当前位置:文档之家› 4-1.5函数y=Asin(wx+φ)(A》0,w》0的图象

4-1.5函数y=Asin(wx+φ)(A》0,w》0的图象

4-1.5函数y=Asin(wx+φ)(A》0,w》0的图象
4-1.5函数y=Asin(wx+φ)(A》0,w》0的图象

4-1.5函数y=Asin(wx+?)(A>0,w>0的图象

教学目标:

1. 分别通过对三角函数图像的各种变换的复习和动态演示进一步让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数y = Asin(wx+4)(A>0,w>0)图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。 教学重点:

函数y = Asin(wx+?)的图像的画法和设图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。 教学难点:

各种变换内在联系的揭示。

教学过程: 一、 复习旧知

1.“五点法”作函数y=sinx 简图的步骤,其中“五点”是指什么?

2. 函数y = sin(x ±k)(k>0)的图象和函数y = sinx 图像的关系是什么?

生答:函数y = sin(x ±k)(k>0)的图像可由函数y = sinx 的图像向左(或右)平移k 个单位而得到,学生回答后,教师应用多媒体演示变化过程,并要求同学观察图像上点坐标的变化,然后进一步总结出这种变换实际上是纵坐标不变,横坐标增加(或减少)k 个单位,这种变换称为平移变换。

3. 函数y = sinwx (w>0)的图像和函数y = sinx 图像的关系是什么?

学生答:函数y = sinwx(w>0)的图像可由函数y = sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的

ω

1

倍而得到,称为周期变换。 演示:教师运用多媒体演示变化过程,并要求学生观察图像上点坐标的变化,然后进一步总结这种变化的实质是纵坐标不变,横坐标伸长(01)到原来的ω

1

倍。 4. 函数y = Asinx(A>0)的图像和函数y = sinx 图像的关系是什么?

学生答:函数y = Asinx 的图像可由函数y = sinx 的图像沿y 轴伸长(A>1)或缩短(x<1)到原来的A 倍而得到的,称为振幅变换。

演示:教师利用多媒体,运用制好的课件将变化过程演示给学生看,并要求学生具体观察图像上点坐标的变化,然后归纳出这种变换的实质是:横坐标不变,纵坐标伸长(A> | )或缩小(0

上面我们学习和复习了三种函数y = sin(x ±k),y = sinwx ,y = Asinx 的图像和函数y = sinx 图像的关系,那么函数y = Asin(wx+?)(a>0,w>0) 的图像和函数y = sinx 的图像有何关系呢?三、尝试探究

1. 函数y = Asin(wx+?)的图像的画法。

为了探讨函数y = Asin(wx+?)的图像和函数y = sinx 图像的关系,我们先来用“五点法”作函数y = Asin(wx+?)的图像。

例:作函数y = 3sin(2x+3

π

)的简图。 解:⑴设Z= 2x +3π,那么3xin(2x+3π)= 3sin Z ,x=2z 3

π-=6

2z π-,分别取z = 0,2π,

π,

23π,2π,则得x 为6π-,12π,3π,127π,6

5π,所对应的五点为函数y=3sin(x 3π

-)在一个周期[6π-,6

]图象上起关键作用的点。 ⑵列表

⑶描点作图,运用制好的课件演示作图过程。(图略)

2. 函数y=Asin(wx+?)(A>0,w>0)图像和函数y=sinx 图像的关系。

利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx 的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+?)图像的。 归纳1:先把函数y = sinx 的图像上的所有点向左平行移动

3π个单位,得到y = sin(x 3 +3

π)

的图像,再把y = sin(x +3π

)的图像上所有的点的横坐标缩短到原来的2

1倍(纵坐标不变),得到y = sin(2x +

3π)的图像,再把y = sin(2x +3

π

)的图像上所有的点的纵坐标伸长到原来的3倍(横坐标不变),从而得到y = 3sin(2x +

3

π

)图像。 归纳2:函数y = Asin(wx+?),(A>0,w>0)的图像可以看作是先把y = sinx 的图像上所有的点向左(?>0)或向右(?>1)平移|?|个单位,再把所得各点的横坐标缩短(w>1)或伸长

(0

1

倍(纵坐标不变),再把所得各点的纵坐标伸长(A>1)或缩短(0

来的A 倍,(横坐标不变)。即:平移变换→周期变换→振幅变换。三、尝试探究 1. 函数y = Asin(wx+?)的图像的画法。

为了探讨函数y = Asin(wx+?)的图像和函数y = sinx 图像的关系,我们先来用“五点法”作函数y = Asin(wx+?)的图像。

例:作函数y = 3sin(2x+3

π

)的简图。 解:⑴设Z= 2x +3π,那么3xin(2x+3π)= 3sin Z ,x=2z 3

π-=6

2z π-,分别取z = 0,2π,

π,

23π,2π,则得x 为6π-,12π,3π,127π,6

5π,所对应的五点为函数y=3sin(x 3π

-)在一个周期[6π-,6

]图象上起关键作用的点。 ⑵列表

⑶描点作图,运用制好的课件演示作图过程。(图略)

2. 函数y=Asin(wx+?)(A>0,w>0)图像和函数y=sinx 图像的关系。

利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx 的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+?)图像的。四、指导创新 上面我们学习了函数y = Asin(wx+?)的图像可由y = sinx 图像平移变换→周期变换→

振幅变换的顺序而得到,若按下列顺序得到y = Asin(wx+?)的图象吗? ⑴周期变换→平移变换→振幅变换 ⑵振幅变换→平移变换→周期变换 ⑶平移变换→振幅变换→周期变换

教师利用制作好的课件,运用多媒体逐一演示验证,让学生发现规律:若周期变换在前,平移变换在后,则得到的函数图像不是函数y = Asin(wx+?)的图像,振幅变换出现在前或后不会影响得到函数y = Asin(wx+?)的图像。

教师指导学生探讨⑴的变换顺序不能得到函数y = Asin(wx+?) (A>0,w>0)图像的原因,并通过在平移变换过程中的单位变换而调整到函数y = Asin(wx+?)图像的一般公式。

原因:y = sinx 倍

伸长或缩短周期变换

ω

??????→?1 y =Asinwx 个单位

平移平移变换

???

???→? y = sinw(x+?) = sin(wx+w ?)倍伸长或缩短振幅变换

A ?????→?y = Asin(wx+w ?)

一般公式:将平移变换单位改为:w

?即可。

五、归纳小结

本节课我们进一步探讨了三角函数各种变换的实质和函数y = Asin(wx+?)(A>0,w>0)的图像的画法。并通过改变各种变换的顺序而发现:平移变换应在周期变换之前,否则得到的函数图像不是函数y =Asin(wx+?)的图像由y = sinx 图像的得到。 六、变式练习

1. 作下列函数在一个周期的闭区间上的简图,并指出它的图像是如何由函数y = sinx 的图像而得到的。 ⑴y = 5sin(

21x+6π

);⑵y =21sin(3x 4

π-) 2. 完成下列填空

⑴函数y = sin2x 图像向右平移

12

个单位所得图像的函数表达式为 ? ⑵函数y = 3cos(x+4π)图像向左平移3

π

个单位所得图像的函数表达式为 ?

⑶函数y = 2log a 2x 图像向左平移3个单位所得图像的函数表达式 ?

⑷函数y = 2tg(2x+

3

π

)图像向右平移3个单位所得图像的函数表达式为 ?

七、布置作业(略)

数学人教版八年级下册函数的图象在实际生活中的运用

19.1.2 函数图象 第3课时 教学、学习目标: 1、对比函数的三种表示方法,体会不同的表示方法的优点与不足。 2、能根据解题的实际需要,将三种表示函数的方法相互转化。 3、提高识图能力、分析函数图象信息能力。 4、能解决与函数相关的简单问题的能力。 教学重点:运用函数的三种表示方法解决相关问题。 教学难点:分析概括实际问题图象中的信息。 教学过程 一、提出问题,创设情境 1、回顾前面的问题,表示两个变量的对应函数关系有哪些方法? 借助图形展示,由学生回答,点出三种表示方法:图象法、列表法、解析式法 2、你认为这三种表示函数的方法各有什么优点? 在学生回答的基础上适当归纳,进而提出三种方法在实际问题中的运用 3、学生自学课本P79—80,完成导学案P55预习导学部分 二、新课探究: 1、探究活动1(P79练习2)如图是两地某一天气温变化图 师生共同解决相关问题,明确认识图象变化 2、探究活动2例4一水库的水位在最近5 h 内持续上涨,下表记录了这5 h 内6 个时间点的水位高度,其中t 表示时间,y表示水位高度. t/h 0 1 2 3 4 5 y/m 3 3.3 3.6 3.9 4.2 4.5 (1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律? (2)水位高度y 是否为时间t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出函数图象.这个函数能表示水位的变化规律吗? (3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将达到多少米.师生共同解决例题,分析不同表示方法的运用及相互转化过程。 进一步明确解决实际问题的方法

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中数学函数图象高考题

函数图象B1 .函数y = a| x | (a > 1)的图象是( ) B() B3.当a>1时,函数y=log a x和y=(1-a)x的图象只可能是() A4.已知y=f(x)与y=g(x)的图象如图所示 则函数F(x)=f(x)·g(x)的图象可以是(A) B5.函数(1) || x xa y a x =>的图像大致形状是()D

A B C D D 7.函数x x y cos -=的部分图象是( ) A 8.若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) A 9.一给定函数) (x f y =的图象在下列图中,并且对任意)1,0 (1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是 ( ) A B C D C 10.函数y=kx+k 与y=x k 在同一坐标系是的大致图象是( ) A D C

A 12. 当a >1时,在同一坐标系中,函数y =a - x 与y =log a x 的图像( ) B 13. 函数1 1 1--=x y 的图象是( ) D 14.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( ) A .0,1<>b a B .0,1>>b a C .0,10><

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

(完整版)高中各种函数图像及其性质(精编版)

高中各种函数图像及其性质 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b(k,b是常数,且k 0 )的函数,叫做一次函数,其中x 是自变量。当 b 0时,一次函数y kx,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当 b 0,k 0时,y kx仍是一次函数. ⑶当 b 0,k 0时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式y=kx (k 不为零)① k 不为零② x 指数为 1 ③ b 取零当k>0 时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0 时,?直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小. (1)解析式:y=kx (k 是常数,k≠ 0) (2)必过点:(0,0)、(1,k) (3)走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5)倾斜度:|k| 越大,越接近y 轴;|k| 越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y叫做x的一次函数.当b=0时, y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.

高中数学教参——函数图像

第八节函数的图象[备考方向要明了] 考什么怎么考 1.掌握函数图象画法. 2.会利用变换作函数图象. 3.会运用函数图象理解和研究函 数的性质,解决方程解的个数与 不等式的解的问题. 4.会用数形结合思想、转化与化 归思想解决函数问题. 1.由于题型的限制江苏没有单独对图象的画法进行考查, 但不单独考查,并不意味基本作图的方法不用掌握. 2.函数图象的考查主要是其应用如求函数的值域、单调区 间,求参数的取值范围,判断非常规解的个数等,以此考 查数形结合思想的运用,在每一年的江苏高考中大量存 在,如2012高考T13、T18等. [归纳知识整合] 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等). 其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换: y=f(x)――――――――――→ a>0,右移a个单位 a<0,左移|a|个单位 y=f(x-a); y=f(x)――――――――――→ b>0,上移b个单位 b<0,下移|b|个单位 y=f(x)+b. (2)伸缩变换: y=f(x)―――――――――――→ 0<ω<1,伸长为原来的 1 ω倍 ω>1,缩短为原来的 1 ω y=f(ωx); y=f(x)――――――――――→ A>1,伸为原来的A倍 0

(3)对称变换: y =f (x )――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称 y =f (-x ); y =f (x )――――――→关于原点对称 y =-f (-x ). (4)翻折变换: y =f (x )―――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图 将x 轴下方图翻折上去 y =|f (x )|. [探究] 1.函数y =f (x )的图象关于原点对称与函数y =f (x )与y =-f (-x )的图象关于原点对称一致吗? 提示:不一致,前者是本身的对称,而后者是两个函数图象间的对称. 2.一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称有何区别? 提示:一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称不是一回事.函数y =f (x )的图象关于y 轴对称是自身对称,说明该函数为偶函数;而函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,是两个函数的图象对称. 3.若函数y =f (x )的图象关于点(a,0)(a >0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么? 提示:向左平移a 个单位即可;解析式变为y =f (x +a ). [自测 牛刀小试] 1.函数y =x |x |的图象经描点确定后的形状大致是________(填序号). 解析:y =x |x |=???? ? x 2,x >0,0,x =0, -x 2,x <0为奇函数,奇函数图象关于原点对称. 答案:① 2.函数y =ln(1-x )的图象大致为________. 解析:y =ln(1-x )=ln [-(x -1)],其图象可由y =ln x 关于y 轴对称的图象向右平移一个

高一数学函数的图象

§2.7函数的图象 1.描点法作图 方法步骤:(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.图象变换(1)平移变换 (2)对称变换 ①y =f (x )―――――→关于x 轴对称 y =-f (x ).②y =f (x )―――――→关于y 轴对称y =f (-x ).③y =f (x )―――――→关于原点对称y =-f (-x ). ④y =a x (a >0且a ≠1)―――――→关于y =x 对称 y =log a x (a >0且a ≠1).(3)伸缩变换 ①y =f (x )――――――――――――――――――――→ a >1,横坐标缩短为原来的 倍,纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

概念方法微思考 1.函数f(x)的图象关于直线x=a对称,你能得到f(x)解析式满足什么条件? 提示f(a+x)=f(a-x)或f(x)=f(2a-x). 2.若函数y=f(x)和y=g(x)的图象关于点(a,b)对称,则f(x),g(x)的关系是g(x)=2b-f(2a -x). 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(×) (2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.(×) (3)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(×) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称.(√)题组二教材改编 2.函数f(x)=x+1 x的图象关于() A.y轴对称B.x轴对称 C.原点对称D.直线y=x对称 答案C 解析函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(-x)=-f(x),即函数f(x)为奇函数,其图象关于原点对称,故选C. 3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________.(填序号) 答案③

《函数的图象》生活中图像识别

点击生活中的图象识别题 图象的识别是近几年中考数学中的一个重要考点,在各类试卷中,许多与生活问题密切 相关的图象识别题成为一大亮点?现撷取几例加以剖析,望能对同学们学习有所帮助?例1某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管 的水速是均匀的,那么泳池内水的高度随时间变化的图象是() h 」 L h」 J1h 」 L h 」 J II O t O t O:O t A . B. C. D. 析解:由生活经验可知,深水区和浅水区的底面积不同,且深水区面积较小,故水面的 高度上升得快,到浅水区后,水面上升时的面积比深水区要大,所以水面的高度上升得相对慢,符合变化的只有B,故选B. 例2小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿 子到后细端详,父子高兴把家还。”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是 (A)(B)(C)(D) 析解:本题通过读诗来识别图象,是一道设计新颖,具有人文气息的试题.整首诗叙述 了一个变化过程,这个变化过程分三个阶段:(1)儿子学成今日还,老父早早到车站; (2) 儿子到后细端详;(3)父子高兴把家还.能够和三个阶段大致符合的只有 C.故应选C. 例3如图是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映 容器中水的高度(h)与时间⑴之间函数关系的是()

析解:观察玻璃容器可知,其底面较大,然后逐渐减小,故滴进水后,其中上升的水面 高度应是先慢后快,到后来便匀速上升,符合上述特征的图象只有 C,故应选C. 练习: 是时间t (小时)的函数,这个函数的大致图象可能是( ) 2.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水) ,洗衣机经历了进水、清洗、排 水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量 y (升)与时间x (分钟) 之间满足某种函数关系,其函数图象大致为( ) 1.某海产品深加工厂的生产流水线每小时可生产 100件产品,生产前没有产品积 压,生产3小时后安排工人装箱,若每小时可以装产品 150件,则未装箱的产品数 y (件)

高中数学常见函数图像

高中数学常见函数图像1. 2.

过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 — 在(0,)+∞上是增函数 在(0,)+∞上是减函数 定义 形如α x y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数. 图像 性质 。 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ) ~

{ 4. 函数 sin y x = cos y x = tan y x = 图象 % 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 ( []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, / max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π — 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++??? ? 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数.

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x就是自变量,函数的定义域就是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅就是形式定义。 指数函数的图像与性 质:规律:1、当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2、当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3、四字口诀:“大增小减”。即:当a >1时,图像在R 上就是增函数;当0<a <1时,图像在R 上就是减函数。 4、 指数函数既不就是奇函数也不就是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1、对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上就是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1)、 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞)、 2、对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x 、 据此即可以画出对数函数的图像,并推知它的性质、 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x,y=log 10x,y=log 10x,y=log 21x,y=log 10 1x 的草图

高中数学常见函数图像

- 高中数学常见函数图像1.指数函数: 2.对数函数:

过定点 图象过定点(1,0),即当1x =时, 0y =. 奇偶性 非奇非偶 单调性 @ 在(0,)+∞上是增函数 在(0,)+∞上是减函数 定义 形如α x y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数. 图像 性质 【 过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 。 #

> 4. 函数 sin y x = cos y x = tan y x = 图象 ! 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 · []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, @ max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 、 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++??? ? 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数.

高中常用函数的基本性质及图像

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴

高中常见函数图像及基本性质

高中常见函数图像及基 本性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。 补充:反函数定义: 例题:定义在上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求f (4)= x y b O f (x )=b x y O f (x )=kx +b R

周期性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: 2、与曲线函数的联合运用 反比例函数f(x)= x k (k≠0,k值不相等永不相交;k越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f(x)的图象分别在 第一、第三象限;当k<0时,函数f(x)的图象分别在第 二、第四象限; 双曲线型曲线,x轴与y轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:) ,0( )0, (+∞ -∞ 值域:) ,0( )0, (+∞ -∞ 单调性:当k> 0时;当k< 0时周期性:无 奇偶性:奇函数 反函数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) x y O f(x)= d cx b ax + + 2)点关于直线(点)对称,求点的坐标

高中数学必修一函数的图像、性质及其应用

第1页共7页函数)0(a x a x y 的图像、性质及其应用 在高中数学中,我们常常会碰到形如“ )0(a x a x y ”的函数,我们称这样的函数为“双勾函数”。“双勾函数”是重要的函数之一,它的性质及图象有十分鲜明的特征和规律性,在实际问题中有着广泛的应用。 考虑到上海版高一数学新教材对这类函数的图像与性质的处理比较零星分散,为了帮助学生较系统地掌握这个知识点,同时进一步巩固学生研究 函数的方法,提高学生自主探究数学问题的能力, 故设计并实施了本节课教学的进程, 提出了本课例的教学反思. 一、案例背景:本节课安排在《函数》一章中,前有《二次函数在给定区间上的最值问题》作知识准备,后为学习《幂、指、对函数的图象和性质》作铺垫,有承上启下的作用。本节课的教学目标是掌握函数)0(a x a x y 的图像和性质;初步应用函数) 0(a x a x y 的图像和性质解决函数的最值;并在师生共同运用已学知识研究新知识的过程中, 有机渗透数形结合、分类讨论、转化的数学思想,培养学生探究数学问题的意识与能力 . 二、教学设计思路: 三、教学过程: (一)知识引入阶段 师:前段时间,我们学习了函数的概念、性质,并研究了“二次函数在给定区间上的最值问题”。今天,我们将研究一类新的函数。现在,先请大家解决下面这个问题 . 问题:求函数)0(1 x x x y 的最值;若求它在3,2x 上的最值呢? 生1:由基本不等式求得函数的最小值是2,无最大值. 研究 x x y 1 的图像性质应用) 0(a x a x y 的图像性质求最值 归纳)0(a x a x y 的图像性质拓展 ) 0,0(b a x b ax y 的图像性质

生活中函数图象

A C B D 生活中的函数图象 1. 张老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是() 2. 如图,一艘旅游船从码头A驶向景点,C途经景点. B D 、,它先 从码头A沿以D为圆心的弧AB行驶到景点,B然后从B沿直径 BC行驶到⊙D上的景点.C假如旅游船在整个行驶过程中保持匀 速,则下面各图中能反映旅游船与景点D的距离随时间变化的图象 大致是( ) 3. 存物资S(吨)与时间t(时)之间的函数关系可能是() 4. 一条笔直的高速公路将A、B两地连接起来, 甲车从A地匀速开往B地,乙车从B地匀 速开往A地,已知甲车速度为80h km/,甲车 速度大于乙车,设甲、乙两车距离为S,行驶 时间为t,S与t的函数图像如图所示,则 乙车速度为() A.h km/ 50 B.h km/ 48 C.h km/ 36 D. h km / 45

5.2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财产遭受重大 损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离s(千米)与时间t(小时)之间函数关系的大致图象是() A.B.C.D. 7.(2012?重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是() A.B.C. D. 8. (2013?重庆)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y与x B 观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()

函数的图像和函数的三种表示方法

函数的图象 课前预习 要点感知1对于一个函数,如果把自变量与函数的________分别作为点的横、纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的________. 预习练习1-1下列各点在函数y=3x+2的图象上的是( ) A.(1,1) B.(-1,-1) C.(-1,1) D.(0,1) 1-2点A(1,m)在函数y=2x的图象上,则点A的坐标是________. 要点感知2由函数解析式画其图象的一般步骤是:①________;②________;③________.当堂训练 知识点1函数图象的意义 1.下列图形中的曲线不表示y是x的函数的是( ) 2.下图是我市某一天内的气温变化图,根据下图,下列说法中错误 的是( ) A.这一天中最高气温是24 ℃ B.这一天中最高气温与最低气温的差为16 ℃ C.这一天中2时至14时之间的气温在逐渐升高 D.这一天中只有14时至24时之间的气温在逐渐降低 3.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关 系如图所示,则下列说法正确的是( ) A.甲、乙两人的速度相同 B.甲先到达终点 C.乙用的时间短 D.乙比甲跑的路程多 4.(湖州中考)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分 钟)的函数关系如图所示,则小明的骑车速度是________千米/分钟. 5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90 km的过程中,行驶 的路程y与经过的时间x之间的函数关系,请根据图象填空: (1)________出发的早,早了____小时,________先到达,先到____小时; (2)电动自行车的速度为______km/h,汽车的速度为______km/h. 知识点2画函数图象 6.画出函数y=2x-1的图象. (1)列表: x…-101… y…… (2)描点并连线; (3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1 的图象上 (4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.

相关主题
文本预览
相关文档 最新文档