当前位置:文档之家› 例6-1苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本...

例6-1苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本...

例6-1苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本...
例6-1苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本...

例6-1苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本题附表1所式。试利用拉乌尔定律和相对挥发度,分别计算苯—甲苯混合液在总压P为

101.33kPa下的气液平衡数据,并作出温度—组成图。该溶液可视为理想溶液。

例6-1 附表1

,kPa

,kPa

解:(1)利用拉乌尔定律,计算气液平衡数据在某一温度下由本题附表1可查得该温度下纯组分苯与甲苯的饱和蒸气压与,由于总压P为定值,即

,则用式求液相组成x,再应用式求平衡的气相组成y,即可得到一组标绘平衡温度—组成(t-x-y)图的数据。

以为例,计算过程如下:

其它温度的计算结果列于本题附表2中。

例6-1 附表2

根据以上数据,即可标绘得到如图所示的t-x-y图。

(2)利用相对挥发度,计算气液平衡数据因苯—甲苯混合液为理想溶液,故其相对挥发度可用下式计算,即:

以95℃为例,则:

其它温度下的α值列于题附表3中。

通常,在利用相对挥发度法求x-y关系时,可取温度范围内的平均相对挥发度,在本题条件下,附表3中两端温度下的α数据应除外(因对应的是纯组分,即为x-y曲线上两端点),因此可取温度为85℃和105℃下的α平均值,即:

将平均相对挥发度代入下式中,即

并按附表2中的各x值,由上式即可算出气相平衡组成y,计算结果也列于附表3中。

比较本题附表2和附表3,可以看出两种方法求得的x-y数据基本一致。对两组分溶液,利用平均相对挥发度表示气液平衡关系比较简便。

例6-1 附表3

例6-2对某两组分理想溶液进行常压闪蒸,已知为0.5(原料液中易挥发组分的摩尔分率),若要求气化率为60%,试求闪蒸后平衡的气液相组成及温度。

常压下该两组分理想溶液的x-y及t e-x关系如本例附图所示。

解:由题意知所以,

在本例附图(x-y图)中通过

点e(0.5,0.5)作斜率为-0.667

的直线ef,由该直线与x-y平衡

曲线交点f的坐标,即可求得平

衡的气液相组成,即:

再由附图中t e~x

曲线,从

可求得平衡温度,即

例6-3对例6-2中的液体混合物进行简单蒸馏,若气化率仍为60%,试求釜残液组成和馏出液平均组成。已知常压下该混合液的平均相对挥发度为2.16。解:设原料液量为100kmol,则:

因该混合液平均相对挥发度为,则可用下式求釜残液组成x2,即:

试差解得:

馏出液平均组成可由下式求得:

即:

所以

计算结果表明,若气化率相同,简单蒸馏较平衡蒸馏可获得更好的分离效果,即馏出液组成更高。但是平衡蒸馏的优点是连续操作。

例6-4每小时将15000kg含苯40%(质量%,下同)和甲苯60%的溶液,在连续精馏塔中进行分离,要求釜残液中含苯不高于2%,塔顶馏出液中苯的回收率为97.1%。试求馏出液和釜残液的流量及组成,以摩尔流量和摩尔分率表示。解:苯的分子量为78;甲苯的分子量为92。

进料组成:

釜残液组成:

原料液的平均分子量:

原料液流量:

依题意知:

所以:(a)

全塔物料衡算(b)

或(c)

联立式a、b、c,解得:

例6-5分离例6-4中的溶液时,若进料为饱和液体,选用的回流比,试求提馏段操作线方程式,并说明操作线的斜率和截距的数值。

解:由例6-4知:

因泡点进料,故:

将以上数值代入下式,即可求得提馏段操作线方程式:

该操作线的斜率为1.4,在y轴上的截距为-0.0093。由计算结果可看出,本题提馏段操作线的截距值是很小的,而一般情况下也是如此的。

例6-6用一常压操作的连续精馏塔,分离含苯为0.44(摩尔分率,以下同)的苯—甲苯混合液,要求塔顶产品中含苯不低于0.975,塔底产品中含苯不高于0.0235。操作回流比为3.5。试用图解法求以下两种情况时的理论板层数及加料板位置。

(1)原料液为20℃的冷液体。

(2)原料为液化率等于1/3的气液混合物。

已知数据如下:操作条件下苯的气化潜热为389kJ/kg,甲苯的气化潜热为360kJ/kg。苯—甲苯混合液的气液平衡数据及t-x-y图见例6-1和图

解:(1)温度为20℃的冷液进料

①利用平衡数据,在直角坐标图上

绘平衡曲线及对角线,如本例附图

1所示。在图上定出点a(x D,x D)、

点e(x F,x F)和点c(x W,x W)

三点。

②,在y轴上定出点b。联ab,即得到精馏段操作线。

③先按下法计算q值。原料液的气化潜热为:

由图查出进料组成时溶液的泡点为93℃,

。由附录查得在56.5℃下苯和甲苯的比热为

1.84kJ/(kg·℃),故原料液的平均比热为:

所以:

再从点e作斜率为3.76的直线,即得q线与精馏段操作线交于点d。

④联cd,即为提馏段操作线。

⑤自点a开始在操作线和平衡线之间绘梯级,图解得理论板层数为11(包括再沸器),自塔顶往下数第五层为加料板,如本题附图1所示。

(2)气液混合物进料①与上述的

①和②两项的结果如本题附图2所

示。

③由q值定义知,

故:

过点e作斜率为-0.5的直线,即得q线。q线与精馏段操作线交于点d。

④联cd,即为提馏段操作线。

⑤按上法图解得理论板层数为13(包括再沸器),自塔顶往下的第7层为加料板,如附图2所示。

由计算结果可知,对一定的分离任务和要求,若进料热状况不同,所需的理论板层数和加料板的位置均不相同。冷液进料较气液混合物进料所需的理论板层数为少。这是因为精馏塔提馏段内循环量增大的缘故,使分离程度增高或理论板数减少。

例6-7在常压连续精馏塔中,分离乙醇—水溶液,组成为(易挥发组分摩尔分率,下同)及的两股原料液分别被送到不同的塔板,进入塔内。两股原料液的流量之比为0.5,均为饱和液体进料。操作回流比为2。若要求馏出液组成为0.8,釜残液组成为0.02,试求理论板层数及两股原料液的进料板位置。

常压下乙醇—水溶液的平衡数据示于此例附表中。

例6-7 附表

解:如本例附图1所示,由于有两股进料,故全塔可分为三段。组成为的原

料液从塔较上部位的某加料板引入,该加料板以上塔段的操作线方程与无侧线塔的精馏段操作线方程相同,即:

(a)

该操作线在y轴上的截距为:

两股进料板之间塔段的操作线方

程,可按图中虚线范围内作物料衡算

求得,即:

总物料:

(b)

易挥发组分:

式中——两股进料之间各层板的

上升蒸气流量,kmol/h;

——两股进料之间各层板的下降

液体流量,kmol/h。

(下标s、s+1为两股进料之间各层板的序号)

由式(c)可得:

(d)

因进料为饱和液体,故,,则:

(e)

式d及式e为两股进料之间塔段的操作线方程,也是直线方程式,它在y轴上的截距为。其中D可由物料衡算求得。

设,则

对全塔作总物料及易挥发组分的衡算,得:

联立上二式解得:

所以

对原料液组成为的下一股进料,其加料板以下塔段的操作线方程与无侧线塔的提馏段操作线方程相同。

上述各段操作线交点的轨迹方程分别为:

在x-y直角坐标图上绘平衡曲线和对角线,如本题附图2所示。依,

,及分别作铅垂线,与对角线分别交于a、e1、e2及c四点,按原料F1之加料口以上塔段操作线的截距(0.267),

在y轴上定出点b,联ab,即为精馏段

操作线。过点e1作铅垂线(q1线)与

ab线交于点d1,再按两股进料板之间

塔段的操作线方程的截距(0,1),在

y轴上定出点b’,联b’d1,即为该段的

操作线。过点e2作铅垂线(q2线)与b’d1

线交于点d2,联cd2即得提馏段操作线。

然后在平衡曲线和各操作线之间绘梯

级,共得理论板层数为9(包括再沸器),

自塔顶往下的第5层为原料F1的加料

板,自塔顶往下的第8层为原料F2的

加料板。

例6-8根据例6-6的数据,试求实际回流比为最小回流比的倍数。

解:R min由下式计算,即:

(1)冷液进料由例6-6附图1查出q线与平衡线的交点坐标为:

实际回流比,则:

(2)气液混合物进料由例6-6附图2查出q线与平衡线的交点坐标为:

计算结果表明,进料热状况不同,最小回流比并不相同。本题条件下,冷液进料时实际回流比为最小回流比的3.1倍,所取得倍数较大。气液混合物进料时R为R min的1.7倍,一般可视为比较适宜。由此可见,对不同的进料热状况,应选取不同的操作回流比。当然,适宜的回流比应通过经济衡算决定。

例6-9利用例6-8的结果,用简洁法重算例6-6中气液混合物进料时的理论板层数和加料板位置。

塔顶、进料和塔底条件下纯组分和饱和蒸气压列于本例附表中。

例6-9 附表

解:例6-6已知条件为:,,及。例6-8算出的结果为。

(1)求平均相对挥发度

塔顶

进料

塔底

全塔平均相对挥发度为:

精馏段平均相对挥发度为:

(2)求全塔理论板层数由芬斯克方程式知:

由吉利兰图查得:

解得:(不包括再沸器)

若用式(*),

(,,)计算N,则:

解得:(不包括再沸器)

因,在(*)式的适用条件以内,故计算结果与查图所得的结果一致。

(3)求精馏段理论板层数

前已查出即

解得:

故加料板为从塔顶往下的第7层理论板。以上计算结果与例6-6的图解结果基本一致。

例6-10求例6-6中冷夜进料情况下的再沸器热负荷和加热蒸气消耗量以及冷凝气热负荷和冷却水消耗量。已知数据如下:

(1)原料液流量为15000kg/h。

(2)加热蒸汽绝压为200kPa,冷凝液在饱和温度下排出。

(3)冷却水进、出冷凝器的温度分别为25℃及35℃。

假设热损失可忽略。

解:由精馏塔的物料衡算求D和W,即

而原料液的平均分子量为:

故及

解得:,

精馏段上升蒸气量为:

提馏段上升蒸气量为:

冷凝器的热负荷为:

由于塔顶馏出液几乎为纯苯,为简化起见,焓可按纯苯的进行计算。若回流液在饱和温度下进入塔内,则:

所以

冷却水消耗量为:

再沸器的热负荷为:

同样,因釜残液几乎为纯甲苯,故其焓可按纯甲苯进行计算,即:

所以

由附录查得时水的气化潜热为2205kJ/kg

加热蒸气消耗量为:

例6-11将二硫化碳和四氯化碳混合液进行恒馏出液组成的间歇精馏。原料液量为50kmol,组成为0.4(摩尔分率,下同),馏出液组成为0.95(维持恒定),釜液组成达到0.079时即停止操作,设最终阶段操作回流比为最小回流比的1.76倍,试求:(1)理论板层数;(2)气化总量。

操作条件下物系的平衡数据列于本例附表1中。

例6-11 附表1

解:(1)求理论板层数在x-y图上绘平衡曲线和对角线,如本例附图1所示。在该图上查得:当时,与之平衡的,则:

所以

在附图1上,

联点a(,)和

点b(在y轴上的截距为0.08),

直线ab即为操作线。从点a开始在

平衡线和操作线间绘梯级,直至

止,共需7层理论

板。

(2)求气化总量由下式可知:

以为截距在x-y图上作操作线,然后从点a开始绘7层梯级,最后一级对应的液相组成为,所得结果列于本例附表2中。

例6-11 附表2

(由图中读出)

饱和蒸气压计算方法

饱和蒸气压 编辑[bǎo hézhēng qìyā] 在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气 压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸气 压不同,溶剂的饱和蒸气压大于溶液的饱和蒸气压;对于同一物质,固态的饱和蒸气压小于 液态的饱和蒸气压。 目录 1定义 2计算公式 3附录 ?计算参数 ?水在不同温度下的饱和蒸气压 1定义编辑 饱和蒸气压(saturated vapor pressure) 例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的 饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性 质,液体的沸点、液体混合物的相对挥发度等都与之有关。 2计算公式编辑 (1)Clausius-Claperon方程:d lnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸气压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron 方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方 程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lg p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最 简单的改进,在1.333~199.98kPa范围内误差小。 3附录编辑 计算参数 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公 式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2) 公式进行计算 lgP=-52.23B/T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2-三氯乙烷C2H3Cl3 \ 6.85189 1262.570 205.170 1,1,2一三氯乙烯C2HCl3 \ 7.02808 1315.040 230.000 1,2一丁二烯C4H6 -60~+80 7.16190 1121.000 251.000

蒸汽温度与压力的关系

33 第4章 饱和蒸汽压力和温度关系实验 水蒸汽是人类在热机中应用最早的工质。虽然以后也应用燃气和其它工质,由于水蒸汽具有易于获得、有适宜的热力参数和不会污染环境等优点,至今仍是工业上广泛应用的的主要工质。他的物理性质较理想气体复杂的多,不能用简单的数学式来表达。本实验通过研究饱和蒸汽的压力与温度的关系加深对水蒸汽饱和状态的理解。 各种物质由液态转变为汽态的过程为汽化。 4.1实验目的 (1)通过观察饱和蒸汽压力和温度的关系,加深对饱和状态的理解。 (2)通过试验数据的整理,掌握饱和蒸汽P-T 关系图表的编制方法。 (3)学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4.2 实验装置 蒸汽发生器、压力表、温度计、可控数显温度仪和电流表等,如图4.1。 图4.1 饱和蒸汽温度、压力关系实验装置 1-压力表;2-排气阀;3-缓冲器;4-可视玻璃及蒸汽发生器;5-电源开关;6-电功率调节器;7-温度计;8-可控数显温度仪;9-电流表

34 4.3 实验方法与步骤 (1)熟悉实验装置及使用仪表的工作原理和性能。 (2)将电功率调节器调节至电流表零位,然后接通电源。 (3)调节电功率调节器并缓慢逐渐加大电流,待蒸汽压力升至一定值时,将电流降低0.2安培左右保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复上述实验,在0~1.0MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 (4)实验完毕后,将调压指针旋回零位,并断开电源。 (6)记录室温和大气压力。 4.4 数据记录和整理 (1)数据记录和计算 实验 次数 饱和压力(MPa ) 饱和温度(℃) 误差 备注 压力表读数P ' 大气压力B 绝对压力B P P +'= 温度 计读 数t ' 理论值t t t t ' -=?(℃) %100??t t (%) 1 2 3 4 5 6 (2)绘制P-t 关系曲线 将实验结果点在坐标上,清除偏离点,绘制曲线。 图4.2 饱和水蒸汽压力和温度的关系式

水在不同温度下的饱和蒸气压

水在不同温度下的饱和 蒸气压 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

饱和蒸(saturatedvaporpressure) 在密闭条件中,在一定下,与或处于相的蒸气所具有的称为饱和蒸气压。同一在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为,为。而在100℃时,水的饱和蒸气压增大到,乙醇为。饱和蒸气压是液体的一项重要,如液体的、液体的相对挥发度等都与之有关。 饱和蒸气压 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在~范围内误差小。 附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2) 氯化银AgCl1255~1442公式(2)三氯化铝AlCl370~190公式(2)氧化铝Al2O31840~2200公式(2)

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速

度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

饱和蒸汽压力与温度的关系

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)。 饱和蒸汽与过热蒸汽的区别:饱和蒸汽压力与温度有一一对应关系,如已知饱和蒸汽压力为0.5MPa,则温度为158℃,反之,已知饱和蒸汽温度为180℃,则压力必为0.9MPa,所以从压力与温度数据可以判断是否为饱和蒸汽、过热蒸汽。 饱和蒸汽温度1mpa以下160~170度左右 1mpa以上170~195度左右 过热蒸汽在2mpa以上就400度左右. 饱和蒸汽温度压力对照表

压力MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 0.000 99.5 0.180 131.0 0.000 99.5 -0.072 65.0 0.005 101.0 0.185 131.5 -0.002 99.0 -0.074 64.0 0.010 102.0 0.190 132.0 -0.004 98.5 -0.076 63.0 0.015 103.5 0.195 132.5 -0.006 97.5 -0.078 62.0 0.020 104.5 0.200 133.5 -0.008 97.0 -0.08 60.0 0.025 105.5 0.210 134.5 -0.010 96.5 -0.081 59.0 0.030 107.0 0.220 135.5 -0.012 96.0 -0.082 57.5 0.035 108.0 0.230 136.5 -0.014 95.0 -0.083 56.0 0.040 109.0 0.240 137.5 -0.016 94.5 -0.084 55.0 0.045 110.0 0.250 139.0 -0.018 94.0 -0.085 53.5 0.050 111.0 0.260 139.5 -0.020 93.0 -0.086 52.0 0.055 112.0 0.270 140.5 -0.022 92.5 -0.087 50.0 0.060 113.0 0.280 141.5 -0.024 92.0 -0.088 48.5 0.065 114.0 0.290 142.5 -0.026 91.0 -0.089 47.0 0.070 115.0 0.300 143.5 -0.028 90.5 -0.090 45.5 0.075 115.5 0.310 144.5 -0.030 90.0 -0.091 43.5 0.080 116.5 0.320 145.0 -0.032 89.0 -0.092 41.5 0.085 118.0 0.330 146.0 -0.034 88.5 -0.093 39.0 0.090 119.0 0.340 147.0 -0.036 88.0 -0.094 35.5 0.095 119.5 0.350 147.5 -0.038 87.0 -0.095 32.5

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 蒸气压蒸气压指的是在液体(或者固体)的表面存在着该物质的蒸气,这些蒸气对液体表面产生的压强就是该液体的蒸气压。比如,水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥

发。 当气液或气固两相平衡时,气相中A物质的气压,就为液相或固相中A物质的饱和蒸气压,简称蒸气压。下面为影响因素: 1.对于放在真空容器中的液体,由于蒸发,液体分子不断进入气相,使气相压力变大,当两相平衡时气相压强就为该液体饱和蒸汽压,其也等于液相的外压;温度升高,液体分子能量更高,更易脱离液体的束缚进入气相,使饱和蒸气压变大。 2.但是一般液体都暴露在空气中,液相外压=蒸气压力+空气压力=101.325KPa),并假设空气不溶于这种液体,一般情况由于外压的增加,蒸气压变大(不过影响比较小) 3.一般讨论的蒸气压都为大量液体的蒸气压,但是当液体变为很小的液滴是,且液滴尺寸越小,由于表面张力而产生附加压力越大,而使蒸气压变高(这也是形成过热液体,过饱和溶液等亚稳态体系的原因)。所以蒸气压与温度,压力,物质特性,在表面化学中液面的曲率也有影响. 不同物质的蒸气压不同,下面总结给出水在不同温度下的饱和蒸气压:

饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或 S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式: t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(Pa/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 Pa-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有: PnSg≥PgS 或Sg≥Pgs/Pn Sg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s) Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。(l/s) 14、扩散泵抽速计算公式: S=Q/P=(K·n)/(P·t)(升/秒) 式中:S-被试泵的抽气速率(l/s) n-滴管油柱上升格数(格) t-油柱上升n格所需要的时间(秒) P-在泵口附近测得的压强(托)

水的饱和蒸汽压与温度对应表[1]

水的饱和蒸汽压与温度对应表 饱和蒸汽压力所对应的温度 压力/Mpa l/kg温度/℃汽化潜热 kJ/kg 汽化潜热 kca 0.1 99.634 2257.6 539.32 0.12 104.81 2243.9 536.05 0.14 109.318 2231.8 533.16 0.16 113.326 2220.9 530.55 0.18 116.941 2210.9 528.17 0.2 120.24 2201.7 525.97 0.25 127.444 2181.4 521.12 0.3 133.556 2163.7 516.89 0.35 138.891 2147.9 513.12 0.4 143.642 2133.6 509.7 0.5 151.867 2108.2 503.63 0.6 158.863 2086 498.33 0.7 164.983 2066 493.55 0.8 170.444 2047.7 489.18 0.9 175.389 2030.7 485.12 1 179.916 2014.8 481.32 1.1 184.1 1999.9 477.76 1.2 187.995 1985.7 474.37 1.3 191.644 197 2.1 471.12 1.4 195.078 1959.1 468.01 1.5 198.327 1946.6 465.03 1.6 201.41 1934.6 46 2.16 1.7 204.346 1923 459.39 1.8 207.151 1911.7 456.69 1.9 209.838 1900.7 454.06 2 212.417 1890 451.51 2.2 217.289 1869.4 446.58 2.4 221.829 1849.8 441.9 温度℃压力Kg/cm2 温度℃压力Kg/cm2 温度℃压力Kg/cm2 100 1.0332 118↓ 1.8995 136↓ 3.286 101 1.0707 119 1.9612 137 3.382 102 1.1092 120 2.0245 138 3.481 103 1.1489 121 2.0895 139 3.582 104 1.1898 122 2.1561 140 3.685 105 1.2318 123 2.2245 141 3.790 106 1.2751 124 2.2947 142 3.898 107 1.3196 125 2.3666 143 4.009 108 1.3654 126 2.4404 144 4.122 109 1.4125 127 2.5160 145 4.237

水蒸气压与温度关系

5.28SECTION5 TABLE5.6Vapor Pressure of Water For temperatures from?10to120?C. The values in the table are for water in contact with its own vapor.Where the water is in contact with air at a temperature t in degrees Celsius,the following correction must be added:Correction(when t?40?C)?p(0.775?0.000313t)/100;correction(when t?50?C)?p(0.0652?0.0000875t)/100. t,?C p,mm Hg t,?C p,mm Hg t,?C p,mm Hg t,?C p,mm Hg ?10.0 2.149?9.5 2.236?9.0 2.326?8.5 2.418?8.0 2.514?7.5 2.613?7.0 2.715?6.5 2.822?6.0 2.931?5.5 3.046?5.0 3.163?4.5 3.284?4.0 3.410?3.5 3.540?3.0 3.673?2.5 3.813?2.0 3.956?1.5 4.105?1.0 4.258?0.5 4.416 0.0 4.579 0.5 4.750 1.0 4.926 1.5 5.107 2.0 5.294 2.5 5.486 3.0 5.685 3.5 5.889 4.0 6.101 4.5 6.318 5.0 6.543 5.5 6.775 6.07.013 6.5 7.259 7.07.513 7.57.775 8.08.045 8.58.323 9.08.609 9.58.905 10.09.209 10.59.521 11.09.844 11.510.176 12.010.518 12.510.87013.011.231 13.511.604 14.011.987 14.512.382 15.012.788 15.212.953 15.413.121 15.613.290 15.813.461 16.013.634 16.213.809 16.413.987 16.614.166 16.813.347 17.014.530 17.214.715 17.414.903 17.615.092 17.815.284 18.015.477 18.215.673 18.415.871 18.616.071 18.816.272 19.016.477 19.216.685 19.416.894 19.617.105 19.817.319 20.017.535 20.217.753 20.417.974 20.618.197 20.818.422 21.018.650 21.218.880 21.419.113 21.619.349 21.819.587 22.019.827 22.220.070 22.420.316 22.620.565 22.820.815 23.021.068 23.221.324 23.421.583 23.621.845 23.822.110 24.022.387 24.222.648 24.422.922 24.623.198 24.823.476 25.023.756 25.224.039 25.424.326 25.624.617 25.824.912 26.025.209 26.225.509 26.425.812 26.626.117 26.826.426 27.026.739 27.227.055 27.427.374 27.627.696 27.828.021 28.028.349 28.228.680 28.429.015 28.629.354 28.829.697 29.030.043 29.230.392 29.430.745 29.631.102 29.831.461 30.031.824 30.232.191 30.432.561 30.632.934 30.833.312 31.033.695 31.234.082 31.434.471 31.634.864 31.835.261 32.035.663 32.236.068 32.436.477 32.636.891 32.837.308 33.037.729 33.238.155 33.438.584 33.639.018 33.839.457 34.039.898 34.240.344 34.440.796 34.641.251 34.841.710 35.042.175 35.242.644 35.443.117 35.643.595 35.844.078 36.044.563 36.245.054 36.445.549 36.646.050 36.846.556 37.047.067 37.247.582 37.448.102 37.648.627 37.849.157 38.049.692 38.250.231 38.450.774 38.651.323 38.851.879 39.052.442 39.253.009 39.454.580 39.654.156 39.854.737 40.055.324 40.556.81 41.058.34 41.559.90 42.061.50 42.563.13 43.064.80 43.566.51 44.068.26

蒸气压和相对湿度的计算公式

水蒸气压和相对湿度的计算公式 要求水蒸气压和相对湿度时,虽然最好用通风乾湿计,但也可采用不通风乾湿计。由乾湿计计算水 蒸气压和相对湿度的公式为: 1. 从通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e =E’w–0.5(t-t’)P/755 (2)湿球结冰时 e =E’i –0.44(t-t’)P/755 式中, t:乾球读数(oC) t’:湿球读数(oC) E’w:t’(oC)的水饱和蒸气压 E’i:t’(oC)的冰饱和蒸气压 e:所求水蒸气压 P:大气压力 2. 从不通风乾湿计的度数计算水蒸气压: (1)湿球不结冰时 e=E’ w-0.0008P(t-t’) (2)湿球结冰时 e=E’ i-0.0007P(t-t’) 此处所用符号的意义同上。压力单位都统一用mmHg或mb。 3.求相对湿度: H=e/Ew×100 式中H为所求相对湿度(%),Ew为t(oC)的饱和蒸气压(即使在0oC以下时也不使用Ei)。

水的蒸气压 水和所有其它液体一样,其分子在不断运动着,其中有少数分子因为动能较大,足以冲破表面张力的影响而进入空间,成为蒸气分子,这种现象称为蒸发。液面上的蒸气分子也可能被液面分子吸引或受外界压力抵抗而回入液体中,这种现象称为凝聚。如将液体置于密闭容器内,起初,当空间没有蒸气分子时,蒸发速率比较大,随着液面上蒸气分子逐渐增多,凝聚的速率也随之加快。这样蒸发和凝聚的速率逐渐趋于相等,即在单位时间内,液体变为蒸气的分子数和蒸气变为液体的分子数相等,这时即达到平衡状态,蒸发和凝聚这一对矛盾达到暂时的相对统一。当达到平衡时,蒸发和凝聚这两个过程仍在进行,只是两个相反过程进行的速率相等而已。平衡应理解为运态的平衡,绝不意味着物质运动的停止。 与液态平衡的蒸气称为饱和蒸气。饱和蒸气所产生的压力称为饱和蒸气压。每种液体在一定温度下,其饱和蒸气压是一个常数,温度升高饱和蒸气压也增大。水的饱和蒸气压和温度的关系列于表中。 表水的蒸气压和温度的关系

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 温度℃压力Kg/cm2 温度℃压力Kg/cm2 温度℃压力Kg/cm2 100 1.0332 118↓ 1.8995 136↓ 3.286 101 1.0707 119 1.9612 137 3.382 102 1.1092 120 2.0245 138 3.481 103 1.1489 121 2.0895 139 3.582 104 1.1898 122 2.1561 140 3.685 105 1.2318 123 2.2245 141 3.790 106 1.2751 124 2.2947 142 3.898 107 1.3196 125 2.3666 143 4.009 108 1.3654 126 2.4404 144 4.122 109 1.4125 127 2.5160 145 4.237 110 1.4609 128 2.5935 146 4.355 111 1.5106 129 2.6730 147 4.476 112 1.5618 130 2.7544 148 4.599 113 1.6144 131 2.8378 149 4.725 114 1.6684 132 2.9233 150 4.854 115 1.7239 133 3.011 151 4.985 116 1.7809 134 3.101 152 5.120 117↑ 1.8394 135 3.192 153 5.257 154↓ 5.397 176↓ 9.317 198↓ 15.204 155 5.540 177 9.538 199 15.528 156 5.686 178 9.763 200 15.857 157 5.836 179 9.992 201 16.192 158 5.989 180 10.225 202 16.532 159 6.144 181 10.462 203 16.877 160 6.302 182 10.703 204 17.228 161 6.464 183 10.950 205 17.585 162 6.630 184 11.201 206 17.948 163 6.798 185 11.456 207 18.316 164 6.970 186 11.715 208 18.690 165 7.146 187 11.979 209 19.070 166 7.325 188 12.248 210 19.456 167 7.507 189 12.522 211 19.848 168 7.693 190 12.800 212 20.246 169 7.883 191 13.083 213 20.651 170 8.076 192 13.371 214 21.061 171 8.274 193 13.644 215 21.477 172 8.475 194 13.962 216 21.901 173 8.679 195 14.265 217 22.331 174 8.888 196 14.573 218 22.767

饱和蒸汽压计算方法

There is a large number of saturation vapor pressure equations used to calculate the pressure of water vapor over a surface of liquid water or ice. This is a brief overview of the most important equations used. Several useful reviews of the existing vapor pressure curves are listed in the references. Please note the updated discussion of the WMO formulation. 1) Vapor Pressure over liquid water below 0°C ?Goff Gratch equation (Smithsonian Tables, 1984, after Goff and Gratch, 1946): Log10p w = -7.90298 (373.16/T-1) [1] + 5.02808 Log10(373.16/T) - 1.3816 10-7 (1011.344 (1-T/373.16)-1) + 8.1328 10-3 (10-3.49149 (373.16/T-1) -1) + Log10(1013.246) with T in [K] and p w in [hPa] ?WMO (Goff, 1957): Log10p w = 10.79574 (1-273.16/T)[2] - 5.02800 Log10(T/273.16) + 1.50475 10-4 (1 - 10(-8.2969*(T/273.16-1))) + 0.42873 10-3 (10(+4.76955*(1-273.16/T)) - 1) + 0.78614 with T in [K] and p w in [hPa] (Note: WMO based its recommendation on a paper by Goff (1957), which is shown here. The recommendation published by WMO (1988) has several typographical errors and cannot be used. A corrigendum (WMO, 2000) shows the term +0.42873 10-3 (10(-4.76955*(1-273.16/T)) - 1) in the fourth line compared to the original publication by Goff (1957). Note the different sign of the exponent. The earlier 1984 edition shows the correct formula.) ?Hyland and Wexler (Hyland and Wexler, 1983): Log p w = -0.58002206 104 / T [3] + 0.13914993 101

水露点及温度及压力的关系

天然气的水露点,指的是在特殊环境下,当含水量达到饱和状态时候的实际温度。在特殊环境条件下,影响含水量的主要因素有:温度、强压,当含水量突破最大值的时候,为了预防水化物或者液态水的产生,从而堵塞、污染或者腐蚀管道,所以需要充分减小管道里天然气中的实际含水量;一般来说,天然气在开发气田的时候,就会完成脱水作用,天然气的管道传输是一个压力逐渐降低的过程,可以简化为等温降压或升温降压过程,在上述条件下,不会产生液态水,因此不需要添加排水设备。 相关概念 (1).天然气绝对湿度 绝对湿度,指的是在每立方米的天然气里,含有的水汽总质量,使用字母e 进行表达; (2)。天然气的相对湿度 相对湿度,指的是在特殊温度、压强环境条件下,天然气里水汽的总质量e,和在相同环境中的饱和水汽的总质量的比值; (3)。天然气的水露点 水露点,指的是天然气在特殊压强条件下,水汽达到最大饱和值时的温度,也被称之为露点;可以采用天然气的露点分布图,查阅可知;气体水合物产生作用线是一条临界线,代表在特殊环境条件下,气体和水合物之间的相互平衡作用。 在下图里,水合物产生作用区,位于气体水合物产生作用线的下方,达标气体和水合物的达到相互平衡的状态;由图可知,在纯水接触作用下,绘制出实际密度是0.6的水合物产生作用线;假如天然气的实际密度高于或低于0.6,又或是接触水是含盐水的时候,需要根据图中的修正系数进行调整;中性的天然气中,饱和水含量通常根据下列公式完成运算: (4—2) W0.983WdCrdCs 式中W一一非酸性天然气饱和水含量,mg/m3 Wd一一由图查得的含水量,Ing/m3; Crd一一相对密度校正系数 Cs一一含盐量校正系数 当系统压力小于2100kPa(绝对压力)时,针对含有H2S或CO2的酸性天然气,不需要进行修正调整;当环境压强超过2100kPa的时候,则必须进行修正;

各种物质饱和蒸汽压的算法

在表 1 中给出了采用Antoine 公式计算不同物质在不同温度下蒸气压 的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t —温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用 (2)公式进行计算 lgP=T+C (2) 式中:P—物质的蒸气压,毫米汞柱; 表 1 不同物质的蒸气压 名称分子式范围(℃) A B C 1,1,2- 三氯乙烷C2H3Cl3 1,1,2 一三氯乙烯C2HCl3 1,2 一丁二烯C4H6 -60 ~+80 1,3 一丁二烯C4H6 -80 ~+65 2- 甲基丙烯-1 C4H8 2- 甲基丁二烯-1,3 C5H8 -50 ~+95 α - 甲基綦C11H10 α - 萘酚C10H8O β- 甲基萘C11H10 β - 萘酚C10H8O 氨NH3 -83 ~+60 氨基甲酸乙酯C3H7O2N 钡Ba 930~1130 公式(2) 苯C6H6 苯胺C6H7N 苯酚C6H6O 苯甲醇C7H8O 20~113

苯甲醇 C7H8O 113~300 苯甲醚 C7H8O 苯甲酸C7H6O2 60~110 公式(2) 苯甲酸甲酯 C8H8O2 25~100 苯甲酸甲酯 C8H8O2 100~260 苯乙烯 C8H8 铋Bi 1210~1420 公式(2) 蓖C14H10 100~160 公式(2) 蓖 C14H10 223~342 公式(2) 蓖醌C14H3O2 224~286 公式(2) 蓖醌C14H3O2 285~370 公式(2) 丙酸C3H6O2 0~60 丙酸C3H6O2 60~185 丙酮C3H6O 丙烷C3H8 丙烯C3H6 丙烯腈C3H3N -20 ~+140 铂Pt 1425~1765 公式(2) 草酸C2H2O4 55~105 公式(2) 臭氧O3 醋酸甲酯C3H6O2 氮N2 -210 ~-180 碲化氢H2Te -46 ~0 公式(2) 碘I2 碘化钾KI 843~1028 公式(2) 碘化钾KI 1063~1333 公式(2) 碘化钠NaI 1063~1307 公式(2) 碘化氢HI -97 ~-51 公式(2) 碘化氢HI -50 ~-34 公式(2)

水蒸气温度与压力关系

中文"饱和水蒸气压力"英文water vapor saturation pressure; "饱和水蒸气压力" 在学术文献中的解释1、当空气中所含水蒸气的量达到最大时就称这种空气为“饱和湿空气”,与饱和湿空气对应的压力称为“饱和水蒸气压力”,用符号Ps表示.水蒸气压力p与饱和水蒸气压力Ps的比值称为相对湿度Rh,与饱和水蒸气压力Ps对应着的相对湿度为:Rh=100%编辑本段饱和水蒸气压力表 温度t/℃绝对压强 p/kPa 水蒸汽的密 度 ρ/kg·m-3 焓 H/kJ·kg-1 汽化热 r/kJ·kg-1 液体水蒸汽 0 0.61 0.00 0.00 2491.10 2491.10 5 0.87 0.01 20.94 2500.80 2479.86 10 1.23 0.01 41.87 2510.40 2468.53 15 1.71 0.01 62.80 2520.50 2457.70 20 2.33 0.02 83.74 2530.10 2446.30 25 3.17 0.02 104.67 2539.70 2435.00 30 4.25 0.03 125.60 2549.30 2423.70 35 5.62 0.04 146.54 2559.00 2412.10 40 7.38 0.05 167.47 2568.60 2401.10 45 9.58 0.07 188.41 2577.80 2389.40 50 12.34 0.08 209.34 2587.40 2378.10 55 15.74 0.10 230.27 2596.70 2366.40 60 19.92 0.13 251.21 2606.30 2355.10 65 25.01 0.16 272.14 2615.50 2343.10 70 31.16 0.20 293.08 2624.30 2331.20 75 38.55 0.24 314.01 2633.50 2319.50 80 47.38 0.29 334.94 2642.30 2307.80 85 57.88 0.35 355.88 2651.10 2295.20 90 70.14 0.42 376.81 2659.90 2283.10 95 84.56 0.50 397.75 2668.70 2270.50 100 101.33 0.60 418.68 2677.00 2258.40 105 120.85 0.70 440.03 2685.00 2245.40 110 143.31 0.83 460.97 2693.40 2232.00 115 169.11 0.96 482.32 2701.30 2219.00 120 198.64 1.12 503.67 2708.90 2205.20 125 232.19 1.30 525.02 2716.40 2191.80 130 270.25 1.49 546.38 2723.90 2177.60 135 313.11 1.72 567.73 2731.00 2163.30

相关主题
文本预览
相关文档 最新文档