Iteratively Reweighted Algorithms for Compressive Sensing
- 格式:pdf
- 大小:150.88 KB
- 文档页数:4
压缩感知问题统计建模及应用边昂;张建州【摘要】In this paper, a novel statistical model is proposed to describe the Gaussian noisy compressed sensing problem with Gaussian random measurement matrix, and under the statistical framework, some hypothesis tests are used to analyse the performance of the weighted median regression estimate compressive sensing signal reconstruction with an iterative hard threshold under the l0- regularized constraint. The χ2 test based computation sequence is proposed to improve the performance of its coordination descent computation sequence, and F test based data adaptive stopping criterion is presented to take the place of its manual stopping conditions of the maximal number of iterations and the lower bound of the residual energy. Practical performance of the proposal is evaluated via numerical experiments.%对高斯噪声下的高斯随机观测矩阵压缩感知问题建立了新的统计模型,并在该统计模型的基础上,引入相应的统计检验方法对l 0范式约束下的硬阈值加权中值回归重建算法进行分析。
基于贝叶斯压缩感知的复数稀疏信号恢复方法 王伟;唐伟民;王犇;雷舒杰 【摘 要】An effective Sparse Bayesian Learning algorithm exploiting Complex sparse Temporal correlation (CTSBL) is proposed in this paper, which is used to recover sparse complex signal. By exploiting the fact that the real and imaginary components of a complex value share the same sparsity pattern, it can improve the sparsity of the estimated signal. A multitask sparse signal recovery issue is transformed to a block sparse signal recovery issue of a single measurement by taking full advantage of the internal structure information among the multiple measurement vector signals. The experiments show that the proposed algorithm CTSBL achieves better recovery performance compared with the existing Complex MultiTask Bayesian Compressive Sensing (CMTBCS) algorithm and BOMP algorithm.%该文利用复数稀疏信号的时域相互关系提出一种新的稀疏贝叶斯算法(CTSBL)。该算法利用复数信号的实部与虚部分量具有相同的稀疏结构的特点,提升估计信号的稀疏程度。同时将多个测量信号间的内部结构信息引入到了信号恢复中,使原始的多测量稀疏信号恢复问题转变为单测量块稀疏信号恢复问题,使恢复性能得到了提升。理论分析和仿真结果证明,提出的 CTSBL 算法相较于目前的针对复数信号的多测量矢量贝叶斯压缩感知(CMTBCS)算法和块正交匹配追踪算法(BOMP)在估计精度上具有更好的性能。
基于小波树和互补分解的CS-MRI重建算法PEI Ying;ZHU Jin-xiu;YANG Yu-chen;WU Wen-xia【摘要】针对压缩感知(CS)核磁共振成像(MRI)重建算法中全变分(TV)正则项会导致图像细节丢失的问题,引入互补分解模型,结合小波树结构稀疏(简称小波树),提出一种基于小波树和互补分解的CS-MRI重建算法.利用互补分解将图像分成平滑分量和残差分量两个部分,并将平滑分量用于TV正则项,残差分量用于e1范数,可避免TV正则项在滤除噪声的同时滤除过多的细节信息;利用小波树结构稀疏可进一步补充小波稀疏等先验信息,减少测量值或提高信噪比.针对目标函数中存在平滑和残差两个未知分量,将目标函数分解为相应的两个子问题交替最小化进行求解.实验结果表明,与基于小波树的WaTMRI和基于TV的TVCMRI、FCSA等重建算法相比,其能在滤除噪声的同时有效改善MRI图像的细节信息.【期刊名称】《计算机技术与发展》【年(卷),期】2018(028)012【总页数】5页(P152-156)【关键词】核磁共振成像;压缩感知;互补分解;小波树结构稀疏(小波树);目标函数;重建算法【作者】PEI Ying;ZHU Jin-xiu;YANG Yu-chen;WU Wen-xia【作者单位】;;;【正文语种】中文【中图分类】TP301.60 引言核磁共振成像(magnetic resonance imaging,MRI)是医学成像,应用广泛。
目前MRI应用的关键在于快速成像。
Nyquist采样定理需两倍带宽,不符合实际应用[1],现常用方法是在压缩感知(compressed sensing,CS)[2-3]框架下,从欠采样k空间中重建MRI数据,能有效减少采样时间,达到快速成像的目的。
关于CS-MRI重建算法的研究有很多。
例如,Lusting等[4]利用全变分(total variation,TV)和小波构建目标函数,提出共轭梯度算法(CG),但重建时间有待提高;FISTA算法[5]通过计算更合适的起始点以加快收敛速度;TVCMRI[6]、RecPF[7]和FCSA[8]算法利用算子分割、变量分割思想求解联合正则算子,提高重建速度和质量;文献[9]利用图像在频域的特性优化测量矩阵并提出迭代加权算法,提高了重建精度;文献[2,10]利用MR图像低秩特性进行奇异值分解,但过程过于复杂;文献[11-12]提出结构稀疏理论,图像不仅在小波域有稀疏性,其小波稀疏系数也有特定的四叉树结构,在此基础上文献[13]提出YALL1算法,利用小波树结构稀疏代替小波稀疏构建目标函数,以提高图像稀疏度;文献[14]提出WaTMRI算法,联合小波树结构稀疏和小波稀疏分别拥有的结构稀疏和稀疏性,联合改善图像质量;Park等[15]提出互补分解,将完整图像分为平滑和残差两个分量,仅将平滑分量用于TV,残差分量用于1范数,以解决全变分导致的细节过平滑问题;文献[16]利用贪婪算法提高重建速度,但需要确定图像稀疏度,缺乏实际性;文献[17]基于p范数构建重建算法,计算较为复杂。
点云匹配和ICP算法概述Iterative Closest Point (ICP) is an algorithm employed to minimize the difference between two clouds of points.点云匹配分类法(1)•全局匹配算法 Globe•局部匹配算法LocalSalvi, J. (2007). "A review of recent range image registration methods with accuracy evaluation." Image and Vision Computing 25(5): 578-596.Mellado, N. and D. Aiger (2014). "SUPER 4PCS Fast Global Point cloud Registration via Smart Indexing."点云匹配分类法(2)•基于点的匹配•基于特征的匹配•点特征•VPF•FHPF•…•基于线特征•"Algorithms for Matching 3D Line Sets."•"Line segment-based approach for accuracy assessment of MLS point clouds in urban areas.“•Poreba, M. and F. Goulette (2015). "A robust linear feature-based procedure for automated registration of point clouds." Sensors (Basel) 15(1): 1435-1457.Coarse to fine registration粗-精过程粗配的⽬的:提供刚体变换初始估计Salvi, J., et al. (2007).改进ICP算法Besl, P. J. and N. D. Mckay (1992). "A Method for Registration of 3-D Shapes." IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2): 239-256.Siegwart, R., et al. (2015). "A Review of Point Cloud Registration Algorithms for Mobile Robotics." Foundations and Trends in Robotics.•加快搜索效率•K-D树•Voronoi图•不同的距离量测⽅式•点到点•点到线 PLICP•Censi, A. (2008). "An ICP variant using a point-to-line metric." IEEE International Conference on Robotics & Automation. IEEE,: 19-25.•CSM(Canonical Scan Matcher)源码•点到⾯•Low, K.-L. (2004).•⾯到⾯ GICPICP算法求解•Closed Form•SVD•Unit Quaternions单位四元数•The ICP error function minimization via orthonormal matrices•Dual Quaternions•数值解法•LM算法(Levenberg-Marquardt algorithm)•Jerbić, B., et al. (2015). "Robot Assisted 3D Point Cloud Object Registration." Procedia Engineering 100: 847-852.•点到⾯线性最⼩⼆乘法•Low, K.-L. (2004). "Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration."问题•观测误差•部分重叠•离群点Outlier、噪声(经常是错误点或者异常点)•不满⾜⼀⼀对应的条件解决⽅法•剔除 Rejection•PCL类库中采⽤•权重⽅法•稳健⽅法Bergström, P. and O. Edlund (2014). "Robust registration of point sets using iteratively reweighted least squares."H. Pottmann, S. Leopoldseder, and M. Hofer. Simultaneous registration of multiple views of a 3D object. ISPRS Archives 34/3A (2002), 265-270.Andreas Nüchter(2008).3D Robotic Mapping-The Simultaneous Localization and Mapping Problem with Six Degrees of Freedom标准ICP标准ICP算法是最早提出的基于点-点距离的算法,另外⼀种是基于点-⾯的算法,由chen提出,好多⽂献所说的恶Chen's Method。
基于压缩感知的稀疏重构DOA估计算法包晓蕾;曲行根;王卓英【摘要】基于空间目标分布的稀疏特性和压缩感知理论思想,提出一种基于奇异值分解的多测量梯度投影稀疏重构( SVD-MGPSR)算法,将多目标DOA估计转化为一个稀疏信号重构问题。
首先利用阵列流形建立的过完备原子库对信号进行联合稀疏表示,然后对压缩采样后的信息矩阵进行奇异值分解,可以明显降低运算量,最后基于MGPSR算法对稀疏信号进行重构,从而实现DOA估计。
相对于已有算法,该算法不仅在低信噪比、小快拍数条件下测向均方误差较小,而且能够对相干信号进行正确估计,具有较高的测向精度和角度分辨率。
仿真实验验证了该算法的有效性。
%Based on the sparse property of the spatial targets distribution and the idea of compressive sensing ( CS) theory, a multi-measurement gradient projection for sparse reconstruction algorithm based on singular value decomposition ( SVD) was proposed, in which a multi-targets DOA estimation problem can be translated into a sparse signal reconstruction problem .First-ly, the signal was joint sparse representation by establishing an over -complete atom dictionary according to array manifold ma-trix.Then, SVD of information matrix of compressive sampling was done to reduce the amount of computation greatly .Finally, the sparse signal was reconstructed based on multi -measurement vectors gradient projection for sparse signal reconstruction algo -rithm so as to achieve DOA estimation .Compared with existing algorithm , the proposed algorithm not only has a smaller mean square error in the low SNR but also is able to correctly estimate the coherentsignal .Moreover, it offers higher direction finding precision and angular resolution .The simulation results verify its effectiveness .【期刊名称】《武汉理工大学学报(信息与管理工程版)》【年(卷),期】2015(000)006【总页数】6页(P827-831,864)【关键词】压缩感知;DOA估计;奇异值分解;梯度投影【作者】包晓蕾;曲行根;王卓英【作者单位】上海电子信息职业技术学院通信与信息工程系,上海 201411;哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150001;上海电子信息职业技术学院通信与信息工程系,上海 201411【正文语种】中文【中图分类】TN911目标信号波达方向(direction of arrival, DOA)估计一直是阵列信号处理领域中的一个重要研究方向,在通信、雷达和医学成像等领域有着广泛的应用[1]。
文章编号:1007-757X(2021)04-0061-05基于视觉传达效果的图像压缩感知重建算法研究沈凤仙(三江学院计算机科学与工程学院,江苏南京210000)摘要:针对传统的图像压缩感知重建算法的视觉传达效果不好、成像质量低0缺4,将图像分块理论D入压缩感知图像重建,结合曲波变换具有适合表达边缘细节信息和曲线信息的优4,利用曲波变换对MRI图像进行稀疏表示,形成一种基于视觉传达效果的MRI图像压缩感知图像重构算法#选择信噪比、相对"误差和匹配度为评价m标,通过无噪图像、加噪图像、不同采样频率对重构图像质量影响进行3组实验#实验结果表明,图像重构时,在信噪比、相对"误差和匹配度3个评价m 标上,提出的算法GPBDCT均优于SIDCT和PBDCT,同时GPBDCT具有很强的抵抗噪声的能力,在保持图像细节和边缘方面效果很好#关键词:小波变换;曲波变换;压缩感知;正则化参数;采样频率;信噪比中图分类号:TN911.73文献标志码:AStudy on Image Compression Perceptual ReconstructionAlgorithm Based on Visual Communication EffectSHEN Fengxian(School of Computer Science and Engineering,Sanjiang University,Nanjing210000,China)Abstract:Aiming at the shortcomings of traditional image compression perceptual reconstruction algorithm,such as bad visual communicatione f ectandlowimagequality,thetheoryofimageblockisappliedintothereconstructionofcompressedpercep-ualimagesTCombiningtheadvantagesofcurvelettransform,whichissuitableforexpressingedgedetailsandcurveinforma-ion,the MRIimagesarerepresentedsparinglybycurvelettransformTAn MRIimagereconstructionalgorithmbasedonvisual communication effect is proposed.The signal-to-noise ratio,relative—error and matching degree are selected as the evaluation indexes.The results of three groups of experiments show that the quality of reconstructed images is affected by noise-free images,noisy images and different sampling frequencies and PBDCT is superior to SIDCT and PBDCT in SNR,relative—error and matching degree.PBDCT has strong ability to resist noise and is good at preserving image details and edges.Key words:wavelet transform;curvelet transform;compression perception;regularization parameter;sampling frequency%SNR0引言磁共振成像(Magnetic Resonance Imaging,MRI)技术能够提供活体组织的细节图像,同时具有对人体无辐射性伤害等优点,因此被广泛地应用于人脑、胸部、心脏以及人体其他部位结构的成像。
基于压缩感知的地震数据重建舒国旭;吕公河;吕尧;石太昆;邸志欣;霍守东【摘要】“两宽一高”(宽方位、宽频带、高密度)地震采集技术在解决复杂构造成像、岩性勘探以及油气藏精细描述等方面具有明显的技术优势,然而其工业化应用还需解决复杂地表以及勘探成本等制约因素.基于压缩感知理论及非规则观测系统的最优化设计,有效降低了勘探成本;随后利用L0正则化和L1正则化混合迭代的方法求解0范数稀疏约束的优化问题,重建地震数据,实现在一定成本限制的条件下获取更高密度数据体的目的.TFT工区基于压缩感知的数据采集与重建,验证了方法的有效性,为“两宽一高”地震勘探采集技术的工业化应用提供了有效的思路.【期刊名称】《石油物探》【年(卷),期】2018(057)004【总页数】6页(P549-554)【关键词】压缩感知;“两宽一高”;稀疏;非规则;观测系统设计;数据重建;勘探成本【作者】舒国旭;吕公河;吕尧;石太昆;邸志欣;霍守东【作者单位】油气资源研究院重点实验室,中国科学院地质与地球物理研究所,北京100029;中国科学院大学,北京100049;中国科学院地球科学研究院,北京100029;中石化石油工程地球物理有限公司,北京100020;油气资源研究院重点实验室,中国科学院地质与地球物理研究所,北京100029;中国科学院大学,北京100049;中国科学院地球科学研究院,北京100029;油气资源研究院重点实验室,中国科学院地质与地球物理研究所,北京100029;中国科学院地球科学研究院,北京100029;中石化石油工程地球物理有限公司研发中心,北京100020;油气资源研究院重点实验室,中国科学院地质与地球物理研究所,北京100029;中国科学院地球科学研究院,北京100029【正文语种】中文【中图分类】P631传统的地震数据采集遵循Shannon-Nyquist采样定理,即:若要使采集到的数据能不失真地保持原信号中的信息,采样频率必须是原信号频带宽度的两倍以上。
基于压缩感知的 OMP 改进重构算法王军;孔令斌;赵洁【摘要】针对无线通信网络近些年出现的大数据量信号的情况,在对信号采样的同时进行适当压缩,利用合适的重构算法实现了用少量的采样值或观测值对信号进行重构。
在原有基于 OMP(正交匹配追踪)的压缩感知重构算法的基础上引入AS(交替步长),提出一种新的改进算法———GP-OMP(梯度正交匹配追踪)算法。
实验结果表明,该改进算法利用前一感知时刻获得的频谱信息,不仅能有效地降低重构算法的计算量,还能有效地减少重构耗时,并得到与原有方法基本一致的重构效果。
%In view of the emergence of mega data signals in wireless communication networks in recent years,this paper proper-ly compresses these signals while performing signal sampling and realizes their reconstruction with small amount sampling val-ue or observed value by using an appropriate reconstruction algorithm.On the basis of the original Orthogonal Matching Pur-suit (OMP)-based compressed sensing reconstruction algorithm,the Alternating Step-size (AS)is introduced andan improved algorithm,i.e.GP-OMP algorithm proposed.Experimental results show that the spectrum information this algorithm ob-tained by using the previous sensing moment can not only effectively reduce the amount of computations by the reconstruction algorithm,but also the reconstruction time,with almostthe same results as those by using the original method.【期刊名称】《光通信研究》【年(卷),期】2016(000)001【总页数】5页(P74-78)【关键词】重构算法;压缩感知;交替步长;频谱感知【作者】王军;孔令斌;赵洁【作者单位】西安邮电大学通信与信息工程学院,西安 710121;西安邮电大学通信与信息工程学院,西安 710121;西安邮电大学电子工程学院,西安 710121【正文语种】中文【中图分类】TN911.23近年来,一种新型的采样理论——压缩感知[1]在信号处理领域诞生。
ITERATIVELYREWEIGHTEDALGORITHMSFORCOMPRESSIVESENSINGRickChartrandLosAlamosNationalLaboratoryrickc@lanl.govWotaoYin∗RiceUniversitywotao.yin@rice.edu
ABSTRACTThetheoryofcompressivesensinghasshownthatsparsesignalscanbereconstructedexactlyfrommanyfewermea-surementsthantraditionallybelievednecessary.In[1],itwasshownempiricallythatusingpminimizationwithp<1can
dosowithfewermeasurementsthanwithp=1.Inthispaperweconsidertheuseofiterativelyreweightedalgorithmsforcomputinglocalminimaofthenonconvexproblem.Inpar-ticular,aparticularregularizationstrategyisfoundtogreatlyimprovetheabilityofareweightedleast-squaresalgorithmtorecoversparsesignals,withexactrecoverybeingobservedforsignalsthataremuchlesssparsethanrequiredbyanunreg-ularizedversion(suchasFOCUSS,[2]).Improvementsarealsoobservedforthereweighted-1approachof[3].
IndexTerms—Compressivesensing,signalreconstruc-tion,nonconvexoptimization,iterativelyreweightedleastsquares,1minimization.
1.INTRODUCTIONRecentpapers[4,5]haveintroducedtheconceptknownascompressivesensing(amongotherrelatedterms).Thebasicprincipleisthatsparseorcompressiblesignalscanberecon-structedfromasurprisinglysmallnumberoflinearmeasure-ments,providedthatthemeasurementssatisfyanincoherenceproperty(see,e.g.,[6]foranexplanationofincoherence).Suchmeasurementscanthenberegardedasacompressionoftheoriginalsignal,whichcanberecoveredifitissufficientlycompressible.Afewofthemanypotentialapplicationsaremedicalimagereconstruction[7],imageacquisition[8],andsensornetworks[9].Thefirstalgorithmpresentedinthiscontextisknownasbasispursuit[10].LetΦbeanM×Nmeasurementma-trix,andΦx=bthevectorofMmeasurementsofanN-dimensionalsignalx.Thereconstructedsignalu∗isthemin-
imizerofthe1norm,subjecttothedata:
minuu1,subjecttoΦu=b.(1)
∗Thesecondauthorwassupportedbyaninternalfacultyresearchgrant
fromtheDeanofEngineeringatRiceUniversity.HewouldliketothankElaineHaleandYinZhangforvaluablehelpwithcoding.
AremarkableresultofCand`esandTao[11]isthatif,forexample,therowsofΦarerandomlychosen,Gaussiandis-tributedvectors,thereisaconstantCsuchthatifthesupportofxhassizeKandM≥CKlog(N/K),thenthesolutionto(1)willbeexactlyu∗=xwithoverwhelmingprobability.
TherequiredCdependsonthedesiredprobabilityofsuccess,whichinanycasetendstooneasN→∞.DonohoandTan-ner[12]havecomputedsharpreconstructionthresholdsforGaussianmeasurements,sothatforanychoiceofsparsityKandsignalsizeN,therequirednumberofmeasurementsMfor(1)torecoverxcanbedeterminedprecisely.VariantsoftheseresultshaveincludedΦbeingarandomFouriersubmatrix,orhavingvalues±1/√
Nwithequalprob-
ability.Moregeneralmatricesareconsideredin[6,13].Also,xcanbesparsewithrespecttoanybasis,withureplacedwithΨuforsuitableunitaryΨ.Afamilyofiterativegreedyalgorithms[14,15,16]havebeenshowntoenjoyasimilarexactreconstructionproperty,generallywithlesscomputationalcomplexity.However,thesealgorithmsrequiremoremeasurementsforexactreconstruc-tionthanthebasispursuitmethod.Intheotherdirection,itwasshownin[1]thatanonconvexvariantofbasispursuitwillproduceexactreconstructionwithfewermeasurements.Specifically,the1normisreplaced
withthepnorm,where0actuallyanorm,thoughd(x,y)=x−yppisametric):
minuupp,subjecttoΦu=b.(2)
Thatfewermeasurementsarerequiredforexactreconstruc-tionthanwhenp=1wasdemonstratedbynumericalex-perimentsin[1],withrandomandnonrandomFouriermea-surements.Atheoremwasalsoprovenintermsofthere-strictedisometryconstantsofΦ,generalizingaresultof[17]toshowthataconditionsufficientfor(2)torecoverxexactlyisweakerforsmallerp.Morerecently,forthecaseofrandom,Gaussianmeasurements,theaboveconditionofCand`esandTaohasbeenshown(usingdifferentmethods)[18]togener-alizeto
M≥C1(p)K+pC2
(p)Klog(N/K),(3)
whereC1,C2aredeterminedexplicitly,andareboundedin
p.Thus,thedependenceofthesufficientnumberofmea-
38691-4244-1484-9/08/$25.00 ©2008 IEEEICASSP 2008surementsMonthesignalsizeNdecreasesasp→0.Theconstantsarenotsharp,however.2.ALGORITHMSFORNONCONVEXCOMPRESSIVESENSINGEarlypapersconsideringiterativelyreweightedleastsquares(IRLS)approachesinclude[19,20].IRLSforsolving(2)hasmostlybeenconsideredforp≥1.Thecaseofp<1wasstudiedbyRaoandKreutz-Delgado[2].Theapproachistoreplacethepobjectivefunctionin(2)byaweighted2norm,minuNi=1wiu2i,subjecttoΦu=b,(4)wheretheweightsarecomputedfromthepreviousiterateu(n−1),sothattheobjectivein(4)isafirst-orderapproxi-mationtothepobjective:wi=|u(n−1)i|p−2.Thesolutionof(4)canbegivenexplicitly,givingthenextiterateu(n):u(n)=QnΦTΦQnΦT)−1b,(5)whereQnisthediagonalmatrixwithentries1/wi=|u(n−1)i|2−p.ThiscomesfromsolvingtheEuler-Lagrangeequationof(4),usingtheconstrainttosolvefortheLagrangemultipliers,thensubstitutingthisvalueintothesolution.Theresultisafixed-pointiterationforsolvingtheEuler-Lagrangeequationof(2).Inthispaper,weareconsidering0≤p≤1.Thecaseofp=0correspondstoanobjectiveoflog(|ui|2).Giventhatp−2willbenegative,theweightswiareundefinedwheneveru(n−1)i=0.Acommonapproachfordealingwiththisissueistoregularizetheoptimizationproblem,byincorporatingasmall>0.Forexample,belowweconsiderthedampingapproach:wi=(u(n−1)i)2+p/2−1.(6)Asobservedin[2],theiteration(5)dependsonlyon1/wi,whichifdefineddirectlyas|u(n−1)i|2−piswelldefinedforanyvalueofu(n−1)i.Inprinciple,noregularizationisneeded.Formanysystems,however,thematrixbeinginvertedin(5)istooill-conditionedtoallowaccuratecomputationofu(n).InSection3,weperformexperimentsthatshowthatthestrategyofusingarelativelylargein(6),thenrepeatingtheprocessofdecreasingafterconvergenceandrepeatingtheiteration(5),dramaticallyimprovestheabilityofIRLStore-coversparsesignals.Exactrecoverybecomespossiblewithmanyfewermeasurements,orwithsignalsthataremuchlesssparse.This-regularizationstrategywasusedeffectivelywithaprojectedgradientalgorithmin[1].Itmustbenotedthat(2)isanonconvexoptimizationprob-lemwhenp<1,andallofthealgorithmsconsideredhereareonlydesignedtoproducelocalminima.However,thefactthatinpracticeweareabletorecoversignalsexactly,com-binedwiththeoreticalresults[1,18]thatgivecircumstancesinwhich(2)hasaunique,globalminimizerthatisexactlyu∗=x,stronglysuggeststhatthecomputedlocalminimiz-