当前位置:文档之家› 光学相干层析技术OCT的原理及应用-天津大学研究生e-Learning平台

光学相干层析技术OCT的原理及应用-天津大学研究生e-Learning平台

光学相干层析技术OCT的原理及应用-天津大学研究生e-Learning平台
光学相干层析技术OCT的原理及应用-天津大学研究生e-Learning平台

OCT技术是近十几年发展起来的一种光学成像技术,在科学研究和医学临床应用中有广泛的发展前景,选题合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。85

光学相干层析技术OCT的原理及应用

光学相干层析技术(Optical coherence tomography)即OCT是近十几年发展起来的一种光学成像技术。OCT的基础是白光干涉,利用弱相干光干涉原理,检测生物系统内部不同深度的背向反射或几次散射信号,并通过扫描得到组织二维或三维深度结构图像,可进行活体眼组织显微镜结构的非接触式、非侵入性断层成像。OCT已经成为继X线计算机断层扫描成像、超声波成像和核磁共振成像技术之后,又一个重要的断层成像技术。OCT被认为是很有发展前途的一种新型生物医学成像技术,在科学研究和医学临床应用中有广泛的发展前景,目前已经在眼前节和眼后节成像方面得到成熟的应用。

医学成像技术分类:

X线成像:其成像系统检测的信号是穿透组织后的X线强度,反映人体不同组织对X线吸收的差别。探测深度无限,但是成本比较高,对人体有害,分辨率较低。

超声成像技术:系统检测的信号是超声回波,超声波遇到不同组织或器官界面时,将发生不同程度的反射和投射,通过信号的处理得到组织图像。成本较高,探测深度为20-30mm。

磁共振成像:系统检测信号是生物组织中的原子核所发出的磁共振信号,经光电探测器接收后,显示体层内的组织形态和生理信息。成本最高,探测深度为100微米以下。

OCT成像技术:利用弱相干光干涉原理,利用光电探测器接收生物组织不同深度层的散射光信号,通过扫描得到生物组织二维或三维结构图像,可进行活体组织的非接触性、非侵入性断层成像。OCT主要用于组织的断层成像,其成像分辨率高,有利于早起病变的检测。

OCT的特点:

1、非侵入性:光源的发射功率对生物组织是没有损害的,可用光源直接照射,避免了对病变组织做病理切片的这种具有一定破坏性的方法。

2、高灵敏度:在OCT成像技术中引入了外差探测,不仅可以探测调幅的光信号,还可以探测频率及相位调制的光信号。外差探测弱信号的能力比直接探测强。

3、高分辨率:OCT能提供独立于横向分辨率的近于微米级的轴向分辨率。

但是由于生物组织对光的较强的散射特性,OCT的探测深度只有2-3mm,探测深度相对较低。

OCT的分类:

1、根据原理分类,可分为三种:

1) 偏振型OCT(PS-OCT):

在PS-OCT中,使用样品对背散射光双折射的大小成像,而不像传统的OCT 那样直接对背散射光的强度成像。PS-OCT 特别适合于龋齿的检测,还可以对组织进行正常态和热损伤的区别,显示出了良好的发展前景。

2) 多普勒型OCT(ODT)

ODT是光学多普勒层析仪,是OCT成像与多普勒技术相结合的成果。该系统可用来检测埋藏在高散射介质下流体的流速,与传统的超声多普勒血流仪相比,ODT具有更高的分辨率,其探测体积可以精确到5μm×5μm×15μm,其探测深度在1mm左右,而且能够给出空间各点的流速分布。

3) 光谱型OCT(SOCT)

SOCT对后向散射光进行光谱分析,用傅立叶变换或小波变换的方法提取出后向散射光的频率或波长信息。光谱OCT的优点是可以在单次测量中获得多个波长的信息,它的缺点在于数据量大。光谱OCT 图像可以清楚地观察到波长较长的光具有较大的探测深度,以及不同组织成分对光的选择性吸收。从某种角度上讲,光谱OCT可以得到类似于吸收特性成像的效果,从而得到反映出不同组织对光的选择吸收效应的图像。

此外,还可以根据OCT获取信息的主要途径分为两类:时域OCT和频域OCT (光谱OCT)。时域OCT的结构主要包括:迈克尔逊干涉仪和共焦显微镜。光谱OCT的光学系统部分包括迈克尔逊干涉仪和光谱仪。

OCT的应用:

OCT技术的第一个临床应用就是由David Huang等人提出的人眼检测,目前OCT技术的主要应用场合仍为眼科。传统的诊断方法没有办法探测到眼底组织的细微变化,而利用OCT技术可以检测到位于晶状体后的视网膜,从而实现对神经纤维厚度和视网膜结构的测量,如用于青光眼和视网膜的成像分析等。

除了测量眼睛等透明介质外,一部分科学家将目光转向了高散射介质,发展了用OCT 技术来测量如牙齿、皮肤以及其他非透明样品的组织特性。OCT光纤化的特点使其易于与导管或内窥镜结合,内窥OCT使体内器官更高分辨率的断层成像成为可能。2003年Y.T .Pan 等人利用组织荧光图像来指导内窥镜成像,进行了早期膀胱癌变的离体检测;2004年J.K.Barton等人将自体荧光法和OCT内窥镜相结合,得到了大鼠结肠癌的在体OCT图像。现在OCT已经被应用在了眼科、口腔科、肠胃科、皮肤科、心血管科等多个医学领域。另外,在一些工业检测中也应用到了OCT技术,如艺术品完好程度的检测,珍珠质量的检测。

国内从九十年代后期开始进行OCT方面的研究。清华大学着眼于眼底OCT成像系统的产业化研究,开展了OCT技术应用于临床诊断的研究工作;天津大学研究组设计了口腔牙齿检测的OCT系统,得到了离体牙齿的二维和三维重构图像,还有关于复谱频域和频域偏振OCT等方面的研究。还有很多大学和研究所对OCT技术开展了一系列的研究。

参考文献:李乔《光谱OCT内窥镜成像系统的研究》天津大学2010年

江源源《光学相干层析成像系统图像处理与软件开发》上海交通大学,2011年

叶小均柯元楠《光学相干成像的临床应用及前景》中日友好医院学报

高峰《光学相干层析成像系统的研制》四川大学

陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第七章 习题解答 1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径) 解: 记录轨道数为 25000002.0280180=?-=N 单面记录容量按位计算为 ∑=?≈?+=N n n M 110107.10006.0)002.040(2π bits = 17 Gb. 按字节数计算的存储容量为 2.1GB. 2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。 证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距. 对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为: 24)cos(n K K a r πλθφδ--= 其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22π θθφ++=s r ,θr 为再现光束与系统光轴夹角 (参见图7-9). 当 δ = 0 时,有 2422cos n K K a r s r πλθπθθ=??? ??-++ 即: Λ=Λ=??? ??-2422sin 0 λππλθθn s r

光学原理及应用

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太线也可以看做平行光线.

从光学相干层析成像到光学频域成像

激光与光电子学进展2009.01 特别报道/生物光子学 人 体健康状态的无创实时监测与疾病的早期诊断是提高全民健康水平和控制医疗成本的根本保证,也是现代医学技术发展的内在要求和必然趋势。研究行之有效的实时监测与早期诊断方法,发展高分辨无创光学成像技术,以用于常见病、多发病、慢性病和重大疾病的定期筛查与早期诊断,具有非常重要的现实意义, 也必将产生深远的社会效益。光学方法不仅可以实现对活体组织的无损伤、非侵入、非电离辐射及实时的探测和成像,而且可用于活体生物组织的显微结构分析、特性参数测量,在生命科学的基础研究和临床应用中具有极大应用前景,倍受瞩目。如光学相干层析成像术(OCT)、 共聚焦光学显微术、扩散光层析成像术,以及基于荧光和拉曼光谱的成像术或光谱分析术等[1~4], 这些光学方法均可通过内窥方式检测人体脏器,与常规的医学影像学方法相比,具有更高的灵敏度与分辨率。尤其是OCT 技术,已成为医学诊断技术的国际发展前沿,能实现疾病的筛查与早期诊断、过程监视和手术介导等多种医学功能,并已 图1OCT 成像原理与显微光学活检图像 究的重要内容,而用光学方法来记录生物电活动也是研究热点。但该技术存在如荧光基线漂移、细胞收缩引起的运动伪迹和膜电位绝对值的测量等国际公认的技术难点,限制了其应用范围。对此,可以构建多通路荧光细胞膜电位记录系统。在国家自然科学基金 (60378018) 的资助和博士点基金资助项目 (200806980024)下,我们成功开发了用于心脏电生理 研究的光学标测系统。 该系统利用图像匹配、多波长多探测器测量校正和比值法计算膜电位绝对值等手段,以期能较好地克服以上问题。利用该系统能实现实时检测细胞膜电位,动态显示电兴奋的传导过程,为人体生理、病理研究提供新的技术手段并提高我国基础电生理研究的技术水平,为临床诊断的进一步应用奠定了基础。 1Grinvald A.,Hildesheim R..VSDI:a new era in functional imaging of cortical dynamics[J].Nature Reviews Neuroscience ,2004,11(5):874~885 2Petersen C.,Ferezou I.,Bolea S..Visualizing the cortical representation of whisker touch:voltage-sensitive dye imaging in freely moving mice[J].Neuron ,2006,50(4):617~6293张镇西等编,生物医学光子学新技术及应用[M],北京:科学出版社,2008 参考文献 从光学相干层析成像到光学频域成像丁志华教授吴彤孟婕王凯杨亚良 王玲吴兰刘旭 浙江大学现代光学仪器国家重点实验室,杭州310027E-Mail:zh_ding@zju.edu.cn 16

光学原理及应用优选稿

光学原理及应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所着的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学着作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为 c=299 792 458 m/s 在通常的计算中可取

c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线. (二)反射与折射 阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。 光的反射定律实验表明,光的反射遵循以下规律(图18-8):

光学相干层析成像技术的发展应用综述.doc

光学相干层析成像技术的发展应用综述 2020年4月

光学相干层析成像技术的发展应用综述本文关键词:层析,成像,相干,光学,综述 光学相干层析成像技术的发展应用综述本文简介:光学相干层析成像技术(OpticalCoherenceTomo-graphy,OCT)是一种非侵入、非接触和无损伤的光学成像技术,它将低相干干涉仪与共焦扫描显微术结合在一起,利用高灵敏度的外差探测技术,能够对生物组织或其他散射介质内部的微观结构进行高分辨率的横断面层析成像[1].OCT技术的研究始于 光学相干层析成像技术的发展应用综述本文内容: 光学相干层析成像技术(Optical Coherence Tomo-graphy,OCT)是一种非侵入、非接触和无损伤的光学成像技术,它将低相干干涉仪与共焦扫描显微术结合在一起,利用高灵敏度的外差探测技术,能够对生物组织或其他散射介质内部的微观结构进行高分辨率的横断面层析成像[1].OCT 技术的研究始于20 世纪90 年代初,作为一种新型的生物医学成像技术,它的出现极大地丰富了光学检测手段在医疗和病理诊断方面的应用,成为医学临床的研究热点。

在此后的二十多年里,OCT 的技术水平迅速提高,并广泛应用于生命科学基础研究、临床医学应用及非均匀散射材料检测等方面[1-4]. 1 OCT 技术概述 OCT 利用低相干干涉(Low Coherence Interferom-etry,LCI)的基本原理和宽带光源的低相干特性产生组织内部微观结构的高分辨率二维层析图像[2],结构如图 1 所示。宽带光源发出的低相干光经过迈克尔逊干涉仪的分束镜分成两部分,一束进入参考臂经参考镜反射,另一束进入样品臂经样品发生后向散射。参考镜反射光和样品后向散射光经分束镜重新回合后发生干涉,由于样品后向散射光中含有样品的微观结构信息,因此可以根据干涉信号重构样品的一维深度图像,并由一系列横向位置临近的一维深度图像合成样品的二维横断面层析图像和三维表面形貌图像。 传统的医学成像技术有计算机断层扫描(CT)、超声波成像(US)、核磁共振成像(NMRI)等,而光学成像技术有光学相干层析成像术(OCT)、共聚焦光学显微术、扩散光层析成像术等;这些成像技术的原理不同,因而分辨率、穿透深度和适应对象也不相同[2].超声技术可

《光学原理与应用》之双折射原理及应用

双折射原理及应用 双折射(birefringence )是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1寻常光(o光) 和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。 天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来

便携式光学相干层析成像仪的制作方法

本技术公开一种便携式光学相干层析成像仪,包括可发出具有不同波长的单束光的宽带光源、使单束光通过后形成线性光束的狭缝、将该线性光束分离成参考光束与测量光束的分束镜,参考光束与测量光束分别经参考反射镜、物镜反射或散射后在分束镜上形成干涉光束,该干涉光束经光栅后被色散形成具有不同波长的出射光,出射光经便携式或可穿戴的智能设备后即可得到待测对象的二维断层图。该成像仪采用了便携式或可穿戴的智能设备代替了现有的光谱仪,其可实现随身携带、随时诊断、操作方便且及价格便宜,有利于广泛使用,且易于实现远程医疗和大数据分析。 技术要求 1.一种便携式光学相干层析成像仪,其特征在于,包括: 宽带光源,可发出具有不同波长的单束光; 狭缝,位于所述宽带光源出光路径上,所述单束光经所述狭缝后形成线性光束; 分束镜,位于所述线性光束出光路径上,将所述线性光束分离成被导向参考反射镜的参 考光束、被导向待测对象的测量光束;

准直透镜,位于所述狭缝与所述分束镜间,使经所述狭缝后形成的所述线性光束准直; 物镜,位于所述分束镜与所述待测对象间,使所述测量光束准直地集中在所述待测对象上; 光栅,所述参考光束、所述测量光束分别经所述参考反射镜、所述物镜反射或散射后在所述分束镜中合光形成干涉光束,所述光栅位于所述干涉光束的出光路径上,所述干涉光束经所述光栅后发生色散,形成具有不同波长的出射光; 便携式或可穿戴的智能设备,所述智能设备包括相机透镜、相机、摄像头,所述出射光入射通过所述相机透镜聚焦后分别到达所述相机的光敏面上形成不同的线焦点,所述摄像头探测到所述相机输出的不同像素信号后经傅里叶变换得到所述待测对象的二维断层图。 2.根据权利要求1所述的便携式光学相干层析成像仪,其特征在于:所述光源为LED宽带光源。 3.根据权利要求1所述的便携式光学相干层析成像仪,其特征在于:所述的智能设备为手机或平板电脑。 4.根据权利要求1至3任一所述的便携式光学相干层析成像仪,其特征在于:所述出射光中具有与所述宽带光源波长相同的中心波长光束,所述相机透镜、所述相机的中心点均位于所述出射光的出光路径上,通过计算所述光栅出射光的出射角来调整所述相机、所述相机透镜与所述光栅间的位置,所述光栅出射光的出射角满足: 关系式:nλ=d(sinθ+sinθ’); 其中λ是所述中心波长光束的波长,即为所述宽带光源的中心波长;n是光栅衍射级;d是光栅常数;θ是光栅入射角,即为所述干涉光束与所述光栅法线间的夹角;θ’是光栅出射角,即为所述出射光与所述光栅法线间的夹角。 说明书 一种便携式光学相干层析成像仪

光学原理

光学原理 Principles of Optics 课程编号:07370460 学分: 2 学时: 30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:大学物理 适用专业:无机非金属材料工程(光电材料与器件) 教材:《光学教程》,姚启钧主编,高等教育出版社,2008年6月第4版。 开课学院:材料科学与工程学院 一、课程的性质与任务: 本课程是属于专业选修课,是研究光的本性、光的传播和光与物质相互作用的基础学科,光学的基本理论渗透在自然科学的很多领域,应用于生产技术的各个部门,是自然科学的许多领域和工程技术的基础。激光的出现和发展,使光学的研究进入了一个崭新的阶段,成为现代科学技术的前沿阵地之一。本课程要求学生掌握几何光学的基本概念、成像规律和作图方法,理解典型光学仪器的基本原理;要求学生掌握有关光的传播规律及其本性,了解干涉、衍射和偏振等基本现象、原理和规律,并了解它们在科研、生产和实践中的应用;本课程力求使学生使学生对光的传播规律和光与物质相互作用时出项的现象和光的本性有一个深刻的认识。 二、课程的基本内容及要求: 第一章绪论 1.教学内容 (1)光学的研究内容和方法 (2)光学的发展简史 2.教学要求 重点了解光学的研究内容和方法,对光学简史要有一定了解。 第二章光的干涉 1.教学内容 (1)波动的独立性、叠加性和相干性 (2)由单色波叠加所形成的干涉图样 (3)分波面双光束干涉 (4)干涉条纹的可见度 (5)菲涅尔公式 (6)分振幅薄膜干涉-等倾干涉

(7)分振幅薄膜干涉-等厚干涉 (8)迈克尔逊干涉仪 (9) 法布里珀罗干涉仪 2.教学要求 掌握光的相干条件和光程的概念;掌握光的干涉相长和干涉相消的条件;学会分析光的干涉图样;掌握等倾干涉和等厚干涉的基本概念及其应用;介绍迈克耳逊干涉仪和法布里---珀罗干涉仪的原理及其应用。 第三章光的衍射 1.教学内容 (1)惠更斯-菲涅尔原理 (2)菲涅尔半波带和菲涅尔衍射 (3)夫琅禾费单缝衍射 (4)夫琅禾费圆孔衍射 (5)平面衍射光栅 2.教学要求 学会用惠更斯---菲涅耳原理解释光的衍射现象,理解菲涅耳积分式意义;掌握夫琅和费衍射,并能推导夫琅和费衍射光强公式;掌握光栅方程式导并理解其意义。 第四章几何光学的基本原理 1.教学内容 (1)几个基本概念和定律费马原理 (2)光在平面界面上的反射、折射 (3)光在球面上的反射折射 (4)光连续在几个球面界面上的折射 (5)薄透镜 (6)近轴物近轴光线成像的条件 2.教学要求 重点掌握费马原理;掌握光线、实物、虚物、实象和虚象的概念;掌握几何光学的符号法则(采用新笛卡儿符号法则);掌握薄透镜的物象公式;了解光学纤维构造及其应用。 第五章光学仪器的基本原理 1.教学内容 (1)助视仪器的放大本领 (2)显微镜的放大本领 (3)望远镜的放大本领

光学相干层析系统的信噪比分析及优化

文章编号:025827025(2008)0420635206 光学相干层析系统的信噪比分析及优化 李 鹏 高万荣 (南京理工大学电光学院光学工程系,江苏南京210094) 摘要 为提高光学相干层析(OCT )系统的信噪比(SNR ),改进系统的探测灵敏度,保证系统的成像质量,从理论上详细分析了光学相干层析成像系统中的主要噪声源,建立了系统噪声的理论模型,分析了光学相干层析成像系统中的各个组成单元对系统信噪比的影响.建立了一套实用型的光学相干层析成像系统,对该探测系统中的噪声进行了测量,得到系统噪声的实验模型.然后对理论分析的结果进行一定的修正,并对实验系统进行优化,得到了 16μm 的纵向分辨率,-90dB 的探测灵敏度. 关键词 医用光学;光学相干层析;噪声分析;灵敏度;动态范围;信噪比中图分类号 R 318.51 文献标识码 A Signal 2to 2Noise R atio Analysis and Optimization of Optical Coherence Tomographic Imaging System Li Peng Gao Wanrong (De partment of O ptical Engineering ,School of Elect ronics and O ptics ,N anj ing Universit y of S cience and Technology ,N anj ing ,J iangsu 210094,China ) Abstract In order to increase the signal 2to 2noise ratio (SNR )and improve the detection sensitivity of the optical coherence tomographic (OCT )system ,the main noise sources in the OCT system are analyzed in detail.A theoretical noise model is then proposed which may be used to analyze the effect of different parts of OCT system.Based on the theoretical results ,the performance of an OCT imaging system is analyzed.Through measuring the noise level of the system ,the experimental model of the system noise is obtained ,and then it is used to correct the theoretical analysis results.Based on the above analysis ,the imaging performance of the OCT device is optimized.The axial resolution of 16μm ,and the detection sensitivity of -90dB have been obtained. K ey w ords medical optics ;optical coherence tomography ;noise analysis ;sensitivity ;dynamic range ;signal 2to 2noise ratio 收稿日期:2007208228;收到修改稿日期:2007211207 基金项目:江苏省六大人才项目基金(062B 2041)、江苏省高校青蓝工程基金、江苏省“333"工程基金、南京理工大学青年学者基金(Njust200302)、教育部留学回国人员基金和苏州大学重点实验室基金(K J S01002)资助课题. 作者简介:李 鹏(1984—),男,江苏人,博士研究生,研究方向为生物医学成像.E 2mail :leepeng.95@https://www.doczj.com/doc/ff16661451.html, 导师简介:高万荣(1961— ),男,陕西人,教授,博士生导师,研究领域为生物医学光学.E 2mail :gaowangrong @https://www.doczj.com/doc/ff16661451.html, 1 引 言 光学相干层析术(OC T )主要是基于低相干干涉以及外差探测技术,具有非侵入性、高深度分辨率(1~15μm )、高动态范围(>100dB )等特点[1~3].光学相干层析根据生物组织折射率、吸收系数、散射系数、双折射等光学特性,可以对组织的结构或者功能实现二维或三维成像.对于人眼等透明组织,其探测深度可以达到2cm ,而对于皮肤等高散射性组织,其探测深度可以达到2~3mm [2].该技术可为临床医学所应用,为生物组织(人体)的在体、实时研究提 供一种新的高速、高分辨率、非侵入式的探测手 段[4~6].在光学相干层析系统中,从生物组织中反射回来的背向散射光是极其微弱的,同时在后续电路中会受到各种噪声的干扰.一般情况下,一个系统的信噪比(SNR )近似地与入射光功率成正比,与系统的带宽成反比[7,8].但是,由于光学相干层析系统中低相干光源引发的额外噪声的影响[9,10],随着入射到样品表面的光功率的增大,系统信噪比会趋于某一极限值.同时,入射到生物组织样品上的光功率的大小受到光源的最大发光功率以及生物组织所能承   第35卷 第4期2008年4月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.35,No.4 April ,2008

陈家璧版光学信息技术原理及应用习题解答811章

习 题 8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅 ??????*????? ??*=)comb()rect()comb()rect(),(2121211111 1111b y a y b b x a x b y x t 其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。频谱面上得 到如图8-53(a )所示的频谱。分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。 图8.53(题8.1 图) 解答:根据傅里叶变换原理和性质,频谱函数为 T ( f x , f y ) = ? [ t ( x 1 , y 1 )] = { 11b ? [)rect(11a x ]·? [)comb(11b x ] } *{2 1 b ? [)rect(21a y ·? [comb(21b y ]} 将函数展开得 T ( f x , f y ) = {}???++++)δ(sinc()δ()sinc()sinc(1 11111111b 1 b 1-x x x f b a f b a f a b a * { }???++++δ()sinc()δ()sinc()sinc(2 22222222b 1 b 1-y y y f b a f b a f a b a (1) 用滤波器(b )时,其透过率函数可写为 1 f x = + 1/ b 1 f y = 0 F ( f x , f y ) = 0 f x 1/ b 1 f y = 任何值 滤波后的光振幅函数为 T ·F = [])δ()δ()sinc(1 11111b 1b 1-++x x f f b a b a 输出平面光振幅函数为 t ’(x 3,y 3)= ? -1[ T ·F ] = (exp[)](){exp [sinc(1 3131111b 2-b 2x j x j b a b a ππ+

光学相干层析分子成像研究现状分析

基金资助项目及批准号 国家自然科学基金(60378041、60478040)、浙江省自然科学基金(Z603003)、博士点基金(20030335099)、霍英东青年教师基金(91010),光子技术福建省重点实验室开放课题(FP0404),教育部新世纪优秀人才培养计划 - 1 -光学相干层析分子成像研究现状分析 王玲 丁志华 刘旭 浙江大学现代光学仪器国家重点实验室,杭州 310027 oxsp_0@https://www.doczj.com/doc/ff16661451.html, zhding@https://www.doczj.com/doc/ff16661451.html, 摘要:本文简要介绍了分子对比剂在光学相干层析成像(Optical Coherence Tomography,即OCT)技术中的研究现状,概述了迄今出现的几种不同的光学相干层析分子成像(molecular contrast OCT,简称为MCOCT)方法,并讨论了MCOCT 的几个重要的实际问题:对比剂的选择范围、激发光强的限制、各种方法灵敏度比较以及MCOCT 应用于临床及生物学领域需要考虑的问题。 关键词:OCT, Optical Coherence Tomography; MCOCT , Molecular Contrast Optical Coherence Tomography;灵敏度 1. 引言 光学相干层析成像(OCT ),凭借其独特的相干门技术和干涉测量优势,能无损伤地观察生物体表面以下的组织结构,并具备组织病理分析所需的高空间分辨率,有望成为体光学成像研究中的重要手段。继OCT 结构成像方法提出之后,OCT 功能成像方法也相继诞生。如多普勒OCT 将多普勒技术与OCT 相结合,提供生物组织内部高分辨血管分布和速度分布图像;偏振OCT 则利用光的矢量特性来探测生物组织内部的双折射分布信息。现行OCT 技术,依据弹性散射光所固有的振幅、位相和偏振等信息,来反映组织内部的结构形态特征与生理功能状况。然而,结构形态的变化作为预示性信息,只能作为间接定性的依据。而且,当疾病尚无临床症状时,往往只涉及分子层次上的改变,并不出现物理性状方面的后端变化。尽管功能成像和内部分子有一定的间接关联,但并不具备分子特异性。因此,如果能将现有的OCT 技术发展为具有特异性分子识别功能,在获取了高分辨结构和功能信息的同时,又能获取分子组成和分布信息,这无疑是OCT 技术和在体光学成像技术的一大飞跃。 事实上,OCT 分子成像研究已经成为国际OCT 领域的重要发展方向。至今已报到的OCT 分子成像方法,大体可分为三大类。第一类利用对比剂的吸收性质提取对比信息。这一类又可继续划分为两类:一类描绘对比剂分布的方法是改变注入到生物目标的特定分子对比剂的吸收光谱,通过采集变化前后的OCT 扫描图样获得的。两幅OCT 扫描图样的差别经过处理就 能得到对比剂的分布。另一类方法利用对比剂的吸收光谱曲线被动的描绘出对比剂的分布。https://www.doczj.com/doc/ff16661451.html,

光学原理在日常生活中的应用

光学原理在日常生活中的应用 学科讲坛WENLIDAOHANG 光学原理在日常生活中的应用 文/韩艳红 前言:人类的智慧之光将我们的生活点缀的五彩缤纷,大镜的作用,最后得到一个较为放大的正立虚像A"B,,,此像 赏心悦目,其中光学原理和技术的应用起到了至关重要的恰又成在人眼的明视距离附近,对于门外的情况,就看得清 作用,下面将我们日常生活中光学原理的应用从理论上进楚了. 行分析与探讨.. 一 ,九龙杯的秘密 九龙杯是传说中的稀世珍宝,在一个小巧玲珑的酒杯 里斟满酒后,杯底就出现九条神气活现的龙,在云问翻腾飞 跃,像要飞出来的样子.如果把杯里的酒喝光,龙就不见了. 其实用我们学过的光学知识去分析,就一点也不神秘 了.九龙杯由杯碗,杯底和杯座三部分组成,杯座和杯底之 间放有画着九条龙的画片,杯底是一个下表面是平面,上表 面是凸面的,焦距很大的平凸透镜.相当于一个象差很大的 放大镜. 当杯内没斟酒时,画片通过平凸透镜成一个放大,正立 的虚像.像的位置在平凸透镜的下方,而且得到的像很大, 通过杯底只能看到这个虚像的很小部分,再加上这个平凸 透镜像差也很大,得到的是模糊不清的像.所以人看不到 (或看不出来)龙的画片. 如果在酒杯内斟满酒以后,酒相当于一个平凹透镜,物 体通过凹透镜会得到缩小的虚像,把杯底成的虚像缩小了,

人就能看到画片的全景了.再加上酒形成的平凹透镜产生的像差与杯底成的象差刚好相反,可以互相抵消,人能看到的像就清晰了. 透明液体不同的形状,可以起到各种透镜的作用,比如 人的眼睛,就是用液体形成的透镜来成像的,我们不是看的很清楚吗? 九龙杯的原理是物体通过两个透镜成像,耍¨果这两个 透镜配合的很好,就可以消除象差,得到非常清晰的像.照相机的镜头往往使用透镜组,就是为了减小象差,使照片更清楚. 二,防盗门的猫眼 ,L B_ ,, 室内 —— r 解:目前市场上出现防盗门镜(俗称"猫儿眼"),正看和 倒看的效果迥然不同,而此种门镜的光学原理,为透镜成像应用的实例.现把门镜的作用及其成像的光学原理简述如下. 1.门镜的作用 从室内通过门镜向外看,能看清门外视场角约为120 度范罔内的所有景象,而从门外通过门镜却无法看到室内的任何东西.若在公房或私寓等处的大门上,装上此镜,对于家庭的防盗和安全,能发挥一定的作用. 2.门镜成像的光学原理 门镜是由两块透镜组合而成.当我们从门内向外看时, 物镜u是凹透镜,目镜L2是凸透镜(光路见图1).物镜Ll

光学原理_光学相干层析成像技术

光学相干层析成像技术 摘要: 光学相干层析成像技术(Optical Coherent Tomography, OCT)在生物组织的微观结构成像的研究中起着重要的作用,它是一种非接触的、无损伤的和高性能的成像技术。和传统的时域OCT(Time Domain-OCT)相比,频域OCT(Fourier Domain-OCT)能够提供了更高的分辨率,更高的动态范围,以及更高速的成像速度,被广泛的应用在了生物组织医学成像等方面。但不可否认的是,对于像跟腱,角膜,视网膜,骨头,牙齿,神经,肌肉等具有双折射特性的生物组织,FD-OCT 没有足够的能力来描述这些它们的分层结构和双折射的对比度。偏振OCT (Polarization Sensitive-OCT)的基础正是由于样品组织对于偏振光的敏感性而建立的。因此,PS-OCT是描述具有双折射特性组织的强有力的工具。偏振频域OCT(Polarization-sensitive Fourier-domain optical coherence tomography,PS-FD-OCT)是目前最优的OCT是PS-FD-OCT。它系统同时具备了偏振OCT 和频域OCT两种系统的优点。本文利用琼斯矢量法对其进行了描述。 正文: 1光学相干层析成像技术的发展和现状 1.1光学相干层析成像技术的发展 显微成像技术已经发展了很长时间了。为了观察生物组织、微生物组织和了解材料的结构,人们发展了多种成像技术,如:X光技术及层析技术、核磁共振技术、超声、正电子辐射层析技术及光学层析成像技术OT(Optical tomography)等。在OT技术中的光源主要采取红外或近红外光(700—1300nm),该波段光较容易透过某种生物类混沌介质,对生物活体无辐射伤害,而且通过分析光谱还可以获得组织的新城代谢功能等信息。因此OT技术正在生物医学界得到广泛的研究和应用。根据原理OT技术可以分为两类:散斑光学层析成像技术DOT (diffuseoptical tomography),和光学衍射层析成像技术ODT(optical diffractiontomography)。 OCT(Optical coherence tomography)技术是在ODT技术的技术之上发展起来的。由于OCT系统具有结构简单、设备造价低廉,并可以实现高精度的组织

陈家璧版 光学信息技术原理及应用习题解答(3-4章)

第三章 习题 3.1 参看图3.5,在推导相干成像系统点扩散函数(3.35)式时,对于积分号前的相位因 子 ??? ? ??? ????? ??+≈??????+2220202002exp )(2exp M y x d k j y x d k j i i 试问 (1)物平面上半径多大时,相位因子 ?? ????+)(2exp 20200y x d k j 相对于它在原点之值正好改变π弧度? (2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多 少? (3)由这些结果,设观察是在透镜光轴附近进行,那么a ,λ和d o 之间存在什么关系时可 以弃去相位因子 ?? ????+)(2exp 20200y x d k j 3.2 一个余弦型振幅光栅,复振幅透过率为 00002cos 2 1 21),(x f y x t π+= 放在图3.5所示的成像系统的物面上,用单色平面波倾斜照明,平面波的传播方向在x 0z 平面内,与z 轴夹角为θ。透镜焦距为f ,孔径为D 。 (1)求物体透射光场的频谱; (2)使像平面出现条纹的最大θ角等于多少?求此时像面强度分布; (3) 若θ采用上述极大值,使像面上出现条纹的最大光栅频率是多少?与θ=0时的截止频率比较,结论如何? 3.3光学传递函数在f x = f y =0处都等于1,这是为什么?光学传递函数的值可能大于1吗?如果光学系统真的实现了点物成点像,这时的光学传递函数怎样? 3.4当非相干成像系统的点扩散函数h I (x i ,y i )成点对称时,则其光学传递函数是实函数。 3.5 非相干成像系统的出瞳是由大量随机分布的小圆孔组成。小圆孔的直径都为2a ,出瞳到像面的距离为d i ,光波长为λ,这种系统可用来实现非相干低通滤波。系统的截止频率近

散光表在屈光检查过程中的光学原理与应用

摘要:散光眼是屈光检查中经常遇到的屈光不正状态,检查 的正确性直接影响被检者戴镜的舒适性,也是屈光检查中最 难掌握的部分。本文主要从光学原理和数学角度推导检查者 确定的散光轴位方向与被检者看到最清晰线条钟点数之间的 关系,即30倍法则关系,加强理解的同时运用实例说明,散 光表在检测散光时的步骤及其注意事项,从而有助于临床上 的正确理解与应用。 关键词:散光表;散光眼;30倍法则 散光眼是指人眼调节静止时,由于两子午线上屈光力 不等,平行光线经过人眼的屈光系统,不能汇聚成一个焦 点,而是在前后不同的空间位置形成两条焦线的一种屈光状 态。由散光眼的定义可知,最强屈光力的子午线方向光线先 汇聚形成第一条焦线,称为前焦线;最弱屈光力的子午线方 向光线后汇聚,形成第二条焦线,称为后焦线[1]。当两条焦 线为垂直,即正交时称为规则性散光。两条焦线间的光束形 成顶点相对的圆锥体形的散光光锥,称为史氏光锥(Sturm conoid)。两条焦线之间的间隙称为Sturm间隙,即焦间 距,它的长度代表散光程度。其屈光成像可以用Sturm光锥的 图解来说明(见图1)。规则性散光是验光中最常见的屈光状 态,因此本文是以规则性散光为例进行阐述。 图1 1 散光眼焦线的成因与矫正由散光眼定义可知,规则性散光眼两个子午线上屈光力不等,等效于两个屈光力不等且都不为零的圆柱透镜正交组合,或等效于一个球镜与一个柱镜的组合,即相当于球柱镜。因此远处一点发出的平行光线经过规则性散光眼的屈光系统后将会形成史氏光锥,且在前后不同位置形成两条相互垂直的焦线。散光眼进行矫正时,主要有两种方式,第一种方法是使用屈光力恰当的圆柱透镜(轴向与后焦线方向一致)和屈光力恰当的圆柱透镜(轴向与前焦线方向一致)组成的正交圆柱透镜,分别使得后焦线和前焦线全部移动到视网膜上,即矫正的正交圆柱透镜和屈光不正眼组成光学系统,形成正视眼,此时所用屈光力大小和方向与前后焦线与视网膜相对位置有关。第二种矫正方法是在实际验光矫正时,离视网膜近的那条焦线清晰,而垂直焦线离视网膜较远,比较模糊,因此需要使用恰当屈光力的圆柱透镜(轴向与模糊焦线方向一致)将模糊焦线移动到清晰焦线位置,在清晰焦线位置形成一个圆形光斑,这样会矫正散光度数,然后使用适当屈光力的球镜将圆形光斑移动到视网膜位置,达到正视眼效果,此时矫正镜片等效于一个球镜与一个柱镜的组合,相当于球柱镜。 2 散光盘视标常见散光盘类似钟表形式,由中点相交均匀间隔的24根放射状线条组成,相邻两放射状线条的位向差为15度,散光盘终端用钟面读数进行标定(见图2)。散光表主要用于粗验散光,主要确定眼睛是否存在散光。嘱被检者之处最清晰标线的对应钟点数,用最小钟点数乘30为散光轴位。即散光30倍法则:最清晰标线的对应最小钟点数×30=初验散光轴位。散光表在屈光检查过程中的光学原理与应用 张丙寅 王海英 王彦君 眼科医学 94 中国眼镜科技杂志·11·2019

光散射原理及其应用上课讲义

光散射原理及其应用

安徽大学 本科毕业论文(设计、创 作) 题目: 光散射原理及其应用 学生姓名:彭果学号:B21114051 院(系):物理与材料科学学院专业:光信息科学与技术入学时间:二〇一一年九月 导师姓名:喻远琴所在单位:安徽大学物理与材料科学学院完成时间:二〇一五年六月

光散射原理及其应用 彭果 (安徽大学物理与材料科学学院,安徽合肥 230061) 摘要:光通过不均匀物质时朝四面八方散射的现象称为光散射。本文 首先简要阐述了光散射的原理和分类;然后运用光散射的知识解释了 一些生活中常见的大气现象,例如蓝天、白云、朝霞、晚霞以及夕阳 等;最后介绍了光散射在医疗和摄影等方面的应用。 关键词:光散射,瑞利散射,拉曼散射,偏振 Light scattering principle and application Pengguo (School of Physics & Material Science, Anhui University, Hefei 230061, China) Abstract: Light scattering by the light passing through the inhomogeneous material is called light scattering. In this paper, the principle and classification of optical scattering are briefly introduced. Introduces the application of light scattering in the phenomenon of life, and the application of light scattering in medical treatment, photography, etc Key words: Light scattering and Rayleigh scattering, Raman scattering, polarization 晚霞满天,一片又一片的火烧云,把天空织成美丽的锦缎,真是一幅绮丽的奇景,晚霞有多少种颜色?红色,黄色,金色,紫色,蓝色,或许还有别的颜色。这是小学语文课文的《火烧云》,火烧云的形成其实包含了光散射的原理。在生活中光散射的现象随处可见,蓝天、白云、晓霞、彩虹、雾中光的传播等等常见的自然现象中都包含着光的散射现象。 随着科技的发展,光散射在各个科学技术部门中有广泛应用。例如,根据胶体体系中光散射理论,光散射可用于判断溶胶还是分子液体,照相补光,利用共振光散射法做DNA的定量分析,基于光散射流式细胞仪的广泛应用,瑞利光散射光谱法研究牛血红蛋白与镝(Ⅲ)的相互作用等,复杂结构光散射的射线跟踪方法及其应用。光散射的应用在生活中的各方面都有重要意义。

光学原理复习(13级)

一. 解释概念 1.高斯光束的准直距离 答:一般认为基模高斯光束在瑞利长度200/z w πλ= 范围内是近似平行的,因此也把瑞利距离长度称为准直距离。 2.相速度和群速度 答:a.等相面沿其法线向前推进的速度——相速度 b.等幅平面的传播速度,这个速度称为群速度。 3.左旋圆偏振光 答:满足2220 x y E E E +=,E y 比E x 的相位落后π/2,sin δ <0 ,称为左旋圆偏振光。 4.倏逝波 答:全反射时,光波不是绝对地在界面上被全部返回第一介质,而是透入第二介质大约一个波长的深度,并沿着界面流过波长量级距离后重新返回第一介质,再沿反射方向射出。这个沿第二介质表面流动的波就称为倏逝波。 5.电磁波的能量密度和能流密度 答:a.能量密度是单位体积内电磁场的能量。 b.能流密度是单位时间内垂直通过单位面积的电磁能。 6.等倾干涉和等厚干涉 答:a.凡入射角(倾角)相同的光,形成同一干涉条纹。因此把这种干涉称为等倾干涉。 b.等厚干涉是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干 涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉. 7.时谐电磁波 答:所谓时谐波是指空间每点的振动是时间变量的谐函数的波。 8.空间频谱 答:傅氏变换F (f x , f y ) 也称为f ( x , y ) 的空间频率谱,简称空间频谱。 9.受挫全反射 答:对介质2中透射场的任何干扰都会直接影响全反射光的强弱。 10.负折射率介质 答:电场、磁场和波矢三者之间构成左手关系的非常规材料(也就是折射率为负的材料), 现在也称为左手材料(left-handed materials ,简称LHM ) ,或负折射率介质。 11.非定域干涉 答:在两束光的叠加区内,到处都可以观察到干涉条纹, 只是不同地方条纹的间距、形状 不同而已。这种在整个光波叠加区内,随处可见干涉条纹的干涉, 称为非定域干涉。 12.相干长度 答:波长宽度为Δλ的光源,能够产生干涉条纹的最大光程差,称为相干长度。 13.驻波 答:两个频率相同,振动方向相同而传播方向相反的相干光波,在同一直线上沿相反方向传 播时,叠加而形成的波就叫做驻波。 二.简答题 1,.简述菲涅尔棱镜的工作原理 答:利用全反射时的相位变化特性,选取适当的折射率n 和入射角可以得到反射 光中s 和p 分量特定的相位差,从而改变入射光的偏振状态。

相关主题
文本预览
相关文档 最新文档