当前位置:文档之家› pH传感器调理电路

pH传感器调理电路

pH传感器调理电路
pH传感器调理电路

目录

目录.............................................................................................................................................. I

第1章绪论 (1)

1.1 课题背景与意义 (1)

1.2 设计目的 (1)

1.3 设计要求 (1)

第2章 pH值信号调理电路总体设计 (2)

2.1pH计 (2)

2.2测量原理 (2)

2.3pH值传感器信号调理电路总体设计 (3)

2.4可靠性和抗干扰设计 (3)

2.4.1可靠性 (3)

2.4.2抗干扰技术 (4)

第3章器件选型 (6)

3.1pH复合电极 (6)

3.2pH信号调理电路 (6)

3.2.1电压跟随器 (8)

3.2.2减法器 (9)

3.3温度采集电路 (9)

3.4模拟开关 (10)

3.5器件选型表 (11)

第4章仿真与PCB电路设计 (12)

4.1 仿真原理图 (12)

4.2PCB图 (12)

4.3PCB图3D效果图 (13)

第5章设计心得和体会 (15)

参考文献 (16)

第1章绪论

1.1 课题背景与意义

pH值的测控广泛应用于食品、制药、化工、表面处理、水处理等领域,它以实时的数据为生产控制带来了极大的方便,解决了化验室跟踪分析时数据严重滞后、不能完全代表装置生产状况的问题。在化学分析和化工过程中,溶液的pH值是一个基本参数。为了实时的测量溶液的pH值,经常会用到pH计(即酸度计)。pH计分为两部分:pH复合电极和变送电路。pH复合电极是传感器,用于拾取溶液的pH值,把pH值转换成与之成正比的微弱电信号;变送电路的作用是把微弱电信号进行放大,并转换成标准的电信号,如电压信号,电流信号或频率信号等。

1.2 设计目的

本次课设主体任务是电厂锅炉给水pH值检测系统设计,分三个阶段进行,此阶段是第一阶段:仪器仪表电子工艺课程设计。此阶段的任务是pH值传感器信号调理电路设计与仿真。设计目的有:了解常用电子元器件基本知识,如电阻、电容、电感,二、三极管,集成电路,包括外观、极性、测试。了解印刷电路板的设计和制作过程,PCB电路设计的基本过程,PCB制造工艺基本过程。掌握电子元器件选型的基本原理和方法,如类型、参数、功率、性价比等方面。了解电路焊接基本知识和基本焊接的方法和技巧、注意事项、助焊、阻焊。了解印制电路板(PCB)设计加工的基本过程及相关概念,单面板、多层板、元器件封装形式。了解信号调理电路的主要功能和存在的必要性,滤波、放大、转换、量程变换等。掌握常见传感器信号调理电路的设计方法,根据具体传感器特点,考虑上述电路实现。掌握相关EDA软件的使用和设计、仿真、调试能力:Protel、Multisim、Proteus。

1.3 设计要求

pH值传感器信号调理电路设计与仿真,要求根据所学的相关电子电路知识给出详细的元件选型表(费用计算),明确电路工作的基本原理和实现方法,对电路的可靠性设计和抗干扰性进行设计说明。在课设的时间里,要每天撰写读书笔记,记录读书内容和心得。提供一份系统硬件电路原理图和电路PCB图。完成上述任务后,要对原理图可行性仿真。

依据设计方案,器件选型、完成原理图设计。信号调理电路的仿真以验证电路可行性,仿真通过后进行PCB图设计。给出元器件封装形式表,要有PCB三维效果图。

第2章 pH 值信号调理电路总体设计

2.1 pH 计

pH=-lga H +,溶液的pH 值是溶液酸碱度的量度,所以用来测量溶液pH 值的pH 计又称酸度计。可以用电位式分析法,通过测量电极系统与被测溶液构成的测量电池(原电池)的电动势,获知被测溶液离子活度(或浓度)[1]。在电厂的水汽分析中,氢离子、钠离子含量的测定适合采用电位式分析法。

目前测量溶液pH 值所使用的指示电极多为玻璃膜电极,参比电极有甘汞电极、银-氯化银电极、固体参比电极等,也可用复合电极。

2.2 测量原理

pH 值传感器信号的测量主要由测量电池和高阻毫伏计两部分组成。测量电池是由指示电极、参比电极和被测溶液构成的原电池,参比电极的电极电位不随被测溶液浓度的变化而变化,指示电极对被测溶液中的待测离子很敏感,其电极电位是待测离子活度的函数,所以原电池的电动势与待测离子的活度有一一对应关系,可见,原电池的作用是把难以直接测量的化学量(离子活度)转换成容易测量的电学量(测量电池的电动势)[2]。高阻毫伏计是检测测量电池电动势的电子仪器,如果它兼有直接读出待测离子活度的功能,就称其为离子计(或离子活度计)。

测量电池的电动势与溶液pH 值的关系符合能斯特方程:

)7p (0--=H s E E

式中0E 为测量电池等电势点的电极电位值,该值不随温度变化。

本设计采用两点标定法,标定时需配置两种标准缓冲溶液pH1、pH2。利用pH1溶液进行标定时,仪器可测得电池电动势1E ,则

)7p (101--=H s E E (2-1)

利用pH2溶液进行标定时,仪器可测得电池电动势2E ,则

)7p (202--=H s E E (2-2)

由单片机MCS -51解式(2-1)、式 (2-2)方程组,得出0E 和s 值,贮存待用。

测量时将0E 和s 代入)7p (0--=H s E E 中测出E 值,求解出pH 值。因s 值随温度变化,每次测量都由温度传感器测出温度值,对s 值随时修正。

2.3pH值传感器信号调理电路总体设计

pH测试仪器是一种利用电化学原理设计制造的新型电位式测量仪器,在此设计了pH 信号输入电路和温度采集电路,其中电极选择为E201型pH复合电极,将水溶液中氢离子活度转化成电能,pH的电能信号采集电路用高阻运算放大电路,将高阻的pH的电能信号进行放大;而温度采集电路用pt100温度传感器的放大电路完成温度采集功能;传感器内还有一个接地电极(该电极为一金属棒),这样就构成了三电极测量系统。用4051对进来的温度和pH信号进行选择。

2.4可靠性和抗干扰设计

2.4.1可靠性

可靠性是描述系统长期稳定,正常运行能力的一个通用概念,也是产品质量在实践方面的特征表现。可靠性又是一个统计的概念,表明在某一时间内某个产品或系统稳定正常完成预定功能指标的概率。对于应用在工业现场的微机测控系统而言,可靠性水平是最重要的质量指标。系统的可靠度为:并联结构模型:并联形式的可靠性结构又叫冗余结构,是指一个系统有几个部件构成,只要其中至少有一个部件正常工作,系统就能正常工作。并联机构系统按其组成部件的数量又可分为双重,三重或者多重系统。一般情况下,可以采用双重化电路结构,列如双重放大器,双重逻辑门等,以改善电路的可靠性。应当注意,系统的可靠性结构模型与工作条件或故障模式有关。

微机测控系统可靠性设计任务与方法:影响微机系统可靠性的因素有内部与外部两方面,针对内外因素的特点,采取有效的软硬件措施,是可靠性设计的根本任务。导致系统运行不稳定的内部因素主要有以下三点:元器件本身的性能与可靠性。元器件失足成系统的基本单元,其特性好坏与稳定性直接影响整个系统系能与可靠性。系统结构设计。包括硬件电路结构设计和运行软件设计。安装与调试。元器件与整个系统的安装与调试,是保证系统运行和可靠性的重要措施。尽管元件选择严格,系统整体设计合理,但安装工艺粗糙,调试不严格,仍然达不到预期的效果。外因是指微机所处工作环境中的外部设备或空间条件导致系统运行的不可靠因素,主要包括以下几点:外部电气条件,如电源电压的稳定性,强电场与磁场等的影响。外部空间条件,如温度,湿度,空气清洁度等等。

外部机械条件,如震动,冲击等等。为了保证微机系统可靠性工作,必须创造一个良好的外部环境。如:采取屏蔽措施,远离产生强电磁场干扰设备;加强通风以降低环境温度;安装紧固以防止震动等等。元器件的选择是根本,合理安装调试是基础,系统设计是手段,外部环境是保证,这是可靠性设计遵循的基本准则,并贯穿于系统设计,安装,调试,运行的全过程。为了实现这些准则,必须采取相应的硬件或软件方面的措施,这是可靠性设

计的根本任务。

可靠性设计一般方法:元器件级可靠性措施、电磁兼容性设计、冗余技术。

元件,器件是微机系统的基本部件,元器件的性能与可靠性是整体性能与可靠性的基础。电子元器件故障率的降低主要由生产厂家来保证。作为设计与使用者主要是保证所选用的元器件的质量或可靠性指标符合设计要求。为此,必须采取下列措施:严格管理元器件的购置,储运,老化,筛选,测试。降额使用,所谓降额使用,就是在低于额定电压和电流条件下使用元器件,这将能提高原器件的可靠性。选用集成度高的元器件。系统选用集成度高的芯片可减少元器件的数量,使得印刷电路板布局简单,减少焊接和连线,因而大大减少故障率和受干扰的概率。部件及系统级的可靠性措施:部件及系统级的可靠性技术是指功能部件或整个系统在设计,制造、检验等环节所采取的可靠性措施。

电磁兼容性设计:是指计算机系统在电磁环境中的适应性,既能保持完成规定功能的能力。电磁兼容性设计的目的,是系统即不受外部电磁干扰的影响,也不对其他电子设备产生影响,又称为抗电磁干扰设计。微机测控系统常用的抗电磁干扰的硬件措施有滤波技术,去耦电路,屏蔽技术,接地技术等。

冗余技术:冗余技术也称容错技术或故障掩盖技术,它是通过增加完成统一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法。常用的软件措施主要有数字滤波,软件冗余,程序运行监视及故障自动恢复技术等等。信息冗余技术:对于微机测控系统而言,保护信号信息和重要数据是提高可靠性的重要方面。时间冗余技术:为了提高微机测控系统的可靠性,可采用重复执行某一操作或某一程序,并将执行结果与前一次的结果进行比较对照来确认系统工作是否正常。故障自动检测与诊断技术:对于复杂系统,为了保证能及时检验出有故障装置或单元模块,以便及时把有用单元替换上去,就需要对系统进行在线的测试与诊断。这样的目的有两个:一是为了判定动作或功能正常性;而是为了及时指出故障部位,缩短维修时间。软件可靠技术:微机运行软件是系统欲各项功能的具体反映,为了提高软件的可靠性,应尽量将软件规范化,标准化和模块化,尽可能把复杂的问题化成若干较为简单明确的小任务。失效保险技术:有些重要系统,一旦发生故障时希望整个系统应处于安全或保险状态。

2.4.2抗干扰技术

干扰:由于噪声在一定条件下影响和破坏设备或系统的正常工作,所以通常把具有危害性的噪声称为干扰。噪声:叠加于有用信号上,使原来有用信号发生畸变的变化电量叫电噪声,简称噪声。

干扰的分类:按噪声产生的原因分类:放电噪声,高频振荡噪声,浪涌噪声。按噪声传导模式分类:常模噪声、共模噪声。按噪声迫性及性质分类:持续正弦波、偶发脉冲电压波形、脉冲列。

抗干扰技术从基本原则出发,抗干扰措施是:抑制干扰源、切断干扰传播路径、提高敏感器件的抗干扰性能。从主要手段出发,常用的方法是:接地、屏蔽和滤波。

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。

切断干扰传播路径。按干扰的传播路径可分为传导干扰和辐射干扰两类。所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。

提高敏感器件的抗干扰性能。是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。

所谓接地,就是在两点间建立传导通路,以便将电子设备或元件连接到某些叫作“地”的参考点上。换一种说法就是,信号电流流回信号源的低阻抗路径。接地的主要目的如下,提供公共参考0电位,防止外界电磁干扰,保证安全工作。地线的阻抗是指交流状态下的接地线呈现的阻抗,并不是一般意义上的电阻。主要分为三种:工作地、保护地、屏蔽地。

采用屏蔽技术可以有效地抑制电磁辐射干扰,即用电导率良好的材料对电场屏蔽,用磁导率高的材料对磁场屏蔽。屏蔽有两个目的:一是限制内部辐射的电磁能量泄漏出该内部区域;二是防止外来的辐射干扰进入该内部区域。

滤波是抑制传导干扰的有效方法。EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。

第3章器件选型

3.1pH复合电极

pH测量中使用的电极又称为原电池。原电池是一个系统,它的作用是使化学能量转成为电能。此电池的电压被称为电动势。此电动势由二个半电池构成。其中一个半电池称作测量电池,它的电位与特定的离子活度有关;另一个半电池为参比半电池,通常称作参比电极,它一般是与测量溶液相通,并且与测量仪表相连。

此处,传感器中的电极选为E201型pH复合电极。由pH敏感玻璃电极和银-氯化银参比电极复合而成,它是pH计的测量元件,用以测量水溶液中氢离子浓度的pH值。玻璃电极(指示电极)零点位置为pH7,参比电极内充凝胶KCl,使用期间不需添加KCl溶液。具有使用方便、易清洗、反应快、稳定性和重复性好、抗干扰性能强等特点。E201型pH 复合电极技术参数如下表3-1所示。

表3-1E201型pH复合电极主要技术参数

3.2pH信号调理电路

测量数据经pH电极转化为微弱的电压信号,信号调整电路对原始信号进行调整信号凋整电路采用多级集成运放构成。

图3-1为输入级电路。其中:

(1) A1、A2均为高阻集成运放CA3140,它们都接成电压跟随器,提高输入阻抗,增强抗干扰能力,使参比电极和玻璃电极信号实现阻抗变换,构成双高阻输入电路。

(2) A3为LM124四运算放大器,将它接成减法器,它的输出是玻璃电极与参比电极电位之差。

图3-1 pH 信号放大电路

在图3-1中,A1、A2、A3构成三运放精密放大电路,其中,由运放A1、A2构成第一级电路,A3构成第二级电路,两级均属于差分式电路。在第一级电路中,信号电压分别加到运放A1、A2的同相输入端,R3、R4、R5为电路引入了深度电压串联负反馈,使得运放A1、A2的输入端具有“虚短”和“虚断”的特征,而流过R3、R4、R5的电流相等,因此有

)(21214321i i o o u u R R u u -???? ?

?+=- (3-1)

21o o u u -作为第二级差分放大电路的输入信号,由于A3两输入端电阻相等,有

()211

6o o o u u R R u --= (3-2) 将21o o u u -代入上式,便得到精密放大电路输出电压与输入电压的关系式为

()214316o 21i i u u R R R R u -???

? ??+-= (3-3) 由式(3-3)可知,此电路只对输入信号的差进行有效放大,而当输入端出现共模信号时,输出电压u oc =0。因此,该放大电路具有很高的共模抑制比,提高系统的信噪比,增强系统抗干扰能力。[3]

另外,式(3-3)表明总增益A 是第一级A u1和第二级A u2的乘积,输入电路的增益取决于外部电阻的比值,所以采用合适的电阻。也就是调节合适的放大增益.使输出电压u o 达到模数转换所需的电压范围,送入单片机模/数端进行数据处理。

为了准确的测定溶液中氢离子浓度,除了需要性能优良的电极外,还与仪器的前置运算放大的选择有密切的关系。以前影响测量仪器发展的主要技术关键是前置运算放大器的性能不能适应现场的需求,表现在性能上不稳定飘移大,噪音大,传输距离不远等。作为前值运算放大器,应有以下几个要求:

(1) 放大器的输入电流要小;

(2) 高的输入阻抗,放大器的输入阻抗包括放大器的阻抗和接插件的绝缘阻抗等;

(3) 小的温度漂移系数。

3.2.1 电压跟随器

pH 电极由玻璃电极和参考电极组成。玻璃电极是由特殊玻璃膜制成的。其厚度可以小于0.1mm ,Ag -AgC1为参考电极在内部,由二者组成复合电极。从复合pH 电极的玻璃电极和参比电极两端输出的信号为电压。在一定的温度下只要知道了电压值,即可求出溶液的pH 值,因此pH 值的测量实际上就是电压信号的测量。由于复合pH 电极内阻很高。大约l012Ω。要求前置放大器有较高的输入阻抗。因此设计中选用了运放CA3140,该运算放大器功能保护MOSFET 的栅极(PMOS 上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。它兼有高电压PMOS 管和高压二极管的优点,都集成在单独的芯片上。输入电路PMOS 提供非常高的阻抗,并且具有非常快的响应速度,还具有自身补偿能力来达到稳定的放大增益,输出部分含有自身保护电路来保护由于负载短路造成的损害,可完成阻抗匹配、降低测量噪声、提高系统稳定性等,非常适合此电路设计。本文A1、A2采用CA3140,提高输入阻抗。如图3-2所示:

图3-2电压跟随器

3.2.2减法器

实现将玻璃电极与参比电极电位做减法的差分放大部分,A3选择LM124,它是四运放集成电路,采用14管脚双列直插塑料(陶瓷)封装,它的内部包含四组形式完全相同的高增益频率补偿运算放大器,除电源共用外,四组运放相互独立。由于LM124四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。它的特点有:

(1) 直流电压增益高(约100dB);

(2) 单位增益频带宽(约1MHz);

(3) 电源电压范围宽:单电源(3~30V);

双电源(±1.5~±16V);

(4) 低功耗电流,适合于电池供电;

(5) 独立于电源电压的低源漏电流(0.8mA);

(6) 低输入失调电压和失调电流;

(7) 共模输入电压范围宽,包括接地;

(8) 差模输入电压范围宽,等于电源电压范围;

(9) 输出电压摆幅大(0至VCC-1.5V)。

3.3温度采集电路

离子计把接收到的毫伏信号转换成p x值,必须以某一温度为基准,但是,被测溶液

的温度常常是偏离基准温度的,为消除温度对转换斜率的影响,使信号标准化,离子计都设有温度补偿电路。热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精确度,测量范围广。

铂电阻的特点是精度高,稳定性好,性能可靠。铂在氧化性气氛中,甚至在高温下的物理、化学性质都非常稳定。因此铂被公认为是目前制造热电阻的最好材料。铂电阻主要作为标准电阻温度计使用,也常被用在工业测量中。

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。

PT100的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100Ω,在100℃时它的阻值约为138.5Ω。它的工业原理:当PT100在0℃的时候他的阻值为100Ω,它的阻值会随着温度上升而成匀速增长的。本设计中就是利用PT100的这一特性来实现温度与输出值之间的转化的。为了减少流过Pt100电流所产生的温度对自身阻值的影响,外部激励电压不易过大,此处用1V[4]。如图3-3所示:

图3-3pt100温度采集电路

3.4模拟开关

U1为双四选一模拟开关,分时选择pH信号或温度信号。此处选择4051芯片。

CD4051/CC4051是单8通道数字控制模拟电子开关,有A、B和C三个二进制控制输

入端以及INH共4个输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。当INH输入端=“1”时,所有的通道截止。只有当INH=0时,三位二进制信号才可以选通8通道中的一个通道,连接该输入端至输出。其中VEE可以接负电压,也可以接地。当输入电压有负值时,VEE必须接负电压,其他时候可以接地。如图3-4所示:

图3-4模拟开关

3.5器件选型表

在pH值传感器信号调理电路中,用到了电阻、电容、Pt100、集成运算放大器、四选一模拟开关等。具体如下表3-2所示:

表3-2 器件选型表

第4章仿真与PCB电路设计

为了设计方便,采用Proteus软件进行原理图设计、仿真以及PCB的设计,具有操作简单,视图明了的特点。

4.1 仿真原理图

在Proteus软件中画出pH值传感器信号调理电路的原理图,如图4-1所示:

图4-1 调理电路原理图

4.2PCB图

印制电路板(PCB,Printed Circuit Board)设计,是电子产品中最重要的部件之一。电路原理图完成以后,还必须再根据原理图设计出对应的印制电路板图,最后才能由制板厂家根据用户所设计的印制电路板图制作出印制电路板产品。

在完成原理图设计后,应用proteus软件进行PCB电路设计,首先在原理图的设计界面点击ARES图标后,进入到PCB设计界面。选择Board Edge,画出方框,点击Tools–Auto Placer,进行自动布局,然后点击Tools–Auto Router,软件便根据已经设置好的布线规则进行布线。得到pH值传感器信号调理电路的PCB图,如图4-2所示:

图4-2 调理电路的PCB图4.3PCB图3D效果图

如图4-3所示为PCB图的3D效果:

图4-3 PCB图的3D效果

第5章设计心得和体会

仪器仪表电子工艺设计包括传感器的选型,电量信号的放大,温度测量等内容。其任务是完成非电信号的被测量信息的测量与变送。整个系统在进入A/D转换前的电路均属于信号测量与信号调理的部分,该部分是整个系统的基础,测量信号的准确与否、测量精度和测量误差的决定因素是该部分电路的品质优劣。设计好仪器仪表的电子工艺的任务的重要性可想而知。

仪器仪表电子工艺设计是测控系统的基础,掌握好如何进行仪器仪表电子工艺的设计才能更好地进行自动化的测控设计。所以,仪器仪表电子工艺设计是我们必须掌握的专业技能。仪器仪表是自动化控制系统的前端,是测量、控制反馈的重要部分,我们要懂得仪器仪表如何工作,才能解仪器决仪表所出的故障,保障自动控制系统的正常运行。我们应该在这次课程实际中,学有所得,提高自己的实践操作能力,理论联系实际,为毕业之后的工作做好充分的准备。作为测控技术与仪器专业的学生,我们要学好自己的本职专业,在以后的工作中才能充分发挥自己的专业特长,才能为社会做贡献。

制作过程是一个考验人耐心的过程,不能有丝毫的急躁,马虎,对电路的调试要一步一步来,不能急躁,因为是在电脑上调试,比较慢,又要求我们有一个比较正确的调试方法,像把频率调快等等。这又要我们要灵活处理,在不影响试验的前提下可以加快进度。要熟练地掌握课本上的知识,这样才能对试验中出现的问题进行分析解决。这次课程设计,针对集成运算放大器在Proteus仿真软件中的应用仿真出现了一些问题,但经过不断地查找资料,对比不通电路的构成,与电阻阻值的匹配,终于完成了原理图的绘制与仿真。

完成此次课程设计是掌握专业技能的一个重要环节,我在设计过程中受益匪浅,平时专业课上学习的理论知识只是进行实践设计的基本理论而已,实践的学习很重要,以后要经常把自己所学的东西应用到实践,才能真正学好这门专业课程!

参考文献

[1]承慰才,王中申,孙墨杰,腾飞.电厂化学仪表.北京:中国电力出版社,2009

[2]董华.基于MSP430单片机的pH计的研制.吉林大学,2008

[3]韩学军,王冰,张光烈等.模拟电子技术基础.中国电力出版社,2008

[4]黎飞鸿,刘锦高.RTD Pt100的一种单电源信号调理电路[J].仪器仪表用户,2007,14(1):

70-72.

[5]杨成忠.高进度pH测量仪表的研制机电工程,1997

[6]董金伟,朱维涛,吴寅.pH计研制与开发.现代科学仪器,2006(4):48-49

[7]杨素英,尹景鹏,崇仲全等.pH智能测量技术的研究.仪表技术与传感器,2003(10):7-9

[8]侯传嘉,张艳群.pH测量.北京.中国计量出版社,1993

热电偶温度传感器信号调理电路设计与仿真介绍

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

酒精浓度传感器信号调理电路设计与仿真报告

目录 第一章绪论 ............................................................................................................................................ - 1 -1.1 设计背景.................................................................................................................................................. - 1 -1.2 设计目的.................................................................................................................................................. - 1 -1.3 设计内容和要求(包括原始数据、技术参数、条件、设计要求等)................................................... - 1 -1.4 设计工作任务及工作量的要求................................................................................................................ - 2 -第二章酒精浓度传感器的设计.................................................................................................................... - 3 -2.1 传感器的概述 ........................................................................................................................................ - 3 -2.2 传感器的选择 .......................................................................................................................................... - 4 -2.2.1MQ-3酒精浓度传感器的特点 .. (4) 2.2.2MQ-3工作原理简介 (5) 2.3 可靠性与抗干扰设计............................................................................................................................... - 6 -第三章酒精传感器信号调理电路的设计..................................................................................................... - 7 - 3.1 设计思路综述 .......................................................................................................................................... - 7 -3.2 电压跟随器 .............................................................................................................................................. - 7 -3.3 减法器...................................................................................................................................................... - 8 -3.4 比例放大电路 .......................................................................................................................................... - 9 -3.5 器件选型表 .............................................................................................................................................. - 9 -3.6 设计心得体会 .........................................................................................................................................- 10 -第四章仿真与PCB设计..............................................................................................................................- 11 - 4.1 信号调理电路仿真..................................................................................................................................- 11 -4.2 PCB图 .....................................................................................................................................................- 11 -4.3 PROTUES图3D效果图 ...........................................................................................................................- 12 -参考文献 .........................................................................................................................................................- 13 -

压电传感器的信号调节

压电传感器的信号调节 作者:Eduardo Bartolome,德州仪器(TI) 医疗事业部系统工程师 压电传感器 用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。1就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。 例如,图 1 显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即F ext。在使用加速计的情况下,固定端(顶部)会粘附在要测量加速度的物体上,同时外力为粘附于另一端(底部)的质量的惯性,而这一端不断想要保持静止。就固定于顶端的参考坐标系而言(假设传感器充当的是一个弹簧,其具有很高的弹簧系数K),偏斜x 会形成一种反作用力: F int = Kx (1) 最终,质量(传感器偏斜)将会在下列情况下停止移动/改变: F int = F ext = Kx (2) 图 1 加速度力作用下的传感器 由于电荷Q 与偏斜成比例关系(一阶),而偏斜与力成比例关系,因此Q 与力也成比例关系。施加一个F max最大值的正弦力,会形成一个Q max 最大值的正

弦电荷。换句话说,当正弦力为最大值时,对来自传感器的电流求积分可得到Q max。增加正弦波的频率,同时会增加电流;但是会更快地达到峰值,即保持积分(Q max) 恒定。厂商会以传感器可用频率范围内Q max与F max的比率,来说明灵敏度规范。但是,由于传感器的机械性质,传感器实际上有谐振频率(可用频率范围以上),其中一个即使很小的振荡力都会产生相对较大的偏转,从而得到较大的输出振幅。 如果忽略谐振的影响,则我们可以将压电传感器一阶建模为一个与传感器寄生电容(此处称作C d)并联的电流源,或者也可以将其建模为一个与C d串联的电压源。该电压为存储电荷时在传感器阳极上看到的等效电压。但是,我们需要注意的是,就许多应用的仿真而言,第二种方法要更加简单一些。如前所述,电流与偏斜变化的速率成比例关系;例如,拿恒幅加速度的正弦AC 曲线来说,电流生成器的振幅必须根据频率来改变。 最后,如果这种生成器需要代表实际物理信号,则可以使用变压器,如图 2 所示。本例中,我们建模了一个具有0.5 pC/g 灵敏度和500 pF 寄生电容的生成器。正弦波生成器每单位g 输出1V,以实现仿真。变压器在其次级线圈将它向下调节至1mV。施加给C1(500 pF)的1-mV 摆动,将会如我们预计的那样在下一级注入Q = VC = 0.5 pC。 图 2 压电传感器模型 电荷放大器分析 图 3 显示了经典电荷放大器的基本原理,其可以用作一个信号调节电路。这种情况下,我们选择电流源模型,表明传感器主要为一种带高输出阻抗的器件。 输入阻抗 信号调节电路必须具有非低的输入阻抗,以收集传感器的大部分电荷输出。因此,电荷放大器是理想的解决方案,因为只要放大器在这些信号频率下保持高增益,其输入便会让传感器信号出现虚拟接地。换句话说,如果传感器的任何电荷想要在传感器阳极(C d) 或者放大器输入寄生电容(C a) 上增大,在放大器输入端就

传感器信号调理电路

传感器信号调理电路 传感器信号调理电路 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。 选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。

第二章PSD传感器与信号处理电路

a 第二章 PSD 传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD (Position Sensitive Detector )。 本章介绍PSD 及其信号处理电路的工作原理及选型。 2.1 PSD 传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD (Position Sensitive Detector )是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD 将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD 的位置。入射光的强度和尺寸大小对PSD 的位置输出信号均无关。PSD 的位置输出只与入射光的“重心”位置有关。 PSD 可分为一维PSD 和二维PSD 。一维PSD 可以测定光点的一维位置坐标,二维PSD 可测光点的平面位置坐标。由于PSD 是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD 为PIN 三层结构,其截面如图2.1.1所示。表面P 层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD 光敏面上某一点时,假设产生的总的光生电流为I 0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I 1和I 2。显然,I 1和I 2之和等于光生电流I 0,而I 1和I 2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R 1和R 2。如果PSD 表面层的电阻是均匀的,则PSD 的等效电路为图2.1.1〔b 〕所示的电路。由于R sh 很大,而C j 很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R 1和R 2的值取决于入射光点的位置。 假设负载电阻R L 阻值相对于R 1和R 2可以忽略,则有: (2.1.1)I I R R L x L x 1221==-+式中,L 为PSD 中点到信号电极的距离,x 为入射光点距PSD 中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I 0= I 1+I 2与式(2.1.1)联立得:

ABS轮速传感器及其信号处理

ABS轮速传感器及其信号处理 车轮防抱死制动系统简称ABS 是基于汽车轮胎与路面之间的附着特性而开发的高技术制动系统。ABS由信号传感器、逻辑控制器和执行调节器组成。其控制目标是:当汽车在应急制动时,使车轮能够获得最佳制动效率,同时又能实现车轮不被抱死、侧滑,使汽车在整个制动过程中保持良好的行驶稳 定性和方向可操作性。 在ABS系统中,几乎都离不开对车轮转动角速度的测定,因为只要有了车轮转动角速度,其它参数(如车轮转动角和加速度)均可通过计算机计算获得。ABS的工作原理就是在汽车制动过程中不断检测车轮速度的变化,按一定的控制方法,通过电磁阀调节轮缸制动压力,以获得最高的纵向附着系数和较高的侧向附着系数,使车轮始终处于较好的制动状态。因此精确检测车轮速度是ABS系统正常工作的先决条件。 1 ABS轮速传感器及特性分析 通常,用来检测车轮转速信号的传感器有磁电式、电涡流式和霍尔元件式。由于磁电式轮速传感器工作可靠,几乎不受温度、灰尘等环境因素影响,所以在ABS系统中得到 广泛应用。 1.1 磁电式轮速传感器的工作原理 磁电式传感器的基本原理是电磁感应原理。根据电磁感应定律,当N匝线圈在均恒 磁场内运动时,设穿过线圈的磁通为φ,则线圈内的感应电势ε与磁通变化率有 如下关系: 若线圈在恒定磁场中作直线运动并切割磁力线时,则线圈两端的感应电势ε为:

式中,N为线圈匝数;B为磁感应强度;L为每匝线圈的平均长度:为线圈相对磁场运动的速度;θ为线圈运动方向与磁场方向的夹角。

若线圈相对磁场作旋转运动并切割磁力线时,则线圈两端的感应电势ε为: 式中,ω为旋转运动的相对角速度;A为每匝线圈的截面积;φ为线圈平面的法线 方向与磁场方向间的夹角。 根据上述基本原理,磁电传感器可以分为两种类型:变磁通式(变磁阻式)和恒定磁通式。由于变磁通式磁电传感器结构简单、牢固、工作可靠、价格便宜,被广泛用于车辆上作为检测车轮转速的轮速传感器。图1为变磁通式磁电传感器的结构原理。其中传感器线圈、磁铁和外壳均固定不动,齿轮安装在被测的旋转体上。 当齿轮与被测的车轮轴一起转动时,齿轮与铁芯之间的气隙随之变化,从而导致气隙磁阻和穿过气隙的主磁通发生变化。结果在感应线圈中感应出交变的电动势,其频率等 于齿轮的齿数Z和车轮轴转速n的乘积,即: f=Zh (4) 感应电动势的幅值与车轮轴的转速和气隙有关,当气隙一定时,转速越大,其幅值越大;当转速一定时,气隙越小,其幅值越大。 1.2 轮速传感器特性试验研究 目前,测量车轮转动速度的一般方法是将变磁阻式磁电传感器安装在车轮总成的非旋转部分上,与随车轮一起转动的由导磁材料制成的齿圈相对。当齿圈随车轮一起转动时,由于齿圈与传感器之间气隙的的交替变化,导致两者间磁阻的变化,从而在传感器内的线 圈上感生出交变的电压信号。

信号调理电路的原理、功能

什么是信号调理?信号调理电路的原理,信号调理模块的功能 [导读] 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 信号调理电路原理 信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。 模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。 调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。 信号调理电路技术

1.放大 放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。 2.衰减 衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。衰减对于测量高电压是十分必要的。 3.隔离 隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。 4.多路复用 通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。多路复用对于任何高通道数的应用是十分必要的。 5.过滤

(完整版)第二章PSD传感器与信号处理电路

第二章 PSD传感器与信号处理电路 为了将电机轴的位置信号转换为相应的电信号,本文的传感器使用光电位置敏感器件PSD(Position Sensitive Detector)。 本章介绍PSD及其信号处理电路的工作原理及选型。 2.1 PSD传感器的工作原理及选型 传感器是一种以一定的精确度将被测量(如位置、力、加速度等)转换成与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。 传感器在检测系统中是一个非常重要的环节,其性能直接影响到整个系统的测量精度和灵敏度。如果传感器的误差很大,后面的测量电路、放大器等的精度再高也将难以提高整个系统的精度。所以在系统设计时慎重选择传感器是十分必要的。 光电位置敏感器件PSD(Position Sensitive Detector)是一种对其感光面上入射光斑重心位置敏感的光电器件。即当入射光斑落在器件感光面的不同位置时,PSD将对应输出不同的电信号。通过对此输出电信号的处理,即可确定入射光斑在PSD的位置。入射光的强度和尺寸大小对PSD的位置输出信号均无关。PSD的位置输出只与入射光的“重心”位置有关。 PSD可分为一维PSD和二维PSD。一维PSD可以测定光点的一维位置坐标,二维PSD可测光点的平面位置坐标。由于PSD是分割型元件,对光斑的形状无严格的要求,光敏面上无象限分隔线,所以对光斑位置可进行连续测量从而获得连续的坐标信号。 实用的一维PSD为PIN三层结构,其截面如图2.1.1所示。表面P层为感光面,两边各有一信号输出电极。底层的公共电极是用来加反偏电压的。当入射光点照射到PSD光敏面上某一点时,假设产生的总的光生电流为I0。由于在入射光点到信号电极间存在横向电势,若在两个信号电极上接上负载电阻,光电流将分别流向两个信号电极,从而从信号电极上分别得到光电流I1和I2。显然,I1和I2之和等于光生电流I0,而I1和I2的分流关系取决于入射光点位置到两个信号电极间的等效电阻R1和R2。如果PSD表面层的电阻是均匀的,则PSD的等效电路为图2.1.1〔b〕所示的电路。由于R sh很大,而C j很小,故等效电路可简化成图2.1.1 (c) 的形式,其中R1和R2的值取决于入射光点的位置。 假设负载电阻R L阻值相对于R1和R2可以忽略,则有: I I R R L x L x 1 2 2 1 == - + (2.1.1) 式中,L为PSD中点到信号电极的距离,x为入射光点距PSD中点的距离。式(2.1.1)表明,两个信号电极的输出光电流之比为入射光点到该电极间距离之比的倒数。将I0= I1+I2与式(2.1.1)联立得:

传感器脉冲信号处理电路设计

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (3) 2.2.2 时钟电路 (4) 2.3 单片机复位电路 (5) 2.4 霍尔传感器电机采样电路 (5) 2.4.1 A3144霍尔开关的工作原理及应用说明 (6) 2.4.2 霍尔传感器测量原理 (7) 2.5 电机驱动电路 (8) 2.6 显示电路 (8) 3 软件系统设计 (9) 3.1 软件流程图 (9) 3.2 系统初始化 (10) 3.3 定时获取脉冲数据 (11) 3.4 数据处理及显示 (12) 3.5 C语言程序 (13) 总结 (16) 致谢 (17) 参考文献 (18)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间内电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S内计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

传感器和信号调理

传感器与信号调理模拟题1 1 为了测量某一电阻器两端的压降,我们考虑两种可供选择的方法:利用精确度为0.1%读数的电压表;利用精确度为0.1%读数的电流表。若电阻器的公差为0.1%,试问哪一种方法更精确? 1答: dV=RdI+IdR 对于微小变化,可用增量近似代表微分,△V/V=△I/I+△R/R9 利用精确度为0.1%读数的电压表,不确定性为0.1% 利用精确度为0.1%读数的电流表,不确定性为电流测量的不确定性与电阻本身的不确定性的迭加,为0.2% 2 (1) 一个K=2.1的350欧姆应变片被粘贴到铝支柱(E=73GPa )上。支柱的外径为50mm ,内径为47.5mm 。试计算当支柱承受1000Kg 负荷时电阻的变化。 (2)阐述在单端固支悬臂梁上采用单应变片、双应变片、4应变片的贴法。 2答: (1)△R=RK ε=RKF/AE,代入给定数据,结果为0.52欧姆 (2)在单端固支悬臂梁上粘贴单应变片时,可在梁的合适位置的上表面或下表面粘贴;在单端固支悬臂梁上粘贴双应变片时,可在梁的合适位置的上表面与下表面对称粘贴,形成差动半桥;在单端固支悬臂梁上粘贴四应变片时,可在梁的两个合适位置的上表面和下表面对称粘贴,形成差动全桥; 3 第3题图变极距型电容传感器示意图,试推导其输出特性。采用差动技术带来了哪些优势? 第3题图 变极距型电容传感器示意图 3答:单一式 初始时 00/d s c ε= 动极板上移d ? 000 001)1(d d c d d d s d d s c ?- = ?- = ?-= εε 差动式 )1/(01ds d c c ?- =

) 1/( 2d d c c ? + = r d d d c c c c ε/ 2 1 1 2 1 2 1 + ? = + - 采用差动技术,提高灵敏度、降低非线性、提高抗共模干扰的能力。 4第4题图是变气隙型自感传感器示意图,推倒其传感特性表达式 第4题图变气隙型自感传感器示意图 4答:自感表达式I N L φ = 其中m R NI = φ δ R R R F m + = F F F F A l R μ = A R 2 μ δ δ = 因为0 μ μ>> F 所以δ R R F << ,δ R R m ≈ 所以传感器电感 δ μ δ 2 2 2 2A N R N R N L m = ≈ = 当铁心向下位移△δ时,传感器电感为 2 2 1 ) 1( 2 ) (2 δ δ δ δ δ μ δ δ μ ? + = ? + = ? + = L A N A N L 5下图分别是压电传感器与电荷放大器连接的示意图和压电传感器与电压放大器连接的示意图,分别推导其输出电压与传感器受力之间的关系式;如果测量准静态量,应选用哪种接口电路形式?

如何设计液位传感器的信号调理电路

如何设计液位传感器的信号调理电路 来源:大比特商务网 摘要:在变送器的开发应用中,常常会遇到所需的变送器的输出与已有的变送器的输出不同,或用户已有的变送器的输出不能满足新的需求,这就需要改变变送器原来的输出。为了满足多种客户的需求,就需有多种输出的变送器。例如:作为二型表,标准输出多为0~10mA,或0~10V,而目前应用的三型表,却是4~20mA或1~5V的,它们之间如何变换,是我们必须解决的问题。 关键字:传感器,电阻,线性化电路 在变送器的开发应用中,常常会遇到所需的变送器的输出与已有的变送器的输出不同,或用户已有的变送器的输出不能满足新的需求,这就需要改变变送器原来的输出。为了满足多种客户的需求,就需有多种输出的变送器。例如:作为二型表,标准输出多为0~10mA,或0~10V,而目前应用的三型表,却是4~20mA或1~5V的,它们之间如何变换,是我们必须解决的问题。 1变送器信号调理电路的设计 1.1温度漂移的处理 ---传感器的温度漂移可分为零点温度漂移和灵敏度温度漂移。零点温漂即传感器不受压时的输出由温度变化引起的漂移,在传感器的应用中,经常用恒流供电,零点及其温漂的补偿方法可用电阻串并联法,采用图1所示的电路可有效的解决零点温漂问题。 ---恒流供电桥路的传感器,其灵敏度温度补偿通常采用的电路如图2所示。其中R的网路中Rt为温度系数与灵敏度温漂同向的热敏电阻,Rs、Rp、Rz为温度系数可忽略的电阻,用来调整Rt的温度系数。经上述零点和灵敏度的温度补偿的传感器的输出信号即可视为在一定的温度范围内与温度变化无关。 1.2放大及非线性的处理

---任何力敏传感器的非线性都有大小、正负之分,信号的处理和传输时要进行线性化处理,使最后得到的信号与液位成线性关系。线性化电路就是根据非线性的大小和正负来设计的,线性化可以在信号处理的不同阶段来进行,有的在模拟信号阶段进行,有的在数字信号阶段进行。 ---在图3的电路中,12脚与6脚连接后调整电阻R8,可以调节正非线性;12脚与1脚连接后调整电阻R8,可以调节负非线性。 ---对于一般应用要求的精度(±0.5%FS0),在适当的量程范围内,使用简单的正负反馈的修正就足够了;小量程的传感器应用到大量程中,非线性会增大,有时用简单的正负反馈修正进行线性化比较困难,最好使用数字线性化方法,也可以采用多点修正方法。 ---对于输出信号很小,甚至只有几mV的传感器在制作4~20mA液位变送器时,可以使用性能优良的仪表放大器,如INA118,对温度补偿、线性化、放大以及输出全面考虑,设计出满足需求的液位变送器电路。

传感器信号调理

信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理(见图1)。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。 传感器 根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标: ·源阻抗 ——高的源阻抗大于100KΩ ——低的源阻抗小于100Ω ·输出信号电平 ——高信号电平大于500mV满标 ——低信号电平大于100mV满标 ·动态范围 在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。 放大器功用 放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。

电涡流位移传感器信号调理与位移显示电路的设计[设计+开题+综述]

开题报告 机械设计制造及其自动化 电涡流位移传感器信号调理与位移显示电路的设计 一、选题的背景与意义 在基础学科研究和现代工业生产中,传感器具有不可或缺的作用。传感器是将被测量(通常为非电量)转换成电信号的信号转换元件,然而由于传感器的电气特性,其所产生的电信号必须进行调理才能被数据采集设备精确、可靠地采集。 电涡流位移传感器是一种据电涡流效应制成的常用物理传感器,其输出振荡电压随被测体(必须是金属导体)与探头之间的距离变化而变化,因此能测量被测体发生的静态和动态的相对位移变化。 目前国内研制的多数电涡流位移传感器测量物体位移变化时输出都是电压信号的绝对值,由于被测体位移相对变化很小,而传感器输出的电压信号初始值太大,以致变化量很小,所以不能很好地反映被测体位移的变化。本课题即是对电涡流位移传感器进行信号调理,通过减法放大电路使传感器输出电压减去初始值后再进行放大,从而保证被放大的电压只对应位移变化部分,且从零点开始。然后基于单片机设计传感器的工作电源和输出位移的显示电路,使输入输出信号都能清楚、直观地显示。这些新的设计将推动现有电涡流传感器测量技术的发展。 二、研究的基本内容与拟解决的主要问题: 研究的基本内容: 设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,再基于高精度运算放大器OP07,设计并调试电涡流位移传感器的信号调理电路,最后基于AT89S52单片机,编程设计并调试电涡流位移传感器的工作电源电压与输出位移的显示电路。 拟解决的主要问题: 1、设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,包括变压、整流、滤波、稳压电路; 2、基于高精度运算放大器OP07设计并调试电涡流位移传感器的信号调理电路,包括减法放大、滤波电路;

酒精浓度传感器信号调理电路设计与仿真报告

. 目录 第一章绪论...................................................................... - 1 -1.1 设计背景........................................................................ - 1 -1.2 设计目的........................................................................ - 1 -1.3 设计内容和要求(包括原始数据、技术参数、条件、设计要求等) ....................... - 1 -1.4 设计工作任务及工作量的要求....................................................... - 2 -第二章酒精浓度传感器的设计......................................................... - 3 -2.1 传感器的概述 ................................................................... - 3 -2.2 传感器的选择.................................................................... - 4 - 2.2.1MQ-3酒精浓度传感器的特点 (4) 2.2.2MQ-3工作原理简介 (5) 2.3 可靠性与抗干扰设计 .............................................................. - 6 -第三章酒精传感器信号调理电路的设计 ................................................. - 7 - 3.1 设计思路综述.................................................................... - 7 -3.2 电压跟随器...................................................................... - 7 -3.3 减法器.......................................................................... - 8 -3.4 比例放大电路.................................................................... - 9 -3.5 器件选型表...................................................................... - 9 -3.6 设计心得体会................................................................... - 10 -第四章仿真与PCB设计.............................................................. - 11 - 4.1 信号调理电路仿真 ............................................................... - 11 -4.2 PCB图.......................................................................... - 11 -4.3 PROTUES图3D效果图............................................................. - 12 -参考文献............................................................................ - 13 -

电涡流位移传感器信号调理与位移显示电路的设计【开题报告】

毕业论文开题报告 机械设计制造及其自动化 电涡流位移传感器信号调理与位移显示电路的设计 一、选题的背景与意义 在基础学科研究和现代工业生产中,传感器具有不可或缺的作用。传感器是将被测量(通常为非电量)转换成电信号的信号转换元件,然而由于传感器的电气特性,其所产生的电信号必须进行调理才能被数据采集设备精确、可靠地采集。 电涡流位移传感器是一种据电涡流效应制成的常用物理传感器,其输出振荡电压随被测体(必须是金属导体)与探头之间的距离变化而变化,因此能测量被测体发生的静态和动态的相对位移变化。 目前国内研制的多数电涡流位移传感器测量物体位移变化时输出都是电压信号的绝对值,由于被测体位移相对变化很小,而传感器输出的电压信号初始值太大,以致变化量很小,所以不能很好地反映被测体位移的变化。本课题即是对电涡流位移传感器进行信号调理,通过减法放大电路使传感器输出电压减去初始值后再进行放大,从而保证被放大的电压只对应位移变化部分,且从零点开始。然后基于单片机设计传感器的工作电源和输出位移的显示电路,使输入输出信号都能清楚、直观地显示。这些新的设计将推动现有电涡流传感器测量技术的发展。 二、研究的基本内容与拟解决的主要问题: 研究的基本内容: 设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,再基于高精度运算放大器OP07,设计并调试电涡流位移传感器的信号调理电路,最后基于AT89S52单片机,编程设计并调试电涡流位移传感器的工作电源电压与输出位移的显示电路。拟解决的主要问题: 1、设计并调试高精度运算放大器OP07、AT89S52单片机的工作电源电路,包括变压、整流、滤波、稳压电路; 2、基于高精度运算放大器OP07设计并调试电涡流位移传感器的信号调理电路,包括减法放大、滤波电路; 3、基于AT89S52单片机设计位移显示电路,将传感器检测到的被测体位移变化最终以数字形式直观地显示在七段LED显示器上。

相关主题
文本预览
相关文档 最新文档