) 1.2 设计内容 (1) 1.3 设计资料 (2) 1.3.1 水源和水质 (2) 1.3.2 都市规划与供水规模 (2) 1.3.3 供水水质及水压 (2) 1.3.4 气象 (2) 2总体设计 (3) 2.1 净水工艺流程的确定 (3) 2.2 处理构筑物及设备型式选择 (3) 2.2.1 药剂溶解池 (3) 2.2.2 混合设备 (4) 2.2.3 絮凝池 (5) 2.2.4 沉淀池 (6) 2.2.5滤池 (7) 2.2.6 消毒方法 (9) 3 混凝沉淀 (10)

3.1 混凝剂投配设备的设计 (10) 3.1.1 溶液池 (11) 3.1.2 溶解池 (12) 3.1.3 投药管 (13) 3.2 混合设备的设计 (13) 3.2.1设计流量 (14) 3.2.2设计流速 (14) 3.3.3 混合单元数 (14) 3.2.4混合时刻 (14) 3.2.5水头损失 (15) 3.2.6 校核GT值 (15) 3.3 折板絮凝池的设计 (15) 3.3.1 设计水量 (15) 3.3.2 设计计算 (15) 3.3.3 折板絮凝池布置 (22) 4 斜管沉淀池设计计算 (22) 4.1 设计流量 (23) 4.2 平面尺寸计算 (23) 4.2.1 沉淀池清水区面积 (23)

4.2.2 沉淀池长度及宽度 (23) 4.2.3 沉淀池总高度 (24) 4.3 进出水系统 (24) 4.3.1 沉淀池进水设计 (24) 4.3.2 沉淀池出水设计 (25) 4.3.3 沉淀池斜管选择 (26) 4.3.4 沉淀池排泥系统设计 (26) 4.3.5 斜管沉淀池布置 (26) 4.4.6 核算 (27) 5 V型滤池 (28) 5.1 平面尺寸计算 (28) 5.2 进水系统 (30) 5.2.1 进水总渠 (30) 5.2.2 气动隔膜阀口的阀口面积 (30) 5.2.3进水堰堰上水头 (31) 5.2.4 V型进水槽 (31) 5.2.5 V型槽扫洗小孔 (32) 5.3 反冲洗系统 (33) 5.3.1 气水分配渠 (33)

水质工程学课程知识要点

《水质工程学》课程知识要点 1.设计供水量应根据下列各种用水确定:综合生活用水、工业企业生产用水和工作人员生活用水、消防用水、浇洒道路和绿地用水、未预见用水量及管网漏失水量。 2、通向加氯(氨)间的给水管道,应保证不间断供水,并尽量保持管道内水压的稳定。 3.药剂仓库的固定储备量,应按当地供应、运输等条件确定,一般可按最大投药量的7-15天用量计算,其周转储备量应根据当地具体条件确定。 4、水和氯应充分混合。其接触时间不应小于30min。 5.设计沉淀池和澄清池时应考虑均匀的配水和集水。 6、地下水除铁曝气氧化法的工艺:原水曝气-氧化-过滤。 7.设计隔板絮凝池时,絮凝池廊道的流速,应按由大到小的渐变流速进行设计,起端流速一般宜为0.5-0.6 m/s,末端流速一般宜为0.2-0.3m/s。 8、三层滤料滤池宜采用中阻力配水系统。 9.异向流斜管沉淀池,斜管沉淀池的清水区保护高度一般不宜小于1.0 m;底部配水区高度不宜小1.5m。 10、平流沉淀池的每格宽度(或导流墙间距),一般宜为3-8m,最大不超过15m,长度与宽度之比不得小于4;长度与深度之比不得小于10。 11.快滤池宜采用大阻力或中阻力配水系统,大阻力配水系统孔眼总面积与滤池面积之比为0.20%-0.28%。 12、凝聚剂的投配方式为湿投时,凝聚剂的溶解应按用药量大小、凝聚剂性质,选用水力、机械或压缩空气等搅拌方式。 13.地下水除铁一般采用接触氧化法或曝气氧化法。当受到硅酸盐影响时,应采用接触氧化法。 14、工业企业生产用水系统的选择,应从全局出发,考虑水资源的节约利用和水体的保护,并应采用复用或循环系统。 15、反渗透法:在膜的原水一侧施加比溶液渗透压高的外界压力,原水透过半透膜时,只允许水透过,其他物质不能透过而被截留在膜表面的过程。 16、混凝剂:为使胶体失去稳定性和脱稳胶体相互聚集所投加的药剂。 17、饱和指数:用以定性地预测水中碳酸钙沉淀或溶解倾向性的指数,用水的实际PH值减去其在碳酸钙处于平衡条件下理论计算的PH值之差来表示。 18、径流系数:径流量与降雨量的比值称径流系数,其值常小于1。 19、机械搅拌澄清池:利用机械的提升和搅拌作用,促使泥渣循环,并使原水中杂质颗粒与已形成的泥渣接触絮凝和分离沉淀的构筑物。 20、硝化:在消化细菌的作用下,氨态氮进行分解氧化,就此分两个阶段进行,首先在亚消化菌的作用下,使氨转化为亚硝酸氮,然后亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。 21、虹吸滤池:一种以虹吸管代替进水和排水阀门的快滤池形式。滤池各格出水互相连通,反冲洗水由未进行冲洗的其余滤格的滤后水供给。过滤方式为等滤速、变水位运行。 22、如何衡量平流式沉淀的水力条件?在工程实践中为获得较好的水力条件,采用什么措施最为有效? 以雷诺数Re和弗劳德数Fr来衡量平流式沉淀池的水力条件。通常应降低Re、提高Fr。工程实践中为获得较好的水力条件,有效的措施是减少水力半径。池中采用纵向分格及斜板、斜管沉淀池。 23、什么叫“负水头”?它对过滤和冲洗有和何影响?如何避免滤层中“负水头”产生? 负水头是指滤层截留了大量杂质以致砂而以下某一深度处的水头损失超过该处水深。负水头会导致溶解于水中的气体释放出来而形成气囊。气囊对过滤有破坏作用,一是减少了过滤面积;二是气囊的上升可能将部分细滤料和轻质滤料带出,破坏滤层结构。避免出现负水头的方法可以采用增加砂而上的水深,或令滤池出口位置等于或高于滤层表而。 24、影响混凝效果的主要因素有哪些? (1)混凝剂的种类和投量(2)水力条件和作用时间(3)水温影响(4)水的PH值和碱度影响(5)水中悬浮物浓度影响(6)水中杂质影响 25、斜管沉淀池的理论根据是什么?为什么斜管倾角通常采用60°? 斜管沉淀池的理论依据是采用斜管沉淀池既可以增加沉淀而积,又可以利用斜管解决排泥问题。斜管倾角愈小,则沉淀面积愈大,沉淀效率愈高,但对排泥不利,实践证明,倾角为60°最好。 26、进水管U形存水弯有何作用? 进水管设置U形存水弯的作用,是防止滤池冲洗时,空气通过进水管进入虹吸管从而破坏虹吸。当滤池反冲洗时,如果进水管停止进水,U形存水弯即相当于一根测压管,存水弯中的水位将在虹吸管与进水管连接三通的标高以下。这说明此处有强烈的抽吸作用。如果不设U形存水弯,无论进水管停止进水或继续进水,都会将空气吸入虹吸管。 27、什么是统一给水、分质给水和分压给水,哪种系统目前用得最多? 统一给水系统,即用同一系统供应生活、生产和消防等用水。分质给水,可以是同一水源,经过不同的水处理过程和管网,将不同水质的水供给各类用户,也可以是不同水源,例如地表水经简单沉淀。分压给水,因水压要求不同而分系统给水,有同一泵站内的不同水泵分别供水到水压要求高的高压水网和水压要求低的低压管网,以节约能量消耗。目前应用最多的是统一给水系统。

水质工程学教学大纲

水质工程学教学大纲 课程代码:033105 英文名称:Water Quality Engineering 课程类别:专业必修课 总学时(周数):84 授课学时:84 实践学时(周数): 学分:5.0 授课对象:给水排水工程 开课单位:环境工程学院 1、课程目的 《水质工程学》是给水排水工程专业的主干专业课之一。通过本课程的学习,使学生全面系统地了解水和废水的水质特征与水质指标、水体污染与自净的基本概念与理论,较扎实地掌握水处理的基本理论与方法,基本掌握主要水处理工艺,了解水处理工艺技术的最新发展,为将来从事本专业的工程设计、科研及水处理设施的运行管理工作奠定必要的理论基础。 2、基本要求 (1) 了解水的性质、饮用水水质与水质标准及其与人体健康的关系等; (2) 了解水的污染指标、污水特性、污水排放标准与法规、污水处理现状与发展等; (3) 掌握水体(河流、湖泊。海洋、地下水等)污染的规律和危害、水体自净过程,水体质量评价及水污染防治措施等; (4) 了解反应器的基本概念,掌握水的物理化学处理法、生物处理法以及污泥处理与处置的基本概念、基本理论与基本方法; (5) 基本掌握城市水质工程和工业企业水质处理工艺技术、方法以及新工艺与新技术的应用条件,具有水质工程的设计、运行管理与科学研究的基本能力; (6) 熟悉城市和工业企业水质工程设计中的方案选择、设计计算的基本原理和基本方法,了解水质工程设计特点、原则和设计标准; (7) 熟悉污泥处理与处置设施的设计原理与计算方法; (8) 熟悉典型的特种水处理工艺及单体构筑物的设计计算; (9) 了解主要水处理设备的工作原理和设计选型。 3、相关课程 在学习本课程前,要求学生已学完以下的基础课与学科基础课《高等数学》、《画法几何与建筑制图A1》、《无机及分析化学》、《有机化学》、《物理化学》、《水力学》、《水文学》、《水

水质工程学考试试卷(含答案1)

水质工程学(上)考试试卷一 班级:学号:姓名: 一、选择题:(2’×10) 1 给水工程的规划应在服从城市总体规划的前提下,近远期结合,以近期为主进行设计。近期设计年限宜采用( )年,远期规划年限宜采用( )年。( A) A.5~10;10~20 B.5~10;15~20 C.5~10;10~15 D.10~20;20~30 2 设计供水量应根据下列各种用水确定( C )。 (1)综合生活用水 (2)工业企业生产用水和工作人员生活用水 (3)消防用水 (4)浇洒道路和绿地用水 (5)未预见用水量及管网漏失水量。 (6)公共建筑用水 A.全部 B.(1)、(2)、(4) C.(1)、(2)、(3)、(4)、(5) D.(1)、(2)、(3)、(4)、(5)、(6) 3 药剂仓库的固定储备量,应按当地供应、运输等条件确定,一般可按最大投药量的( B )天用量计算。其周转储备量应根据当地具体条件确定。 A.5~10 B.7~15 C.15~30 D.10~20 4 设计沉淀池和澄清池时应考虑( A )的配水和集水。 A.均匀 B.对称 C.慢速 D.平均 5 设计隔板絮凝池时,絮凝池廊道的流速,应按由大到小的渐变流速进行设计,起端流速一般宜为( B )m/s,末端流速一般宜为0.2~0.3m/s。 A.0.2~0.3 B.0.5~0.6 C.0.6~0.8 D.0.8~1.0 6 异向流斜管沉淀池,斜管沉淀池的清水区保护高度一般不宜小于( A)m;底部配水区高度不宜小于1.5m。 A.1.0 B.1.2 C.1.5 D.0.8 7 快滤池宜采用大阻力或中阻力配水系统。大阻力配水系统孔眼总面积与滤池面积之比为( C )。 A.1.0%~1.5% B.1.5%~2.0% C.0.20%~0.28% D.0.6%~0.8% 8 地下水除铁一般采用接触氧化法或曝气氧化法。当受到硅酸盐影响时,应采用( A )氧化法。 A.接触 B.曝气 C.自然 D.药剂 9 当采用氯胺消毒时,氯和氨的投加比例应通过( C )确定,一般可采用重量比为3:1~6:1。 A.计算 B.经济比较 C.试验 D.经验 10 气浮池溶气罐的溶气压力一般可采用0.2~0.4MPa;( A )一般可采用5%~10%。 A.回流比 B.压力比 C.气水比 D.进气比 二、名词解释:(4’×5) 1、澄清池——主要依靠活性泥渣层达到澄清目的。当脱稳杂质随水流与泥渣层接触时,便被泥渣层阻留下来,使水获得澄清。 2、折点加氯——从折点加氯的曲线看,到达峰点H时,余氯最高,但这是化合性余氯而非

(完整版)武汉理工大学水质工程学二毕业课程设计

新丰市污水处理厂初步设计 摘要 众所周知,中国的国际地位不断提高,对世界的影响力逐渐扩大,所以我们必须提高环保意识,改善中国现有污浊的环境。 根据城市所处的地理位置和污水厂的规模,并结合考虑需脱氮除磷的要求,城市污水处理厂设计采用传统Sequencing Batch Reactor工艺。该工艺污水处理流程为:中格栅→提升泵房→细格栅→沉砂池→SBR反应池→消毒池→出水排放。污泥处理流程为:污泥→集泥井→污泥浓缩池→贮泥池→污泥脱水机房→泥饼外运。通过此工艺的处理,出水水质设计中对整个水处理流程的各主体构筑物如格栅、平流沉砂池、SBR反应池、接触池等进行了系统、详细的设计计算和说明。理论上给出了这个流程中BOD、COD、SS的去除率及脱氮除磷的效率。

1 设计说明书 1.1 工程概况 1.1.1设计依据 1.收纳污水厂出水的河流:Ш类水体,从城市南边西向东流过,河流保证率95%的流量为3m3s,河道最高水位151.03m(黄海高程系,下同) 2.污水厂厂址位于城东河流北岸300m处,地形平坦,地面标高为

153.12m,污水厂大门朝北。 3.城市污水干管终点水面标高为150.09m,处理厂污水纳入超越管渠,经3.8km的渠道排入水体,渠道总水头损失为2m。 4厂区地质良好,地下水位标高为146.91m,夏季主导风向为东北风。 1.1.2设计规模 新星市近期(2020年)规划人口为10万人,平均日污水量为25000m3d,远期(2030年)规划人口为15万人,平均日污水量为35000m3d,总变化 系数K z =1.43,Q min =0.5Q max 。 1.1.3设计水质 BOD 5 =200mgL,SS=220mgL,夏季水温25℃,冬季水温15℃,平均水温20℃。出水水质达到《城镇污水处理厂污染物排放标准》一级B排放标准。 1.2 污水处理厂工业设计 1.2.1工业流程选择与布置 城市污水处理厂的方案,既要考虑有效去除BOD 5 又要适当去除N,P 故可采用SBR或氧化沟法,或AAO法,以及一体化反应池即三沟式氧化沟得改良设计。 本设计采用传统SBR法为核心工艺: 工作流程:见下图 工作原理:、 SBR是通过其主要反应器---曝气池的运行操作而实现的。曝气池的运行操作,是有流入,反应,沉淀,排放,待机等5个工序所组成。这五个工序都在曝气池这一个反应器内进行实施。 工作特点:

相关主题
文本预览
相关文档 最新文档