当前位置:文档之家› 快衰落&慢衰落平坦衰落&频率选择性衰落(相干时间&相干带宽)

快衰落&慢衰落平坦衰落&频率选择性衰落(相干时间&相干带宽)

快衰落&慢衰落平坦衰落&频率选择性衰落(相干时间&相干带宽)
快衰落&慢衰落平坦衰落&频率选择性衰落(相干时间&相干带宽)

快衰落&慢衰落/平坦衰落&频率选择性衰落

(相干时间/相干带宽)

概述

快衰落示意图

快衰落主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,它反映微观小范围内数十波长量级接收电平的均值变化而产生的损耗,其变化率比慢衰落快,故称它为快衰落,由于快衰落表示接收信号的短期变化,所以又称短期衰落(short-term -fading)。

移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。可见快衰落与慢衰落并不是两个独立的衰落(虽然它们的产生原因不同),快衰落反映的是瞬时值,慢衰落反映的是瞬时值加权平均后的中值。移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象叫做快衰落。

1多径效应

快衰落现象

(1)时延扩展:多径效应(同一信号的不同分量到达的时间不同)引起的接受信号脉冲宽度扩展的现象称为时延扩展。时延扩展(多径信号最快和最慢的时间差)小于码元周期可以避免码间串扰,超过一个码元周期(WCDMA中一个码片)需要用分集接受,均衡算法来接受。

(2)相关带宽:相关带宽内各频率分量的衰落时一致的也叫相关的,不会失真。载波宽度大于相关带宽就会引起频率选择性衰了使接收信号失真。

2多普勒效应

衰落成因分类图

时间选择性衰落

是指快速移动在频域上产生多普勒效应而引起频率扩散。在不同的时间衰落特性不一样。由于用户的高速移动在频域引起了多普勒频移,在相应的时域上其波形产生了时间选择性衰落。最有效的克服方法是采用信道交织编码技术。即将由于时间选择性衰落带来的大突发性差错信道改造成为近似性独立差错的AWGN 信道。

空间选择性衰落

是指不同的地点、不同的传输路径衰落特性不一样,它是由于开放型的时变信道使天线的点波束产生了扩散而引起了空间选择性衰落。它通常由被称为平坦

瑞利衰落。这里的平坦特性是指在时域、频域中不存在选择性衰落。最有效的克服手段是空间分集和其他空域处理方法。

频率选择性衰落

是指不同的频率衰落特性不一样,引起时延扩散,在不同的频段上衰落特性不一样。它是信道在时域的时延扩散而引起了在频域的选择性衰落。最有效的克服方法有自适应均衡、OFDM及 CDMA系统中的RAKE接收等。

多径衰落可以影响移动接收机或固定接收机。移动接收机以及在包含移动物体的信道中工作的接收机还必须处理影响信号幅度和相位的其它因素。这些效应可以描述为时间变化或空间变化的函数。如果接收机以恒定的速度移动,在不同时间上发送脉冲与在不同位置发送脉冲完全相同。

在变化的信道发送信号时,知道这些条件在多长时间内是稳定的非常重要。根据相干时间还可以在频域中查看时间变化。一直移动的接收机会经受频移,而这取决于接收信号的到达角度。时间展宽会导致信号在时间上展宽;而时间(或空间)上的变化会导致信号在频率上展宽。接收机并不是在一个频率上得到一个信号,而是在不同频率上得到信号的不同部分。这种多普勒展宽与相干时间T0成负相关的关系。

时间展宽:平衰落

·传送一个符号的时间大于最大时延展宽(Ts > Tm)。

·信号带宽小于相干带宽(B < f0)。

·在一个符号的周期内收到所有多径分量。

时间展宽:频率选择性衰落

·传送一个符号的时间小于最大时延展宽(Ts < Tm)。

·信号带宽大于相干带宽(B > B(相干))。

·信道以不同方式改变信号的不同频谱成分,因此宽带信号的接收功率可能会在其带宽范围内随频率发生大的变化。

时间变化:快衰落

·符号周期长于相干时间(Ts > T0)。

·信号带宽小于多普勒展宽(B < fd)。

时间变化:慢衰落

·符号周期短于相干时间(Ts < fd)。

时间分布对信道的影响

发射机和接收机之间要能够成功地进行通信,在一定程度上取决于信号在其中传播的信道的衰落特性。大范围衰落包括信号经过长距离传播的效应(几百个波长或更多波长)。小范围衰落机制则影响着接收机附近的信号。

大范围衰落包括信号经过一段距离时信号的平均衰减(在理想的视距传播(LOS)条件下,它与距离的平方成正比),以及大型物体(如山脉或摩天大楼)导致的信号衍射。

小范围衰落是多径传播和多普勒频移两者作用的结果。由于被发送信号在遇到信箱、树木和正在移动的车辆时导致反射、衍射和局部散射,而通过不同的路径到达接收机,所以会发生多径衰落。因此,接收机在不同的到达时间获得信号的多个拷贝。这些拷贝以不同的相位和功率电平进行接收,导致信号互相干扰而发生功率波动。

多普勒频移衰落是移动的结果。如果接收机相对于发射机正在移动,那么进入接收机的信号频率会发生变化,具体取决于接收机相对于发射机移动的方向和速度。沿着接收机正前方的路径到达的信号拷贝,其检测到的频率将高于发送的信号,而沿着移动接收机后方的路径到达的信号拷贝,其检测到的频率将较低。

因此,多径反射和多普勒频移会改变(衰落)发送的信号,使得接收机很难精确地理解该信号。根据信道环境(市区或农村)、信号波长和发射机/接收机

快衰落的影响

大范围衰落主要会导致整体信号的电平衰落。路径衰减极其依赖于距离。它对设备的影响是,由于降低了接收的信号功率,从而降低了信噪比(SNR)。阴影效应和大范围反射表现为在这种平均路径衰减上的偏差。

多径和多普勒效应导致的小范围衰落可能对通信的破坏力最强。频率选择性衰落会导致码间干扰(ISI),使得精确地理解收到的符号变得更加困难。平衰落会使SNR恶化,因为反射会导致矢量成分互相抵消。快衰落会使发送的基带数据脉冲失真,可能会导致锁相环同步问题。慢衰落也会降低SNR。SNR的降低要求无线设备的设计人员在确定链路要求时要增加“衰落余量“;信号功率必须足够强,或者接收机的灵敏度要足够高,以便在衰落情形下能够正常工作。

那么,如何降低快衰落的影响呢?

只有在没有信道损伤时,才能实现理想的无线链路性能。但是加性白色高斯噪声(AWGN)的存在则会使得无线信道不可能完全没有干扰。不过,在设计无线设备时可以采用许多技术,来降低衰落的影响。这些技术降低了最坏情况下的衰落曲线的误码概率,使其更接近最好情况下的AWGN曲线。不同形式的衰落对误码率有不同的影响。频率选择性衰落和快衰落会明显影响误码率,而平衰落和慢衰落对误码率的影响较小。在设计可以容忍衰落对信号恶化的无线链路时,确定信道中的衰落类型非常重要。然后,可以选择信息速率,减少能够避免的误码。

由于符号频率与符号周期呈倒数的关系,因此改变信号速率以补偿频率选择性衰落也会改变其在衰落速度方面的性能。为避免频率选择性衰落,传输速率应低于信道的相干带宽。换句话说,频率选择性衰落确定了信号带宽的上限,快衰落则确定了信号带宽的下限。

均衡是一种常用技术,它用来消除频率选择性衰落导致的ISI。这个过程是调用一个脉冲响应与传播信道相反的滤波器。因此,传输通道与接收滤波器相结合,产生平坦的线性响应。例如,GSM采用自适应均衡技术,来缓和失真。

CDMA技术使用Rake接收机减轻ISI的影响。Rake接收机使用专用滤波器,检测展宽信号里的成分,将这些成分收集起来,并将它们相干地叠加起来(对早到路径采用比晚到路径更多的延时)。

还可以使用交织技术和编码技术,降低准确检测信号所要求的Eb/No(能噪比)。编码技术通过在正交码道上发送多个信号拷贝,提供了冗余性。交织技术通过把误码分布到不同的时间,在链路中增加了稳定性,从而避免了大量连续数据丢失现象的发生,而这种现象可能会切断无线链路。

某些传输技术具备的信号特性,可以避免衰落最常见的影响。例如,超宽带传输技术,它传送的脉冲周期如此之短,以致其不会受到信道时延展宽的影响。正交频分复用技术通过把载波信号划分成信息速率较低的子载波,来避免频率选择性衰落。

通信相干时间,相干带宽

相干带宽

定义相干带宽一般是用来划分平坦衰落信道和频率选择性衰落信道的量化参数。如果信道的最大多径时延扩展为Tm,那么信道的相干带宽Bc=1/Tm;若发射信号的射频带宽B

r(t)=h(t)s(t)+n(t),其中h(t)一般为瑞利分布的随机变量;若发射信号的射频带宽B>Bc,那么认为接收信号经历的是频率选择性衰落,此时除了接收信号的包络起伏变化,一般还存在码间串扰,其信号模型为

r(t)=h(t-tao0)s(t-tao0)+h(t-tao1)s(t-tao1)+...+n(t),其中tao0、tao1、...等为可分辨多径的时延,每个h(t-tao)一般为瑞利分布的随机变量。

相干时间

定义相干时间一般是用来划分时间非选择性衰落信道和时间选择性衰落信道,或叫慢衰落信道和快衰落信道的量化参数。如果信道的最大多普勒频移为fm,那么信道的相干时间Tc=0.423/fm。若发射信号的符号周期TTc,那么认为接收信号经历的是快衰落,即h(t)的变化速度快与符号速率,此时如果对信道进行比较精确的估计或是均衡都是十分困难的。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 信道扩展主要可以分为三方面:多径(时延)扩展;多谱勒扩展;角度扩展.

相干带宽:

相干带宽是描述时延扩展的:相干带宽是表征多径信道特性的一个重要参数,它是指某一特定的频率范围,在该频率范围内的任意两个频率分量都具有很强的幅度相关性,即在相干带宽范围内,多径信道具有恒定的增益和线性相位。通常,相干带宽近似等于最大多径时延的倒数。从频域看,如果相干带宽小于发送信道的带宽,则该信道特性会导致接收信号波形产生频率选择性衰落,即某些频率成分信号的幅值可以增强,而另外一些频率成分信号的幅值会被削弱。

定义相干带宽一般是用来划分平坦衰落信道和频率选择性衰落信道的量化参数。如果信道的最大多径时延扩展为Tm,那么信道的相干带宽Bc=1/Tm;

相干时间:

相干时间是描述多谱勒扩展的:相干时间在时域描述信道的频率色散的时变特性。相干时间与多普勒扩展成反比,是信道冲激响应维持不变的时间间隔的统计平均值。如果基带信号的符号周期大于信道的相干时间,则在基带信号的传输过程中信道可能会发生改变,导致接收信号发生失真,产生时间选择性衰落,也称快衰落;如果基带信号的符号周期小于信道的相干时间,则在基带信号的传输过程中信道不会发生改变,也不会产生时间选择性衰落,也称慢衰落。定义相干时

间一般是用来划分时间非选择性衰落信道和时间选择性衰落信道,或叫慢衰落信道和快衰落信道的量化参数。如果信道的最大多普勒频移为fm,那么信道的相干时间Tc=0.423/fm。

对于两个平稳信号S1(t)和S2(t),它们的相关系数的绝对值大于0小于1时,两个信号相关。相关系数等于1时,两个信号相干。当两个信号相干时,它们之间只相差一个复常数。复常数既一有幅度成分,又有频率成分。由此我们可见,若是两个信号相干,它们其中一个可以看作是另一个的幅度的衰减,频率上衰落造成的,其实二者可以看作同一个信号。相关系数越是接近1,相关性越大。

--------------------------------------------------------------------------------------------

当两个信号相干时,它们之间只相差一个复常数。复常数既一有幅度成分,又有频率成分。由此我们可见,若是两个信号相干,它们其中一个可以看作是另一个的幅度的衰减,频率上衰落造成的,其实二者可以看作同一个信号。相关系数越是接近1,相关性越

大。 ----------------------------------------------

若这几路信号的时间间隔在相干时间之内,那么他们具有很强的相关性,接收机都可以认为是有用信号,若大于相干时间,则接收机无法识别,只能认为是干扰信号。

====================================================================== ========================

相干时间和相干带宽都是描述信道特性的参数,当两个发射信号的频率间隔小于信道的相干带宽,那么这两个经过信道后的,受到的信道传输函数是相似的,由于通常的发射信号不是单一频率的,即一路信号也是占有一定带宽的,如果,这路信号的带宽小于相干带宽,那么它整个信号受到信道的传输函数是相似的,即信道对信号而言是平坦特性的,非频率选择性衰落的。

同样在相干时间内,两路信号受到的传输函数也是相似的特性,通常发射的一路信号由于多径效应,有多路到达接收机,若这几路信号的时间间隔在相干时间之内,那么他们具有很强的相关性,接收机都可以认为是有用信号,若大于相干时间,则接收机无法识别,只能认为是干扰信号。(https://www.doczj.com/doc/fe3336918.html,/103381698.html)

通信原理复习题(1)

通信原理复习题 一、单项选择题 1.数字通信相对于模拟通信具有( B )。A.占用频带小B.抗干扰能力强C.传输容量大D.易于频分复用 2.对于M进制的离散消息源消息源,其平均信息量最大时的概率分布为(A )。A.均匀分布B.正态分布C.瑞利分布D.指数分布3.某二进制信源,各符号独立出现,若“1”符号出现的概率为3/4,则“0”符号的信息量为( B )bit。 A. 1 B.2 C.1.5 D. 2.5 4、已知二进制离散信源(0,1),每一符号波形等概独立发送,传送二进制波形之一的信息量为(B )A.1 bit/s B.1 bit C.2 bit/s D.2 bit 5、如果在已知发送独立的符号中,符号“E”出现的概率为0.125,则符号“E”所包含的信息量为:( C ) A、1bit B、2 bit C、3 bit D、4 bit 6、离散信源输出五个不同符号,若各符号概率分别为1/2,1/4,1/8,1/16,1/16,则该信源的熵为多少( B. )。A. 1.5bit/符号 B. 1.875 bit/符号 C. 2 bit/符号 D. 1 bit/符号 7、离散信源输出四个不同符号,若各符号概率分别为1/2,1/4,1/8,1/8,则该信源的熵为多少( C. )。A. 1.5bit/符号 B. 1.875 bit/符号 C. 1.75bit/符号 D. 1 bit/符号 8、数字通信中,在计算码元速率时,信号码元时长是指(C.)A.信号码元中的最短时长B.信号码元中的最长时长C.信号码元中的平均时长D.信号码元中的任意一个码元的时长 9、一个二进制数字信号码元时间长度为0.1μs,在传输过程中平均2.5秒产生一个错码,则其平均误码率近似为( D ) -6 -8 -7-8 A. 5×10 B.2×10 C.2×10 D.4×10 10、已知一个8进制信号的符号速率为4800波特,则其对应的信息速率是( D ) A.4800bit/s B.2400bit/s C.9600bit/s D.14400bit/s 11、下列哪个描述不符合数字通信的特点( B ) A.抗干扰能力强 B. 占用信道带宽窄 C.便于构成综合业务网 D. 可以时分复用 12、下面描述正确的是:(A. ) A. 数字通信系统的主要性能指标是传输速率和差错率; B. 从研究消息的传输来说,通信系统的主要性能指标是其标准性和可靠性; C. 对于数字通信系统,传码率和传信率是数值相等,单位不同的两个性能指标; D. 所谓误码率是指错误接收的信息量在传送信息总量中所占的比例。 13、串行数据传输的特点是( A. ) A. 在一条线上,一次产生一位。 B. 在不同线上,同时产生几位 C. 由于存在移位寄存器,位不可能产生。 D. 在系统存贮器中,但按矩阵形式产生 A.可靠性B.有效性C.适应性D.标准性 15、高斯白噪声通过线性系统,其输出分布为(A) A、高斯分布 B、瑞利分布 C、广义瑞利分布 D、均匀分布 14、窄带噪声n(t)的同相分量和正交分量具有如下性质(A) A、都具有低通性质 B、都具有带通性质 C、都具有带阻性质 D、都具有高通性质 16、已知噪声(B ) 的自相关函数,为常数,那么功率谱密度及功率分别为:A.B.C.D. 17、高斯白噪声通常是指噪声的什么量服从高斯分布:( D )

频率选择性衰落信道模型研究与仿真

邮电大学通达学院 毕业设计(论文)题目频率选择性衰落信道模型研究与仿真专业网络工程 学生 班级学号 指导老师何雪云 评阅教师周克琴 指导单位通信与信息工程学院无线电工程系日期:2012年 11月 26 日至 2013 年 6月 21 日

毕业设计(论文)原创性声明 本人重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了意。 论文作者签名: 日期:年月日

摘要 在移动通信中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文研究了频率选择性衰落信道的特点;并且运用仿真软件Matlab对频率选择性衰落信道进行模拟仿真,实现了基于Jake模型的频率选择性衰落信道的建模。并利用建立起来的模型比较了具有不同载波频率、数据传输速率以及移动台移动速度的移动通信系统所具有的信道衰落特性。仿真结果表明:移动通信系统的参数会影响其信道的衰落特性。 关键词:频率选择性衰落; 瑞利衰落信道;Jake模型

ABSTRACT In mobile communications, signal arrives at the receiver through different transmission paths. The synthesis of the received signals in relation to the original signal will be faded, which is multi-path fading. In this paper, we research the frequency selective fading channels’ characteristics;And make the simulation to frequency selective fading channels with the tool MATLAB, which is based on jack model modeling. Using the established models, we compare the channel fading characteristics of different mobile communication systems which have different carrier frequencies, data transmission rates and mobile speeds. The simulation shows that: The mobile communication systems’ param eters will affect their channel fading characteristics. Keywords:Frequency-selective fading; Rayleigh channels; Jake model

通信原理 第2章 习题解答

习题解答 2-1、什么是调制信道?什么是编码信道?说明调制信道和编码信道的关系。 答:所谓调制信道是指从调制器输出端到解调器输入端的部分。从调制和解调的角度来看,调制器输出端到解调器输入端的所有变换装置及传输媒质,不论其过程如何,只不过是对已调制信号进行某种变换。 所谓编码信道是指编码器输出端到译码器输入端的部分。从编译码的角度看来,编码器的输出是某一数字序列,而译码器的输入同样也是某一数字序列,它们可能是不同的数字序列。因此,从编码器输出端到译码器输入端,可以用一个对数字序列进行变换的方框来概括。 根据调制信道和编码信道的定义可知,编码信道包含调制信道,因而编码信道的特性也依赖调制信道的特性。 2-2、什么是恒参信道?什么是随参信道?目前常见的信道中,哪些属于恒参信道?哪些属 于随参信道? 答:信道参数随时间缓慢变化或不变化的信道叫恒参信道。通常将架空明线、电缆、光纤、超短波及微波视距传输、卫星中继等视为恒参信道。 信道参数随时间随机变化的信道叫随参信道。短波电离层反射信道、各种散射信道、超短波移动通信信道等为随参信道。 2-3、设一恒参信道的幅频特性和相频特性分别为: 其中,0K 和d t 都是常数。试确定信号)(t s 通过该信道后的输出信号的时域表示式,并讨论之。 解:传输函数 d t j j e K e H H ωω?ωω-==0)()()( 冲激响应 )()(0d t t K t h -=δ 输出信号 )()()()(0d t t s K t h t s t y -=*= 结论:该恒参信道满足无失真条件,故信号在传输过程中无失真。 2-4、设某恒参信道的传输特性为d t j e T H ωωω-+=]cos 1[)(0,其中,d t 为常数。试确定信号)(t s 通过该信道后的输出信号表达式,并讨论之。 解: 输出信号为: d t K H ωω?ω-==)()(0 )(21)(21)()(2121)(21]cos 1[)(00) ()(00000T t t T t t t t t h e e e e e e e e T H d d d T t j T t j t j t j T j T j t j t j d d d d d d --++-+-=++=++=+=+--------δδδωωωωωωωωωω

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

§9-6激光相干性

§9-6 激光的相干性 一、间相干性与空间相干性 在第一章里已讲过了光的干涉,光源的相干性是一个很重要的问题,所谓相干性,也就是指空间任意两点光振动之间相互关联的程度, Q P 1 P 2 (图9-26) 在图9-26中,如果1P 和2P 两点处的光振动之间的位相差是恒定的,那么当1P 和2P 处的光振动向前传播并在Q 点相遇时,这两个振动之间的位相差当然也是恒定的,于是在Q 点将得到稳定的干涉条纹,这时,我们就称1P 和2P 处的光振动为完全在联的,也就是完全相干光,如果1P ,2P 处的光振动之间的位相差是完全任意的,并随时间作无规则的变化,那么在Q 点相遇时,根本不能给出干涉条纹,这时我们称1P ,2P 处的光振动是完全没有关联的,也就是完全非相干光。 由于原子的发光不是无限制地持续的,每一次发光,有一定的寿命,因此它总是有一个平均发光时间间隔,从干涉的角度来讨论问题时,可以很明显地看到,只有在同一光源同一个发光时间间隔内发出的光,经过不同的光程后再在某点相遇时,才能给出干涉图样,所以我们把原子的平均发光时间间隔叫做相干时间,在这里,把这一个相干时间记为H t ?,如果光的速度为c 则H c t ?表示在相干时间内光经过的路程,我们称它为相干长度,记之为H ι?,于是有 H ι?=H c t ? 在迈克耳孙干涉仪中,如图1-19所示,引起干涉的两束光为11a b 和22a b ,这两束光的 光程差即为平面反射镜1M 和'2M 之间的空气薄层的厚度,现在令这厚度为ι?,只有当 H t ι??时,11a b 和22a b 这两束光已经不是发光原子同一次发光中发出的了,它们之间已无恒定的位相差,因而干涉条纹非常模糊,ι?比H t ?大得愈多,干涉条纹愈模糊,甚至完全不能见到,这时11a b 和22a b 是完全不相干光,在这个例子中,我们可以看到,虽然在处理

光源的时间相干性和空间相干性对干涉、衍射的影响

109-光源的时间相干性和空间相干性对干涉、衍射现象的影响 摘要:光波作为一种概率波,其波动性已早已为我们所熟知,并且基于其波动特性的干涉和衍射现象已用于科学研究和生产实践的各个领域。因此,提高光波的相干性对充分利用干涉和衍射现象具有重要意义。光波的相干性与光源的性质有着密切的联系,因此搞清楚光源的时间相干性和空间相干性具有重要意义。 关键词:时间相干性;谱线宽度;空间相干性 正文: 光源的时间相干性体现为其单色性,即所发射光子频率的离散程度。其具体数值指标为谱线宽度,其值越小说明发射光子频率的离散程度越小,光源的单色性越好,其时间相干性越好。普通单色光源的谱线宽度的数量级为千分之几纳米到几纳米,而激光的谱线宽度只有nm,甚至更小,因此,激光的相干性要远远优于普通单色光源。也正是基于激光的强相干性,光学全息技术、非线性光学、激光制冷技术、原子捕陷等近代物理技术才获得了快速的发展。并且,多光子吸收等在普通单色光源下不可能发现的现象也在激光出现后被发现,极大地促进了人们对原子更为精系结构及能级跃迁机理的认识。 光源的空间相干性体现为光源的大小对相干性的影响。由于从普通光源的不同部位发出的光是不相干,因此光源的大小必然影响到其相干性。其具体临界数量关系式为:bd=R λ,其中λ为单色光的波长,R 为光源 与衍射孔的距离,b 为光源的宽度, d 为衍射孔的距离。当d,R, λ固定 时,光源的宽度b 必须小于R λ/d, 才可以在衍射屏上观察到干涉条 纹。同样,当b,R,λ固定时,d 必须 小于R λ/b,称该值为相干间隔,以 此来衡量光源的空间相干性。由于激光光源各处发出的光都是想干的,所以激光光源的光场相干间隔的限制,这也是激光具有强相干性的原因之一。迈克尔逊侧性干涉仪巧妙地利用了空间相干性原理来测得恒星的角直径,便是利用空间相干性的典型例子。 在光栅光谱仪的实验中,减小光入射缝的宽度实际上是相当于减小了b ,从而提高了光源的空间相干性,故得到原子光谱的谱线更加精细,体现在电脑图谱上就是突起变得更加尖锐。 参考文献 [1].张三慧.大学物理:第四册.北京:清华大学出版社,2000. [2].张三慧.大学物理:第五册.北京:清华大学出版社 ,2000.

三级大物实验报告-迈克尔孙干涉仪

实验题目:迈克尔孙干涉仪 实验目的: 了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,并增强对条纹可见度和时间相干性的认识,测量薄片折射率。 实验原理:迈克尔孙干涉仪的结构和原理 迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。 光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。 由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研

究的物体,这些都为其广泛的应用提供了方便。 透明薄片折射率的测量: 首先利用白光判断出中央条纹的位置,从而定出0d =的位置。这是由于白 光使连续光谱,只有在0d =的附近才能在1M 和' 2M 的交线处观察到干涉条纹。 当视场中出现中央条纹之后,在1M 与A 之间放入折射率为n 、厚度为l 的透明物体,则此时程差要比原来增大 )1(2-=?n l L 因而中央条纹移出视场范围,如果将1M 向A 前移d ,使2 L d ?=,则中央条纹会重新出现,测出d 及l ,可由下式 )1(-=n l d 求出折射率n 。 实验内容 1.观察非定域干涉条纹 (1)打开He-Ne 激光器,使激光束基本垂直M 2面,在光源前放一小孔光阑,调节M 2上的三个螺钉(有时还需调节M 1后面的三个螺钉),使从小孔出射的激光束,经M 1与M 2反射后在毛玻璃上重合,这时能在毛玻璃上看到两排光点一一重合。 (2)去掉小孔光阑,换上短焦距透镜而使光源成为发散光束,在两光束程差不太大时,在毛玻璃屏上可观察到干涉条纹,轻轻调节M 2后的螺钉,应出现圆心基本在毛玻璃屏中心的圆条纹。 (3)转动鼓轮,观察干涉条纹的形状,疏密及中心“吞”、“吐”条纹随程差的改变而变化的情况。

频率选择性衰落信道模型研究与仿真

南京邮电大学通达学院 毕业设计(论文)题目频率选择性衰落信道模型研究与仿真 专业网络工程 学生姓名 班级学号 指导老师何雪云 评阅教师周克琴 指导单位通信与信息工程学院无线电工程系 日期:2012年 11月 26 日至 2013 年 6月 21 日

毕业设计(论文)原创性声明 本人郑重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了谢意。 论文作者签名: 日期:年月日

摘要 在移动通信中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文研究了频率选择性衰落信道的特点;并且运用仿真软件Matlab对频率选择性衰落信道进行模拟仿真,实现了基于Jake模型的频率选择性衰落信道的建模。并利用建立起来的模型比较了具有不同载波频率、数据传输速率以及移动台移动速度的移动通信系统所具有的信道衰落特性。仿真结果表明:移动通信系统的参数会影响其信道的衰落特性。 关键词:频率选择性衰落; 瑞利衰落信道;Jake模型

ABSTRACT In mobile communications, signal arrives at the receiver through different transmission paths. The synthesis of the received signals in relation to the original signal will be faded, which is multi-path fading. In this paper, we research the frequency selective fading channels’ characteristics;And make the simulation to frequency selective fading channels with the tool MATLAB, which is based on jack model modeling. Using the established models, we compare the channel fading characteristics of different mobile communication systems which have different carrier frequencies, data transmission rates and mobile speeds. The simulation shows that: The mobile communication systems’ parameters will affect their channel fading characteristics. Keywords:Frequency-selective fading; Rayleigh channels; Jake model

时间相干性

光波的时间相干性 摘要:该文介绍光的时间相干性的原理,并作了定量分析,得出了相干时间及相干波列长度与干涉条纹清晰度关系的结论。 关键词:相干时间相干长度 从一无限小的点光源发出无限长光波列,用光学方法将其分为两束,再实现同一波列的相遇叠加,得到稳定的干涉条纹,这样的光源称为相干光源。我们知道,任何光源发射的光波只有在有限的空间范围内并且在一定的时间范围内才可以看作是稳定的。即光源向外发射的是有限长的波列,而波列的长度是由原子发光的持续时间和传播速度确定的。 我们以杨氏干涉实验为例讨论,如图所示。光源S发射一列波,被杨 b' a" b a S S' S" P P' a' r r r' r"

氏干涉装置分为两列波a'、a ",这两列波沿不同的路径r'、r "传播后,又重新相遇。由于这两列波是从同一列光波分割出来,他们具有完全相同的频率和一定的相位关系,因此可以发生干涉,并可以观察到干涉条纹。若两路的光程差太大,致使S'、S "到达考察点P 的光程差大于波列的长度,使得当波列a "刚到达P 点时,波列a'已经过去了,两列波不能相遇,当然无法发生干涉。而另一发光时刻发出的波列b 经S'分割后的波列b'和a "相遇并叠加。但由于a 和b 无固定的相位关系,因此在观察点无法发生干涉。故干涉的必要条件是两列波在相遇点的光程差应小于波列的长度。 我们知道,λ λλλδ?≈?+=2 max )(j 式中考虑到当λλ? ,该式表明, 光源的单色性决定产生干涉条纹的最大光程差,通常将max δ称为相干长度。 再由上述讨论可知,波列的长度至少应等于最大光程差,由上式 得波列的长度L 为λ λδ?==2 max L ,此式表明,波列的长度与光源的谱 线宽度成反比,即光源的谱线宽度λ?就小,波列长度就长。下表是几种光源的相干长度。 发光物质 )(o A λ )(o A λ? L (m) a N 5893 ~0.1 ~3.4*210- g H 5460.73 ~0.1 ~3*210- r K 6057 ~0.0047 ~1.0 e e N H -激光 6328 ~610- ~4*410

信道频率选择性的研究报告

多径时延展宽与采样周期的关系对信 道选择性的影响 姓名:陈启武学号:2014200557 专业:微电子学与固体电子学一、概述 在无线通信系统中,信号经过不同的路径传送到接收端,合成的接收信号相对于发送信号会产生衰落,这就是多径衰落。本文基于IEEE802.11信道模型研究了两个参量多径时延 展宽和信号的采样周期T S对该信道频率选择性的影响,并且运用仿真软件Matlab对信道频率选择性的参数进行模拟仿真,实现了基于IEEE802.11模型的信道频率选择性的建模。仿真结果表明:移动通信系统的参数会影响其信道的选择性。 二、频率选择性衰落 频率选择性衰落是指在不同的频率衰落特性不同的现象,引发频率选择性衰落的原因多是时延展宽,时域的时延展宽导致的不同频率的信号经过频率选择性衰落信道的时候具有不同的响应。对于小信号幅度的衰落,令信道的最大多径时延展宽为Tm,那么信道的相干带宽Bc=1/Tm,满足信道频道选择性衰落的条件和特点有: ·信号采样周期的0.1倍小于最大时延展宽(0.1Ts 0.1Bc); ·信道以不同方式改变信号的不同频谱成分,因此宽带信号的接收功率可能会在其带宽范围内随频率发生大的变化。

根据以上频率选择性衰落的特性,对IEEE 802.11信道模型进行仿真,可选择控制采样周期T s=50ns保持不变,研究不同的多径时延展宽对该信道频率选择性衰落特性的影响,由于Tm>0.1Ts,Tm分别取值250ns、1000ns、2500ns时,得到了一下几组仿真结果:

左图反映的是平均信道功率随信道利用指数的变化规律,右图是该信道的频率响应图。从以上三组图形对比可知:(1)从左图比较来看,多径时延展宽的越大,各信道利用指数所对应的平均信道功率越小,且从左向右衰减幅度越小; (2)从右图比较来看,多径时延展宽越大,信道的接收功率在其带宽范围内随频率发生变化越剧烈,即在相关带宽内各频率分量所对应的功率幅值衰落越强,说明信道引入的码间串扰越大。 二、平坦衰落 相干时间和相干带宽都是描述信道特性的参数,当两个发射信号的频率间隔小于信道的相干带宽,那么这两个经过信道后的,受到的信道传输函数是相似的,由于通常的发射信号不是单一频率的,即一路信号也是占有一定带宽的,如果,这路信号的带宽小于相干带宽,那么它整个信号受到信道的传输函数是相似的,即信道对信号而言是平坦特性的,非频率选择性衰落的。 如果信道的最大多径时延展宽为Tm,那么信道的相干带宽Bc=1/Tm;若发射信号的射频带宽BsTm,那么认为接收信号经历的是平坦衰落,此时接收信号的包络起伏变化,但是一般不存在码间串扰。

(完整版)通信原理试题A及答案

一填空题(每空1 分,共20 分) 1:调制信道根据信道传输函数的时变特性不同,可分为()和()两类。 2:信道容量是指() 3: 扩频的主要方式有()和()。 4:随机过程的数字特征主要有:(),()和()。 5:稳随机过程的自相关函数与其功率谱密度是()变换关系。 6:平稳随机过程自相关函数与()有关。 7:随参信道的传输媒质的三个特点分别为()、()和()。8:消息中所含信息量I与出现该消息的概率P(X)的关系式为(),常用的单位为()。 9:卷积码的译码方法有两类:一类是(),另一类是()。 10:模拟信号是利用()、()和()来实现其数字传输的。 二简答题(每题5 分,共25 分) 1、抗衰落技术有哪些。 2、按传输信号的复用方式,通信系统如何分类? 3、随参信道对所传信号有何影响?如何改善? 4、什么是复用技术?主要类型有哪些?复用与多址技术二者有何异同? 5、在模拟信号数字传输中,为什么要对模拟信号进行抽样、量化和编码? 三画图题(每题5 分,共5 分) 已知信息代码为:1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0,请就AMI码、HDB3码、Manchester码三种情形, (1)给出编码结果; (2)画出编码后的波形; 四计算题(每题10 分,共50 分) 1、现有一振幅调制信号,其中调制信号的频率f m=5KHz,载频f c=100KHz,常数A=15。 (1)请问此已调信号能否用包络检波器解调,说明其理由; (2)请画出它的解调框图; (3)请画出从该接收信号提取载波分量的框图。 2、下图中示出了一些基带传输系统的总体传输特性,若要以2000波特的码元速率传输,请问哪个满足抽样点无码间干扰的条件?

通信原理简答题题库(部分)

简答题: 1、数字通信有何优点 答案:差错可控;抗干扰能力强,可消除噪声积累;便于加密处理,且保密性好;便于与各种数字终端接口,可用现代化计算技术对信号进行处理、加工、变换、存储;便于集成化,从而使通信设备微型化。 难度:较难 2、在PCM系统中,信号量噪比和信号(系统)带宽有什么关系 答案: ) / (2 2 /H f B q N S ,所以PCM系统的输出信号量噪比随系统的带宽B按指数规律 增长。 难度:难 3、非均匀量化的目的是什么 答案:首先,当输入量化器的信号具有非均匀分布的概率密度时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比; 其次,非均匀量化时,量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。 难度:较难 3、| 4、什么是奈奎斯特准则什么是奈奎斯特速率 答案:为了得到无码间串扰的传输特性,系统传输函数不必须为矩形,而容许具有缓慢下降边沿的任何形状,只要此传输函数是实函数并且在f=W处奇对称,称为奈奎斯特准则。同时系统达到的单位带宽速率,称为奈奎斯特速率。 难度:难 4、什么是带通调制带通调制的目的是什么 答案:用调制信号去调制一个载波,使载波的某个(些)参数随基带信号的变化规律去变化的过程称为带通调制。调制的目的是实现信号的频谱搬移,使信号适合信道的传输特性。难度:难 5、若消息码序列为,试写出AMI和HDB3码的相应序列。 答案:AMI:+1-10+100-100000+1(-1+10-100+100000-1) HDB3:+1-10+100-1000-v0+1(-1+10-100+1000+v00-1) 难度:难 6、什么是多径效应 — 答案:在随参信道当中进行信号的传输过程中,由于多径传播的影响,会使信号的包络产生起伏,即衰落;会使信号由单一频率变成窄带信号,即频率弥散现象;还会使信号的某些频率成分消失,即频率选择性衰落。这种由于多径传播对信号的影响称为多径效应。 难度:中 8、什么是调制调制在通信系统中的作用是什么 答案:所谓调制,是指按调制信号的变化规律去控制高频载波的某个参数的过程。 作用是:将基带信号变换成适合在信道中传输的已调信号; 实现信道的多路复用; 改善系统抗噪声性能。 难度:难 9、FM系统的调制制度增益和信号的带宽的关系如何这一关系说明什么问题

光的时间相干性

目录 中文摘要 Abstract 引言 (1) 1.光的相干 (1) 1.1干涉条纹的对比度 (1) 1.2 空间相干性 (1) 1.3 时间相干性 (2) 2.迈克尔孙干涉仪 (5) 2.1迈克尔孙干涉仪装置 (5) 2.2迈克尔孙干涉仪原理 (5) 3.应用 (5) 3.1用迈克尔逊干涉仪测量汞相干长度 (7) 3.1.1实验方法 (8) 3.1.2数据记录 (8) 3.1.3 实验结果 (9) 3.2用迈克尔逊干涉仪测量钠相干长度 (9) 3.2.1 实验数据结果 (9) 致谢 (10) 参考文献 (10)

引言 虽然光学是物理学中最古老的一门基础学科,但是在当前科学研究中依然活跃,具有很强的生命力和研究价值。从十七世纪开始,人们发现彩色的干涉条纹并开始对其进行观察研究,一直以来以光的直线传播观念为基础的光的本性理论动摇了,从此开始进入了光的波动理论的萌芽期。十九世纪初,波动光学初步形成,产生了很多一系列的干涉方面的理论,光源的时间相干性概念也就是此刻被提出并引入了干涉理论当中去的。 光源的时间相干性是掌握光的干涉和衍射现象的一个很重要的方面,它用相干长度和相干时间来表示。光源时间相干性主要是与干涉现象中条纹的清晰度有着很大的关联,知道了它们之间内在的影响关系之后,就可以很容易的,通过改变某些条件来得到清晰的对比度较好的条纹,从而便于我们观察,加深认识,也更容易对波动光学理论的基础进行理解跟掌握。在当今,社会生活中的很多方面都与光的时间相干性有着紧密的联系,在光的时间相干性的基础上运用光的干涉进行精度的评估,如长度的精密测量,及检验工件表面的差异等。 1.光的相干 1.1干涉条纹的对比度 为了描述两波交叠区域内的干涉条纹的清晰程度,引入对比的概念。干涉条纹对比定义为 min max min max I I I I V +-= (1.1) 式(1.1)中max I ,min I 分别为条纹光强的极大值和极小值。当max I =0时, 1=V ,此时条纹的反差最大,对比度最大,干涉条纹最清晰;当max min I I ≈时,0≈V , 此时条纹模糊,对比度为0,甚至不可辨认,看不到干涉条纹。一般的, V 总是在1~0之间。 关于干涉条纹的对比度,影响因素有很多,主要因素有产生干涉的两束光的光强比、光源的大小以及光源单色性的好坏等,本论文就是主要研究每个因素所产生的影响进行讨论。 1.2光源的相干极限宽度 空间相干性 在讨论杨氏双缝干涉实验时,假设光源S 宽度很小,可以看作是线光源。实验表明,随着光源宽度增大,干涉条纹的对比度将下降,当光源宽度达到某一个值时,对比度为零,此时干涉条纹消失。为什么会出现这种现 ?这是因为任何一个有一定宽度的光源S ,都可以看成有更细的光线光源组成的。由于光源上不同部位发出的光彼此不相干(激光光源除外),所以每个线光源各自都在屏上产生一组干涉条纹。这些干涉条纹彼此错开,产生非相干叠加,结果是屏上的条纹变得模糊不清以至消失,条纹的对比度下降为零。 定义干涉条纹的对比度下降为零时,光源的宽度0b 称为光源相干的极限宽度。光源相干的极限宽度0b 可如下求出,如图1.1 ,射光源到双缝屏G 的距离为B ,光源发

频率选择性衰落信道模型研究与仿真 开题报告

南京邮电大学通达学院毕业设计(论文)开题报告题目频率选择性衰落信道模型研究与仿真 学生姓名班级学号专业网络工程 提纲(开题报告2000字以上): 1.对指导教师下达的课题任务的学习与理解 随着无线通信业务需求量急剧增长,有限的频谱资源显得越来越紧张。未来物联网与无线通信网的融合更将占用频谱资源的范围扩展到世上万物。由于多数频谱资源被分配作授权频段,可灵活使用的非授权频段十分有限,而相当数量的授权频谱资源利用率非常低。目前,为提高频谱资源利用率,大部分研究都集中在编码调制等集中式静态频谱分配策略上,并不能灵活地完成时间空间上已分配频谱的动态复用。 无线通信系统的性能主要受到移动无线信道的制约。在陆地移动通信中,移动台常常工作在城市建筑群和其它地形地物较为复杂的环境中,其传输信道的特性是随时随地而变化的,移动无线信道上传输的信号要受到传播路径损耗,衰落和噪声干扰,这些都影响了通信系统的性能。所以在进行移动通信系统关键技术的理论研究时,信道模型是首要确定的问题。基于抽头延时线的频率选择性衰落信道,是非常常用的一种信道模型。 本次毕业设计就是要深入理解无线信道的特点和分类,重点研究频率选择性衰落信道,并利用Matlab仿真工具通过Jake模型和抽头延时线对其进行建模。通过建立的模型掌握载波频率、移动台移动速度等对信道衰落特性的影响。 2.阅读文献资料进行调研的综述 ⑴无线信道的分类和特点 (一)信道类别 1、短波信道:短波按照国际无线电咨询委员会(CCIR,现在的ITU-R),的划分是指波 长在l00m~l0m,频率为3MHz~30MHz的电磁波。利用短波进行的无线电通信称为短波通信,又称高频(HF)通信。实际上,为了充分利用短波近距离通信的优点,短波通信实际使用的频率范围为1.5MHz~30MHz。与卫星通信、地面微波、同轴电缆、光缆等通信

有关衰落的理解汇总

2009年8月23日 什么是衰落(fading)? 对于S---- D这样一个发送接收系统来说,理想的无线信号传播(自由空间传播模型)是由S发送的电磁信号经过一定衰减(attenuation ) 达到D点,我们可以理解为信号沿着S-D的直线从S传播到D点。虽然,电磁波实际上是以球面波的形式向周围360度辐射,但是只有沿着S-D 直线传播的信号才能抵达D点,我们也可以把S-D路径称为直射路径。这是对于自由空间来说的,在自由空间模型里面除了S和D,什么也没有。 而对于实际的大气传播环境,大气中包含着许多的小颗粒(悬浮物),或者其他的小粒子,从S出发,沿着非S-D方向的其他方向传播的电磁波可能经过一系列的反射(散射)后而抵达接收端D,我们把这种路径成为散射路径。由于大气中存在很多的小颗粒,我们可以猜测将会有很多的散射路径。由于每一条散射路径经历的路程都不一样,这样,他们抵达接收端的相位各不相同,如果恰巧各个相位相同,这样,多个信号进行叠加会导致总的信号增强,而如果相位互不相同,各个信号叠加则会互相抵消,导致总的信号强度变低。这样,我们把由于信号经过了多个路径而抵达接收端导致信号强度发生随机变化的现象称为衰落(fading),也称为多径衰落。

广义的衰落还包括由降水、绕射等其他原因引起的非正常衰减引起的衰落。然而,如果不是特别声明,当我们说衰落的时候,一般特指多径衰落。 由于衰落是个随机现象,对于随机事件,我们一般使用概率分布等统计特性来描述,最常见的是瑞利衰落,也就是说接收信号强度服从瑞利分布。 瑞利衰落是如何来的? 假设发射信号经过多条传播路径到达接收点,来自不同的路径信号的相对时延较小,在接收机处不可分辨(即平坦衰落),合成为一条单独的路径,接收的等效低通复信号表示为: u(t)exp(j*p(t))=sigma(K=1->K=N)u(k)(t)*exp(j*p(k)(t)) = sigma(K=1->K=N)ui(k)(t)cos(p(k)(t))+ sigma(K=1->K=N)ui(k)(t)sin(p(k)(t)) =ui(t)+j*uq(t) u(t)也称为信号的复包络,而p(t)称为信号的相位。 式中N 为路径的数目, ui 和uq分别表示同向和正交分量。 sigma(K=1->K=N)表示从1到N项求和。 根据无线环境的不同,复包络u(t)和相位p(t) 将具有不同的分布。 如果信道中不存在较强的直射路径,并且传播路径数目较多,各个路径统计独立,依据中心极限定理,可以认为ui 和uq 都将服从高斯分布,

快衰落&慢衰落平坦衰落&频率选择性衰落(相干时间&相干带宽)

快衰落&慢衰落/平坦衰落&频率选择性衰落 (相干时间/相干带宽) 概述 快衰落示意图 快衰落主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,它反映微观小范围内数十波长量级接收电平的均值变化而产生的损耗,其变化率比慢衰落快,故称它为快衰落,由于快衰落表示接收信号的短期变化,所以又称短期衰落(short-term -fading)。 移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。可见快衰落与慢衰落并不是两个独立的衰落(虽然它们的产生原因不同),快衰落反映的是瞬时值,慢衰落反映的是瞬时值加权平均后的中值。移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象叫做快衰落。 1多径效应 快衰落现象

(1)时延扩展:多径效应(同一信号的不同分量到达的时间不同)引起的接受信号脉冲宽度扩展的现象称为时延扩展。时延扩展(多径信号最快和最慢的时间差)小于码元周期可以避免码间串扰,超过一个码元周期(WCDMA中一个码片)需要用分集接受,均衡算法来接受。 (2)相关带宽:相关带宽内各频率分量的衰落时一致的也叫相关的,不会失真。载波宽度大于相关带宽就会引起频率选择性衰了使接收信号失真。 2多普勒效应 衰落成因分类图 时间选择性衰落 是指快速移动在频域上产生多普勒效应而引起频率扩散。在不同的时间衰落特性不一样。由于用户的高速移动在频域引起了多普勒频移,在相应的时域上其波形产生了时间选择性衰落。最有效的克服方法是采用信道交织编码技术。即将由于时间选择性衰落带来的大突发性差错信道改造成为近似性独立差错的AWGN 信道。 空间选择性衰落 是指不同的地点、不同的传输路径衰落特性不一样,它是由于开放型的时变信道使天线的点波束产生了扩散而引起了空间选择性衰落。它通常由被称为平坦

【报告】迈克尔孙实验报告

【关键字】报告 迈克尔孙实验报告 篇一:迈克尔孙干涉仪实验实验报告 实验题目:迈克尔逊干涉仪实验成绩: 一、实验目的 1、学习迈克尔逊干涉仪的使用; 2、测量He-Ne激光器发出光波的波长。 二、实验仪器用具 计算机及其仿真软件 三、实验原理 (一)光的干涉 对于薄膜干涉,当光程差满足正式时,将分别出现明暗相间的条纹,即 ?k?????2ek??/2???(2k?1)?/2?明条纹暗条纹(1) 在迈克尔逊干涉仪中M1与M2的像之间可以视为薄膜,由(1)式可知,相邻两条明条纹或暗条纹之间的光程差为2e???,对应薄膜之间的厚度差为e??/2。因此当视野中移过n 条干涉条纹时,则M1移动的距离为 h?ne?n? 2(2) 实验时只需测出当视野中移过n条干涉条纹时,M1移动的距离,即可以利用(2)来测量光波的波长。 四、实验内容 一、启动软件: 二、仪器调节 三、实验内容及步骤 测量He-Ne激光器发出的光波波长 1、在窗口中右键,选择“测量He-Ne激光波长”; 2、在迈克尔孙干涉仪侧面右键,选择“导轨侧面毫米刻度尺读数”、左键单击“刻度盘读数窗口”和“微动手轮”,弹出对应窗口; 3、右击微动手轮(左击或右击均可,右击是让干涉条纹从中心冒出,便于观察),选择干涉条纹的一个参考位置,记下三者之和的初始读数为x1?; 4、继续右击微动手轮,让干涉条纹从中心冒出,当连续冒出n?100个干涉条纹时,刻度尺三者之和的读数为x2? ; 5、M1移动的距离为h?x2?x1? ; 6、利用(2)计算He-Ne激光器发出的光波波长 ??2h? n 相对误差为E? ,其中He-Ne激光的波长为6.328?10m。?7

相关主题
文本预览
相关文档 最新文档