当前位置:文档之家› 高数习题集(附答案)

高数习题集(附答案)

高数习题集(附答案)
高数习题集(附答案)

第一章 函数与极限

§1 函数

必作习题

P16-18 4 (5) (6) (8),6,8,9,11,16,17

必交习题

一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从

出站经过T 时间后,又以等减速度a 2进站,直至停止。

(1) 写出火车速度v 与时间t 的函数关系式;

(2) 作出函数)(t v v =的图形。

二、 证明函数1

2+=

x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin

)(2= ;

(2)1

212)(+-=x x x f ;

(3))1ln()(2++=x x x f 。

四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数

必作习题

P31-33 1,8,9,10,16,17

必交习题

一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:

(1))(x e f ;

(2))(ln x f ;

(3))(arcsin x f ;

(4))(cos x f 。

二、(1)设)1ln()(2x x x f +=,求)(x e f -;

(2)设23)1(2+-=+x x x f ,求)(x f ;

(3)设x x f -=

11)(,求)]([x f f ,})

(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。

四、设???>+≤-=0,

20,

2)(x x x x x f ,???>-≤=0,0,)(2x x x x x g ,求)]([x g f 。

P42 3 (3) (4),4,5,6

必交习题

一、 写出下列数列的前五项 (1)3sin 31n n x n =

(2)n n n n x n ++++++=

22212111 ;

(3)n

x n x n n n

)1(1211122-=+++=-, 。

二、已知n

x n

n )1(1-+=,用定义证明:0lim =∞→n n x

P50 1 (2) (4),2(2),3,4,7,9

必交习题 一、用极限的定义证明:41

22 lim 21=--→x x x 。

二、用极限的定义证明:656 lim =+∞→x

x x 。

三、研究下列函数在0=x 处的左、右极限,并指出是否有极限: (1)x x x f ||)(=

(2)??

???<+=>-=0,10,

00,1)(2x x x x x x f

四、用极限的定义证明:2)106( lim 22

=+-→x x x

§5 无穷大与无穷小 §6 极限运算法则

必作习题

P54-55 3,4,5; P63 1,2,3

必交习题

一、举例说明(当0→x 时):(1)两个无穷小的商不一定是无穷小;(2)无界量不一定为无穷

大量。

二、求下列数列的极限: (1))121( lim 2

22n n n n n -+++∞→ =

(2)n n n n n 6

565 lim 1

1++++∞→=

(3))3

)1(27191311( lim 11

--∞→-++-+-n n n =

三、求下列函数的极限: (1)1

1 lim 1--→x x x =

(2)h

x h x h 3

30)( lim -+→=

(3)))(( lim x a x x x -++∞

→=

(4))1311( lim 31x

x x ---→=

四、设21

2)1( lim 2334-=-++++∞→x x bx x a x ,求b a ,。

§7 极限存在准则 ,两个重要极限 §8 无穷小的比较

必作习题

P 71 1,2,4; P 74 1,2,3,4

必交习题

一、 求下列极限: (1) x

x x 3sin lim ∞→=

(2)a

x a x a x --→22sin sin lim =

(3)114sin lim 0-+→x x x =

(4)114 lim +∞→??

? ??++x x x x =

(5)x

x x x 1011 lim ??

? ??-+→=

二、用极限存在准则求证下列极限:

(1)设1(0=>i a i ~),m },,max{1m a a M =;证明: M a a a n n

m n n n =+++∞→ 21lim

(2)设31>x ,),2,1(3)1(31 =++=+n x x x n

n n 。证明此数列收敛,并求出它的极限。

三、确定k 的值,使下列函数与k x ,当0→x 时是同阶无穷小: (1)

x x +-+111;

(2)53243x x -;

(3)x x sin 1tg 1--+。

四、已知11 lim 21=-++→x b a x x ,求b a 和. 。

三、用极限定义证明:

(1) 若)(∞→→n a x n ,则对任一自然数k ,也有)(∞→→+n a x k n ;

(2) 若)(∞→→n a x n ,则)(||||∞→→n a x n ,并举例说明反之未必成立;

(3) 若)(0||∞→→n x n ,则)(0∞→→n x n 。

四、 设数列}{n x 有界,又0 lim n =∞→n y ,证明0 lim n =∞

→n n y x 。

§9 函数的连续性与间断点

必作习题

P80 1,2,3

必交习题

一、当0=x 时下列函数)(x f 无定义,试定义)0(f 的值,使)(x f 在0=x 连续: (1)1111)(3-+-+=

x x x f ;

(2)x

x x f 1sin sin )(?=。

二、指出下列函数的间断点并判定其类型: (1)311)(x x x f ++=

(2))

1(||)(22--=x x x x x f ;

(3)??

???≤<-+>=-0

1)1ln(0)(1

1x x x e x f x 。

三、确定b a 和,使函数)

1)(()(---=x a x b e x f x 有无穷间断点0=x ;有可去间断点1=x 。

四、设函数)(x f 在),(+∞-∞上有定义,且对任何21,x x 有

)()()(2121x f x f x x f +=+,

证明:若0)(=x x f 在连续,则),()(+∞-∞在x f 上连续。

§10 连续函数的运算与初等函数的连续性 §11 闭区间上连续函数的性质 必作习题 P85-86 1,2,3;

P91 1,2,3 必交习题

一、 欲使 ?????->++-=-<+=1

)ln(111)(22x x x b x x x a x f ,,,

在1-=x 处连续,求b a ,。

二、求下列极限:

(1)x a

a x x ln )ln( lim 0-+→=

(2)x

x x e x 1

)( lim 0+→=

(3)x

(x-x cos 21)sin lim 33-→ππ=

(4)x x x 2sin 1

)(cos lim →=

三、证明方程=-x x 351至少有一根介于1和2之间。

四、设函数)(x f 在区间]2,0[a 上连续,)2()0(a f f =,证明在区间],0[a 上至少存在一

点0x 使得)()(00a x f x f +=。

(完整word版)高等代数习题集

高等代数习题集 苏州大学数学科学学院高等代数组收集 2003, 4,30 1.设X = ,求X。 2.设二次型f(x1, x2,... , x n)是不定的,证明:存在n维向量X0,使X0'AX0 = 0,其中A是该二次型的矩阵。 3.设W = {f (x)| f (x) P[x]4, f (2) = 0}。 a 证明:W是P[x]4的子空间。 b 求W的维数与一组基。 4.在R3中定义变换A:任意 (x1, x2, x3) R3, A(x1, x2, x3) = (2x2 + x3, x -4x2, 3x3)。 1 1, 证明:A是Rr3上线性变换, 2, 求A在基xi1 = (1, 0, 0), xi2 = (0, 1, 0), xi3 = (1, 1, 1)下的矩阵。 5.设,求正交矩阵T,使T'AT成对角形。 6.设V是数域P上n维线性空间,A是V上可逆线性变换,W是A的不变子 空间。证明:W也是A-1的不变子空间。

7.设V是n维欧氏空间,A是V上变换。若任意,V,有 (A, A) = (,)。证明:A是V上线性变换,从而是V上正交变换。 8.设X = ,求X。 9.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X0 0,使X0'AX0 > 0。 10.设A = ,W = {|R4, A = 0}。证明: 1.[1,]W是4的一个子空间。 2.[2,]求W的维数与一组基。 11.设B,C = ,在R2 x 2中定义变换A: 任意X R2 x 2, A(X) = BXC。 1, 证明:A是R2 x 2上线性变换。。 2, 求A在基E11, E12, E21, E22下的矩阵。 12.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标 准形。 13.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0), 证明:V = AV.+A-1(0)。 14.设V是n维欧氏空间。A是V上正交变换,W是A的不变子空间。证明: W也是A的不变子空间。 15.设X = ,求X。

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

武大《高等数学》期末考试试题

2000~2001学年第二学期《 高等数学 》期末考试试题(180学时) 专业班级 学号_______________ 姓名 一、 已知一个二阶常系数线性齐次微分方程有相等的实根a ,试写出此微分方程及通解。 (8分) 二、 设幂级数∑∞=?0 )1(n n n x a 在x =3处发散,在x =1处收敛,试求出此幂级数的收敛半径。(8分) 三、 求曲面323 =+xz y x 在点(1,1,1)处的切平面方程和法线方程 。(10分) 四、 设)(,0x f x >为连续可微函数,且2)1(=f ,对0>x 的任一闭曲线L,有0)(43=+∫L dy x xf ydx x ,求)(x f 。 (10分) 五、 设曲线L (起点为A ,终点为B )在极坐标下的方程为36(,2sin πθπθ≤≤= r ,其中θ=6π 对应起点A ,3 π θ=对应终点B ,试计算∫+?L xdy ydx 。(10分) 六、 设空间闭区域Ω由曲面222y x a z ??=与平面0=z 围成,其中0>a ,Σ为Ω的 表面外侧,且假定Ω的体积V 已知,计算: ∫∫Σ=+?.)1(2222dxdy xyz z dzdx z xy dydz yz x 。(10分) 七、 函数),(y x z z =由0),(=z y y x F 所确定,F 具有连续的一阶偏导数,求dz 。 (12分) 八、 计算∫∫∫Ω +,)(22dxdydz y x 其中Ω是由平面z =2与曲面2222z y x =+所围成的闭区域。(12分) 九、 已知级数 ∑∞=1n n U 的部分和arctgn S n =,试写出该级数,并求其和,且判断级数∑∞=1n n tgU 的敛散性。(12分) 十、 设)(x f 连续,证明∫∫∫??=?A A D dt t A t f dxdy y x f |)|)(()(,其中A 为正常数。D :2||,2||A y A x ≤≤ 。(8分)

考研数学高数习题集及其答案

1 函数、极限、连续 一. 填空题 1. 已知,__________)(,1)]([,sin )(2=-==x x x f x x f ??则 定义域为___________. 解. 21)(sin )]([x x x f -==??, )1arcsin()(2x x -=? 1112≤-≤-x , 2||,202≤≤≤x x 2.设?∞-∞ →=?? ? ??+a t ax x dt te x x 1lim , 则a = ________. 解. 可得?∞ -=a t a dt te e =a a t t e ae a e te -=∞ --) (, 所以 a = 2. 3. ?? ? ??+++++++++∞→n n n n n n n n n 2222211lim =________. 解. n n n n n n n n n n +++++++++2 2221 ≤x x , 则f[f(x)] _______. 解. f[f(x)] = 1. 5. )3(lim n n n n n --+∞ →=_______. 解. n n n n n n n n n n n n n n n n n n -++-++--+=--+∞ →∞ →3) 3)(3(lim )3(lim =233lim =-+++-+∞ →n n n n n n n n n

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

高数习题集(附答案)

第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

§2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0, 0,)(2x x x x x g ,求)]([x g f 。

高等数学学期期末考试题(含答案全)

05级高数(2-3)下学期期末试题 (A 卷) 专业 ____________ 姓名 ______________ 学号 ________________ 《中山大学授予学士学位工作细则》第六条:“考试作弊不授予学士学位” 一,填空题 (每题4分,共32分) 1. 213______4 x y kx y z k π +-=-==若平面与平面成 角,则 1/4 2. 曲线20 cos ,sin cos ,1t u t x e udu y t t z e = =+=+? 在t = 0处的切线方程为________________ 3. 方程z e xyz =确定隐函数z = f (x,y )则z x ??为____________ 4. ( ),dy f x y dx ?1 交换的积分次序为_________________________ 5.()2221,L x y x y ds +=-=?L 已知是圆周则 _________π- 6. 收敛 7. 设幂级数0 n n n a x ∞ =∑的收敛半径是2,则幂级数 21 n n n a x ∞ +=∑的收敛半径是 8. ()211x y ''+=微分方程的通解是 ()2121 arctan ln 12 y x x c x c =-+++_______________________ 二.计算题 (每题7分,共63分) 1.讨论函数 f ( x, y ) = 221 ,x y + 220x y +≠, f ( 0 , 0 ) = 0 在点( 0 , 0 )处的连续性,可导性及可微性。 P 。330 2.求函数2 222z y x u ++=在点)1,1,1(0P 处沿P 0方向的方向导数,其中O 为坐 标原点。 3.2 1 2.1n n n n n ∞ =?? ?+?? ∑判别级数的敛散性 P .544 4.设u=),(z y xy f +,),(t s f 可微,求du dz f dy f x f dx y f '+??? ??'+'+?'2211. 012 112x y z ---==z z yz x e xy ?=?-211sin ____________1 n n n ∞ =++∑级数的敛散性为

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求20ln(15)lim .sin 3x x x x →+ 2. (6 分)设y =求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22l n l n l n (1),12 x y x x ==-++ 2分 2212[]121 x y x x '∴=-++ 4分

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高等数学习题集[附答案及解析]

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+=x x y 在),(+∞-∞内是有界的。

--------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------- 三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

(精选)大一高数期末考试试题

一.填空题(共5小题,每小题4分,共计20分) 1. 2 1 lim() x x x e x →-= .2. ()()1 2005 1 1x x x x e e dx --+-= ? .3.设函数()y y x =由方程 2 1 x y t e dt x +-=? 确定,则 x dy dx == .4. 设()x f 可导,且1 ()()x tf t dt f x =?,1)0(=f , 则()=x f .5.微分方程044=+'+''y y y 的通解 为 . 二.选择题(共4小题,每小题4分,共计16分) 1.设常数0>k ,则函数 k e x x x f +- =ln )(在),0(∞+内零点的个数为( ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分 方程43cos2y y x ''+=的特解形式为( ). (A )cos2y A x *=; (B )cos 2y Ax x * =; (C )cos2sin 2y Ax x Bx x * =+; (D ) x A y 2sin *=.3.下列结论不一定成立的是( ). (A )若[][]b a d c ,,?,则必有()()??≤b a d c dx x f dx x f ;(B )若0)(≥x f 在[]b a ,上可积, 则()0b a f x dx ≥?;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有 ()()?? +=T T a a dx x f dx x f 0 ;(D )若可积函数()x f 为奇函数,则()0 x t f t dt ?也为奇函数.4. 设 ()x x e e x f 11 321++= , 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1. 计算定积分 2 30 x e dx - 2.2.计算不定积分dx x x x ? 5cos sin . 求摆线???-=-=),cos 1(),sin (t a y t t a x 在 2π= t 处的切线的方程.

吉林大学历届高数考题及答案

2008~2009学年第一学期《高等数学B Ⅰ》试卷 2009年1月12日 一、填空题(共7道小题,每小题3分,满分21分) 1.2lim 1n n n n →∞-?? = ?+?? . 2.设2log y =d y = . 3.若00()()f x x f x +?-与sin2x ?为0x ?→时的等价无穷小,则0()f x '= . 4.设函数)(x y y =由方程3 3 1, x t y t t ?=-??=-??所确定,则1 d d t y x == . 5.曲线2610y x x =-+在点(3,1)处的曲率为 . 6.设()d cos f x x x C =+?,则() ()d n f x x ?= . 7.3 1 2 1 1d 1x x x -+=+? .

1.下列叙述正确的是 (A )有界数列一定有极限. (B )无界数列一定是无穷大量. (C )无穷大量数列必为无界数列. (D )无界数列未必发散. [ ] 2.设数列(){}0,1,2,n n a a n >= 满足1lim 0n n n a a +→∞ =,则 (A )lim 0n n a →∞ =. (B )lim 0n n a C →∞ =>. (C )lim n n a →∞ 不存在. (D ){}n a 的收敛性不能确定. [ ] 3.设()f x ,()g x 在区间[,]a b 上可导,且()()f x g x ''>,则在[,]a b 上有 (A )()()0f x g x ->. (B )()()0f x g x -≥. (C )()()()()f x g x f b g b ->-. (D )()()()()f x g x f a g a ->-. [ ] 4.设()f x 有三阶连续导数,且满足000()()0,()0f x f x f x ''''''==<,则下列结论正确的是 (A )()f x '的极小值为0. (B )0()f x 是()f x 的极大值. (C )0()f x 是()f x 的极小值. (D )点00(,())x f x 是曲线()y f x =的拐点.[ ] 5.已知|| e d 1k x x +∞ -∞=?,则k = (A )0. (B )-2. (C )-1. (D )-0.5. [ ] 6.摆线(sin ) (1cos )x a t t y a t =-?? =-? 的一拱与x 轴所围的平面图形绕x 轴旋转所得旋转体的体积 x V = (A )2220(1cos )d[(sin )]a a t a t t ππ--?. (B )2220 (1cos )d a t t π π-?. (C )2220 (1cos )d a a t t ππ-? . (D )2220 (1cos )d[(sin )]a t a t t π π--?. [ ] 7.设向量,a b 满足||||-=+a b a b ,则必有 (A )-=a b 0. (B )+=a b 0. (C )0?=a b . (D )?=a b 0. [ ]

高等数学习题集及答案

第一章 函数 一、选择题 1. 下列函数中,【 】不是奇函数 A. x x y +=tan B. y x = C. )1()1(-?+=x x y D. x x y 2sin 2 ?= 2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 3 3)(,)(x x g x x f = = B.x x x g x f 22tan sec )(,1)(-== C. 1 1 )(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f == 3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =? 4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 5. 函数arctan y x =的定义域是【 】 A. (0,)π B. (,)22ππ - C. [,]22ππ - D. (,+)-∞∞ 6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 】是相同的函数 A. 2()ln f x x =和 ()2ln g x x = B. ()f x x =和()g x = C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】 A. ()cos f x x = B. ()arccos f x x = C. ()tan f x x = D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】 A. (,)22 ππ - B. (0,)π C. (,)-∞+∞ D. [1,1]- 12. 下列函数是奇函数的是【 】

《高等数学B》本科期末考试试卷A卷

西南科技大学2013-2014-2学期 《高等数学B2》本科期末考试试卷(A卷) C.6 D.8 1 1)n的敛散性为()

4、求函数3u xy z =在点(1,1,2)-处的梯度__________。 5、设,αβ为有向曲线弧L 在点(,)x y 处的切向量的方向角,则平面曲线L 上的两类曲线积分的关系(________________)L L Pdx Qdy ds +=??。 三、解答题(1-2小题每题8分,3-8小题每题9分,共70分) 1、求曲面22214x y z ++=上平行于平面2320x y z ++=的切平面方程。 2、设2 2 (,),z f x y xy =-,其中f 具有连续的二阶偏导数,求2z x y ???。 3、求函数4242z x xy y =-+的极值。 4、计算|1|D I x y dxdy =+-??,其中[0,1][0,1]D =?。 5、把二次积分4 2200 )dx x y dy +?化为极坐标形式,并计算积分值。 n n 的收敛半径与收敛域。的一段弧。西南科技大学《高等数学B2

000 123 x y z k ===令 ,代入方程22214x y z ++=中可得1k =±---————--4分, 在点(1,2,3)处的切平面为2314x y z ++=-————----2分, 在点(-1,-2,-3)处的切平面为23140x y z +++=----————-2分。 2、解:122(3)z xf yf x ?'' =+?分。 3、解:3440,440x y z x y z x y =-==-+=求得驻点为(0,0),(1,1),(-1,-1)。(3分) 212,4,4xx xy yy A z x B z C z ====-==,在点(0,0)处2160AC B -=-<没有极值,(3分) 在点(1,1)和(-1,-1)处2320,0AC B A -=>>,所以有极小值(1,1) 1.z ±±=-(3分) 4、解: 5 、解3334 4cos 22 3 4 2200 )64cos 12dx x y dy d r dr d π π θ θθθπ+===??? ?分 分 分 。 6、解:131lim 3 31n n n n n ρ+→∞==+,所以收敛半径为3,收敛区间为323x -<-<,即15 x -<<(3分) 当5x =时11313n n n n n n ∞ ∞===∑∑发散(2分),当1x =-时11 (3)(1)3n n n n n n n ∞∞ ==--=∑∑收敛,(2分) 因此原级数的收敛域为[1,5)-。(2分) 7、解:42332,4,24Q P P xy y Q x xy x y x y ??=-=-==-??,所以该曲线积分和积分路径无关。(4分) 11 4 2 3 30 (23)(4)314)=3L xy y dx x xy dy dx y dy -++-=+-???((5分) 8、解:由高斯公式得22322()2=()xy dydz x y z dzdx xydxdy x y dxdy ∑ Ω +-++?????(4分) 由柱面坐标2 24 2230028()3 r x y dxdydz d r dz ππ θΩ +== ?????(5分)

高数习题集B

高数习题集B Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

大学数学A (下)试题库 一、行列式、矩阵的运算 1.设a ,b 为实数,且0 00101 a b b a -=--,则( ) =0,b =0; =1,b =0; =0,b =1; =1,b =1 2.排列53142的逆序数(53142)τ=( ) A .7 ; B .6; C .5 ; D .4 3. 计算行列式 =----3 23 2 020005 1020203 ( ) ; ; ; 4. 设行列式D 1=2 22 2 1111 a c b a a c b a a c b a +++,D 2=22211 1c b a c b a c b a ,则D 1= ) A .0; B .D 2; C .2D 2; D .3D 2 5. 已知行列式a 5 2231 52 1-=0,则数a =( ) ; ; ; 6. 设行列式11 121321 2223313233a a a a a a a a a =2,则1112 13 212223313233232323a a a a a a a a a ------=( ) A .-12; B .-6; C .6; D .12 7. 设行列式==1 11103 4 222,1111304z y x z y x 则行列式( ) A. 32 ; ; ; D.3 8

8. 设行列式01 1102 1 2=-k k ,则k 的取值为( ) ; 或3; ; 或2 9. 设矩阵A =(1,2),B =? ?? ? ??4321,C ???? ??=654321则下列矩阵运算中有意义的是( ) A .ACB; B .ABC; C .BAC; D .CBA 10.设A 为三阶方阵,且|A |=2,则|-2A |=( ) A .-16; B .-4; C .4; D .16 11.设矩阵123456709?? ?= ? ??? A ,则* A 中位于第2行第3列的元素是( ) A .-14; B .-6; C .6; D .14 12.设A 是n 阶矩阵,O 是n 阶零矩阵,且2 -=A E O ,则必有( ) A .1 -=A A ; B .=-A E ; C .=A E ; D .1=A 13.下列等式中正确的是( ) A .()2 22 B BA AB A B A +++=+ B .()T T T B A AB = C .()( )2 2 B A B A B A -=+-  D .()A A A A 233-=- 14. 设A =? ?? ???4321,则|2A *|=( ) ; ; ; 15. 设A ,B ,C 均为n 阶方阵,AB =BA ,AC =CA ,则ABC =( ) A .ACB; B .CAB; C .CBA ; D .BCA 16. 设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |的值为( ) A .-8; B .-2; C .2; D .8

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 π π -?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 2 4 1(sin )x x x dx -+=? . 3. (3分) 2 1lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15)lim .sin 3x x x x →+ 2. (6 分)设1 y x = +求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ? ≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt + =?? 所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ?? ? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π?? =- ≤≤ ?? ? 与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().2 2 b b a a b a f x dx f a f b x a x b f x dx -''= ++ --? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 312 2 +--= x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数()2 1ln x y +=,则= 'y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1 = 在点?? ? ??2,21处的切线方程为 .

相关主题
文本预览
相关文档 最新文档