Discovery of radio pulsations from the X-ray pulsar J0205+6449 in supernova remnant 3C58 wi
- 格式:pdf
- 大小:121.64 KB
- 文档页数:5
脉冲星的研究及其科学意义脉冲星是极端天体物理领域中比较重要的研究对象,因其特殊的物理特性和独特的发现历史而备受关注。
脉冲星本质上是一种巨大、沉重、极度致密的恒星残骸,其表面到处都笼罩着极强磁场,其旋转周期极短,高达每秒几百次甚至几千次,被广泛认为是宇宙中最稳定的天体。
本文将从脉冲星的发现历史、物理特点、研究对象等方面入手,深入探讨脉冲星的研究及其科学意义。
一、脉冲星的发现历史1958年,贝尔实验室的天文学家詹姆斯.克林特发现了一个奇怪的天体,它以旋转的方式发送着快速而规律的无线电脉冲,被称为脉冲星。
当时的科学家们非常惊讶,因为传统的天体物理学已经无法解释这样奇特的现象。
之后,人们经过长期的研究和探索,逐渐认识到了脉冲星这一新型天体的物理特性和天文意义。
此后,脉冲星成为了天文学、物理学和宇宙学等多个学科交叉研究的重要对象。
二、脉冲星的物理特点脉冲星具有许多特殊的物理特点和天文特性,主要包括以下几个方面。
(一)极端的致密度脉冲星是一类被极度压缩的恒星残骸,通常其质量为太阳质量的1-2倍,但体积仅为太阳体积的10公里左右。
这种密度已经超过了物理学界认为极限的值,也就是大约4x10^14克/厘米^3。
因此,脉冲星的压缩程度已经到达了超过范德华力、电磁力等所有基本相互作用力的极限,它们是人类目前所知宇宙中最密集的天体物质。
(二)极强的磁场脉冲星拥有极强的磁场,大约为10^12到10^15高斯。
这种强度远远超过了普通星体磁场的强度,它是由于脉冲星天体在形成的过程中发生了磁场大幅度增强的“磁演化”过程导致的。
这种强磁场对脉冲星的结构和运动具有极大的影响,例如它可以控制脉冲星的旋转和辐射过程,影响到脉冲星的辐射特性和天体物理特性。
(三)极快的自转脉冲星的旋转速率非常快,约从每秒10到每秒700次不等,其中部分脉冲星的自转速率甚至超过了每秒1000次。
脉冲星自转速率的这种快速旋转是由于气体落入脉冲星的磁场所产生的旋转磁场耦合效应所致。
脉冲星实在是一种奇异的天体,人们对它的各种特性还没有完全了解,很多发现都是事先没有预料到的。
随着人们对它的了解越来越多,这方面的理论建设也就会越来越完善,故事也许不会再发生。
那是1967年8月,剑桥射电天文台的女研究生贝尔在纷乱的记录纸带上察觉到一个奇怪的“干扰”信号,经多次反复钻研,她成功地认证:地球每隔1.33秒接收到一个极其规则的脉冲。
得知这一惊人消息,她的导师休伊什曾怀疑这可能是外星人——“小绿人”——发出的摩尔斯电码,他们可能在向地球问候。
但是,进一步的测量表明,这个天体发出脉冲的频率精确得令人难以置信,并没有电码的明显丰富信息。
接下来,贝尔又找出了另外3个类似的源,所以排除了外星人信号,因为不可能有三个“小绿人”在不同方向、同时向地球发射稳定频率信号。
再经过认真仔细研究,1968年2月,贝尔和休伊什联名在英国《自然》杂志上报告了新型天体——脉冲星的发现,并认为脉冲星就是物理学家预言的超级致密的、接近黑洞的奇异天体,其半径大约10公里,其密度相当于将整个太阳压缩到北京市区的范围,因此具有超强的引力场。
乒乓球大小的脉冲星物质相当于地球上一座山的重量。
这是20世纪激动人心的重大发现,为人类探索自然开辟了新的领域,而且对现代物理学的发展产生了深远影响,成为上世纪60年代天文学的四大发现之一。
然而,荣誉出现了归属争议。
1974年诺贝尔物理学奖桂冠只戴在导师休伊什的头上,完全忽略了学生贝尔的贡献,舆论一片哗然。
英国著名天文学家霍伊尔爵士在伦敦《泰晤士报》发表谈话,他认为,贝尔应同休伊什共享诺贝尔奖,并对诺贝尔奖委员会授奖前的调查工作欠周密提出了批评,甚至认为此事件是诺贝尔奖历史上一桩丑闻、性别歧视案。
霍伊尔还认为,贝尔的发现是非常重要的,但她的导师竟把这一发现扣压半年,从客观上讲就是一种盗窃。
更有学者指出,“贝尔小姐作出的卓越发现,让她的导师休伊什赢得了诺贝尔物理奖”。
著名天文学家曼彻斯特和泰勒所著《脉冲星》一书的扉页上写道:“献给乔瑟琳·贝尔,没有她的聪明和执著,我们不能获得脉冲星的喜悦。
时隔十多年我科学家再次听见一颗黑洞的“心跳”
作者:
来源:《科学大观园》2020年第13期
十几年前,天文学家首次发现来自一个超大质量黑洞的“心跳”——X射线准周期振荡信号。
十几年后,当天文学家再次有机会观测这个黑洞时,发现这个信号仍在持续。
这项研究工作由中国科学院国家天文台研究员金驰川主导,研究结果近日已发表于《英国皇家天文学会月刊》。
这个特殊的黑洞被命名为RE J1034+396,是一个距离地球6亿光年的超大質量黑洞。
2007年,科学家们首次发现这个黑洞的X射线辐射具有一小时左右的周期性振荡信号。
2011年,由于该黑洞的视线方向离太阳太近,对其“心跳”信号的监测也就停止了。
直到2018年,科学家们有机会再次对这个黑洞开展观测。
金驰川研究团队通过使用XMM-牛顿卫星、“核光谱望远镜阵列(NuSTAR)”卫星和“雨燕(Swift)”卫星,对RE
J1034+396开展联合观测,并最终确认其X射线振荡信号仍然存在,而且比以前更强了。
这是目前观测到的持续时间最长的超大质量黑洞“心跳”信号。
◎来源|科技日报。
天文词汇XXenophanes 色诺芬尼月表的陨石坑,位在月面西侧边缘。
X-Persei 英仙座 X 星一颗位在英仙座的大质量 X射线双星。
视星等介于 6.0 到 6.7 之间,变光周期为 580 天。
X-ray X射线波长介于珈玛射线和紫外光之间的高能电磁辐射。
X-ray astronomy X射线天文学在X射线波段研究遥远恒星、星系和类星体的学科,起源于美国天文学家 Giacconi 和同事们 1962 年发现第一颗 X射线 - 天蝎座 X-1 星。
X-ray binary X射线双星辐射出 X 射线的脉动中子双星,最的范例是 SS433。
X-ray burster, X-ray burst source X射线爆发源宇宙中发生 X射线爆闪的非周期性辐射源。
X-ray galaxyX射线星系发射出强烈X射线的星系或类星体源,通常也是强大的电波源。
X-ray pulsar X射线脉动电波星发出X射线脉冲的中子星。
X-ray satellite X射线卫星用于观测宇宙X射线辐射源的人造卫星,第一个这种卫星是美国太空总署的自由号(Uhuru) 卫星。
X-ray source X射线卫星太阳系外部的X射线辐射源,通常是正在发生质量转移的双星系统,例如:天蝎座X-1、天鹅座X-1、半人马座X-3、武仙座 X-1等。
X-ray star X射线星辐射出X射线的恒星,通常是正在发生质量转移的双星系统,不可见的伴星有可能是中子星或黑洞,参见 X-ray source 与 X-ray binary。
X-ray transiet X射线暂现突然出现的X射线暂现源所产生的X射线辐射,持续的时间在数周到数个月之间。
1 2。
海淀区高三年级第一学期期末练习语文2018.1一、本大题共8小题,共24分。
阅读下面的材料,完成1-8题。
材料一目前,被誉为“中国天眼”的500米口径球面射电望远镜,还未正式运行就新发现6颗脉冲星。
中国科学家在北京发布了它取得的首批成果。
“中国天眼”是中国“十一五”重大科技基础设施之一,基于选址方法、索网主动反射面、柔性索结合并联机器人的馈源支撑这三项中国自主创新技术,它突破了射电望远镜工程的极限。
在未来可预见的二三十年内,它将是我们这个星球最先进、最灵敏的射电望远镜。
人类迄今已发现2500余颗脉冲星。
但在“中国天眼”问世前,中国望远镜从未捕捉到新的脉冲星。
事实证明,重大的科学突破离不开科研仪器的进步。
世界各国相继认识到大科学装置在国家创新能力建设中的重要地位,中国也在不断兴建重器。
包括“中国天眼”在内,仅中国科学院目前运行和在建的重大科技基础设施就有23个。
2013年国务院印发的《国家重大科技基础设施建设中长期规划(2012—2030年)》对能源、生命、天文等7个科学领域进行了系统【甲】bùshǔ。
中国科学院国家天文台台长严俊认为,“中国天眼”调试进展超过预期、打破大型同类设备调试周期的国际惯例,并有系统的科学产出,这得益于【乙】卓.有成效的早期科学规划和人才储备。
从最初不到5人的研究小组扩大到上百人团队,“中国天眼”凭借国内100多家参建单位的力量,由跟踪模仿发展到集成创新。
发布会当日,人们自发为“中国天眼”之父,项目总工程师兼首席科学家南仁东先生默哀。
2017年9月15日,在“中国天眼”落成近一周年之际,曾为之奔波奋斗的南先生【丙】溘.然长逝。
当年他毅然舍弃高薪,回国就任中国科学院北京天文台副台长。
1993年国际无线电科学联盟大会上,外国科学家们提出要建造新一代射电望远镜,以接受更多来自外太空的讯息。
南先生跟同事们说:“咱们也建一个吧!”从那时起,一干就是二十多年。
如今“中国天眼”新发现的脉冲星【丁】yìyì生辉,人们感慨它“足以告慰老南”。
科技名词定义中文名称:脉冲星英文名称:pulsar定义:有107—109T强磁场的快速自转中子星。
发射规则的毫秒至百秒级的短周期脉冲辐射是其基本特征。
以上内容由全国科学技术名词审定委员会审定公布求助编辑百科名片拖长尾巴的脉冲星脉冲星,就是变星的一种。
脉冲星是在1967年首次被发现的。
当时,还是一名女研究生的贝尔,发现狐狸星座有一颗星发出一种周期性的电波。
经过仔细分析,科学家认为这是一种未知的天体。
因为这种星体不断地发出电磁脉冲信号,人们就把它命名为脉冲星。
中文名:脉冲星拼音:mai chong xing实质:变星的一种发现时间:1967年名称由来:不断地发出电磁脉冲信号目录定义脉冲星发射射电脉冲特性脉冲原因发现15岁女生发现新脉冲星特征毫秒脉冲星著名的脉冲星有关故事发现脉冲星最愚蠢的一脚摇摆舞行星脉冲双星双脉冲星脉冲双星与双脉冲星中学生发现脉冲星研究对人类的意义脉冲星发现者同名电影基本信息剧情简介同名游戏基本信息游戏简介展开定义脉冲星发射射电脉冲特性脉冲原因发现15岁女生发现新脉冲星特征毫秒脉冲星著名的脉冲星有关故事发现脉冲星最愚蠢的一脚摇摆舞行星脉冲双星双脉冲星脉冲双星与双脉冲星中学生发现脉冲星研究对人类的意义脉冲星发现者同名电影基本信息剧情简介同名游戏基本信息游戏简介展开编辑本段定义脉冲星(Pulsar),又称波霎,是中子星的一种,为会周期性发射脉冲信号的星体,直径大多为20千米左右,自转极快。
脉冲星脉冲星-内部结构模型图人们最早认为恒星是永远不变的。
而大多数恒星的变化过程是如此的漫长,人们也根本觉察不到。
然而,并不是所有的恒星都那么平静。
后来人们发现,有些恒星也很“调皮”,变化多端。
于是,就给那些喜欢变化的恒星起了个专门的名字,叫“变星”。
脉冲星发射的射电脉冲的周期性非常有规律。
一开始,人们对此很困惑,甚至曾想到这可能是外星人在向我们发电报联系。
据说,第一颗脉冲星就曾被叫做“小绿人一号”。
2022届北京市昌平区高三上期末语文试题及答案展开全文昌平区2021—2022学年第一学期高三年级期末质量抽测语文试卷 2022.1本试卷共8页,150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
一、本大题共5小题,共18分。
阅读下面的材料,完成1—5题。
材料一人类对太空的探索从未停歇。
400多年前,伽利略举起自己制作的简易望远镜对准星空,他看到了与前人所见完全不同的星空,掀起了人类探索宇宙的热潮。
天文望远镜从此成为观测天空不可或缺的重要工具,而天文探索直接改变并重塑了人类对宇宙的看法。
之后的几百年,望远镜的口径越来越大,制作工艺也越来越先进。
透过望远镜,人们发现的天体和宇宙现象越来越多。
“究竟银河系就是我们的所有宇宙,还是银河系外有其它类似银河系的星系?”二十世纪的这场天文学大辩论当时并没有结果。
但几年之后,美国天文学家埃德温·哈勃使用当时世界上口径最大的2.5米胡克望远镜,发现了银河系之外还存在其它的星系,而且这些星系正在远离银河系。
这一系列发现让人们意识到,宇宙在膨胀,这也成为宇宙大爆炸理论的观测基础,哈勃也因此被称为“20世纪最伟大的科学家之一”。
为纪念伟大的美国天文学家埃德温·哈勃,一架空间望远镜在1982年被正式命名为——哈勃空间望远镜。
哈勃空间望远镜的心脏是它的主镜面,直径2.4米,是一套通过主镜和副镜的组合使用,以使光线进入望远镜的科学仪器。
1970年,美国航天局设立了空间望远镜工程委员会。
但随着太空经费开始缩减,研制大型空间望远镜的预算缩减为原来的一半,美国航天局将望远镜口径从原来拟定的3米降至2.4米,仪器设备也相应缩水,便邀请欧洲空间局加入并承担15%的研制经费,相应给予欧洲科学家不少于15%的使用时间。
1990年4月24日清晨,美国佛罗里达州肯尼迪航天中心,“发现号”航天飞机携带着此后为天文领域做出巨大贡献的超级明星——哈勃空间望远镜,一飞冲天。
超大质量黑洞产生的高能中微子探测及巨型中微子射电探测阵列的选址朱春花;翟楠楠;沈冬祥;吕国梁;王兆军;李琳;刘荷蕾;Olivier Martinea-Huynh;Charles Timmermans【摘要】宇宙高能中微子很可能起源于超大质量黑洞与吸积物质的相互作用.这些中微子在传播过程中由于只参与弱相互作用,其轨迹直指起源的特性,使其成为观测宇宙更远的天体的全新窗口.传统的中微子探测方法由于造价高、技术复杂,限制了探测的有效面积和观测时间.巨型中微子射电探测阵列GRAND,由多国共同参与建设,具有造价低、易大面积部署、可全天观测的特点,成为目前最好的选择,通过探测高能中微子寻找超高能宇宙射线的起源.目前在进行GRANDProto300的选址中,我们在内蒙古明安图、新疆巴里坤等地方使用GRANDProto35原型天线进行实地探测.探测结果显示,巴里坤地区具有良好的电磁环境,更加适合该项目的建设.选址探测工作为GRANDProto300的选址及其它射电探测阵列的建设提供了依据.【期刊名称】《新疆大学学报(自然科学版)》【年(卷),期】2019(036)002【总页数】6页(P127-131,152)【关键词】超大质量黑洞;高能中微子;射电探测;超高能宇宙射线;选址探测;射电阵列【作者】朱春花;翟楠楠;沈冬祥;吕国梁;王兆军;李琳;刘荷蕾;Olivier Martinea-Huynh;Charles Timmermans【作者单位】新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;新疆大学物理科学与技术学院,新疆乌鲁木齐830046;索邦大学、巴黎狄德罗大学、巴黎索邦西岱大学,法国;中国科学院国家天文台,北京100012;奈梅亨大学数学、天体物理与粒子物理研究所,荷兰;荷兰国家核物理与高能物理研究所,荷兰【正文语种】中文【中图分类】P161中微子具有不参与电磁相互作用、强相互作用的特性,在传播过程中几乎不改变传播方向,轨迹直指起源地[1].2013年,南极Icecube中微子实验在《Science》发表,声称已经观测到地外高能中微子,这一发现预示着中微子天文学时代的到来[2].去年,Icecube又发现高能中微子就可能起源于正在吸积物质的超大质量黑洞[3].特别是最近,视界望远镜给出了一座质量高达65亿倍太阳质量的超大质量黑洞照片[4].对高能中微子的探测是解决超高能宇宙射线起源问题的重要手段.由于其特性,天文学家可以通过对它的观测了解宇宙中更远的天体.这种特性也导致人们对它的探测十分困难,为得到统计上可观的宇宙中微子事件需要巨大的探测器.目前对中微子的探测主要分为三种方法[5,6]:(1)使用表面粒子探测器.由于高能中微子在传播过程中与周围的分子或原子之间弱的相互作用,引发粒子级联效应,粒子数量增多,可以通过探测大气中粒子的分布来确定初期粒子的到达方向,例如TA(The Telescopes Array)、HAWC(The High-Altiude Water Cherenkov)等.然而,由于粒子探测器造价昂贵限制了有效探测面积;(2)使用光学探测器.中微子在相对透明的介质中相互作用时会产生Cherenkov光或荧光效应,可以通过在介质(例如水,冰等)中部署相关的探测器进行探测这些事件,例如POEMMA(The Probe Of Multi-Messenger Astrophysics)、AMANDA(Muon and Neutrino Detector Array)等,在大气中使用光学探测器,会受天气和光照的严重影响,因此运行时间受限,而建立在冰层、水中的探测器阵列,加大了大面积部署的难度;(3)使用射电阵列.当粒子速度超过介质中光的相速时,会产生不对称的带电粒子分布,进而产生相干的射电辐射,即Cherenkov 辐射,而且宇宙次级带电粒子在地磁场中产生同步辐射,这种辐射波段在射电波段[7],可以使用射电技术探测.与传统的探测手段比较,具有价格便宜、易于大面积部署、易维护、接近100%的观测时间的优势,例如在南极冰层中部署的IceCube探测器、以及正在建设中的巨型中微子探测射电阵列GRAND(The Giant Radio Array for Neutrino Detection). GRAND旨在通过探测高能中微子寻找超高能宇宙射线的起源[8],采用模块式安装,易于维护,可大面积的部署,使用山体当做自然靶标提高探测高能中微子事件效率,其预期灵敏度将比IceCude 要高一个量级,甚至更好.GRAND 计划在10∼15年的时间在200 000 km2的面积上,部署100 000 根天线,GRAND的建成将成为世界上最大的宇宙中微子探测器.GRAND 科学目标分为三个阶段:第一阶段进行快速射电爆、巨型射电脉冲,再电离时代的研究;第二阶段进行超高能宇宙射线的研究工作;第三阶段开启EeV中微子天文学、中微子物理学、超高能伽马射线研究.加速探测高能中微子领域的快速发展[9],在国内该项目由武向平院士作为带头人,多所科研机构参与,共同推进该项目的设备部署和后续工作的开展.1 GRAND高能中微子探测原理当高能带电粒子、伽马射线或中微子到达地球时,与大气中的原子或分子相互作用产生次级粒子.次级粒子再与周边大气作用,产生更多二级的粒子,以此连续下去产生级联效应,诱发广延大气簇射[10].宇宙射线的直接探测手段,使用天线阵列直接接收粒子在进入大气后产生的射电辐射.第一种射电辐射来自于其本身带有电荷,在地磁场的影响下,运动粒子的簇射前端正负离子发生分离,诱发横向电流,伴有线偏特性的射电辐射[8].该方法不受天气和天光条件的影响,具有较长的有效观测时间.第二种伴随大气簇射发出的射电辐射机制是切伦科夫辐射的低频对应—Askaryan效应—粒子在介质中的运动速度超过光的相速度时诱发次级带电粒子,引发电荷过剩,电荷随时间的变化引发射电辐射.在大气中由于ASkaryan效应比地磁场中的辐射弱数倍,所以在此过程中地磁辐射占据主导地位.GRAND项目通过探测高能中微子在地下相互作用和在大气中相互作用产生的广延簇射事件.在地下稠密的岩石介质增加了中微子在其中发生相互作用的机会,GeV 能级以上的中微子与核子相互作用,通过深度非弹性散射[11,12].在电性流相互作用中,中微子与核子相互作用,吸收一个W 玻色子转变为对应的带电轻子,而末态的轻子类型与相互作用前一致,W 玻色子迅速衰变,即:其中N可以是质子或原子,X代表末态的强子.在中性流相互作用中,中子与核子相互作用,吸收一个Z玻色子转变为相应的中微子,而末态的中微子与相互作用前一致,因此无法区分,即:由于中微子ve 发生电流性相互作用,能量损失通过辐射的方式释放,在岩石介质中的相互作用辐射截面积小,大多数在内部被吸收.因此探测到的概率较低,所以忽略对ve 探测的可能性;中微子vµ 发生电流性相互作用,从岩石表面出射后有较长的轨迹,在天线阵列上端发生簇射的概率低,所以其被探测到的可能性忽略不计;中微子vτ 质量比vµ 和ve 的质量大,发生电流性相互作用辐射能量衰减被进一步抵制,当vτ 穿过岩石介质之后由相互作用产生τ子,τ子会在天线阵列上方发生衰变诱发广延大气簇射,并产生在射电频段内的信号.因此在GRAND的部署和选址工作中,主要目标位置集中在有山脉的无人地区,山体不仅可以增加高能中微子的探测事件概率,还可以屏蔽和吸收由人为造成电磁噪声.图1 不同味中微子的传播示意图Fig 1 Schematic diagram of the propagation of different neutrinos2 选址探测在选址探测过程中使用GRANDProto35天线,其前期已在乌拉斯台试运行,验证了该方案的可行性,并取得较好的探测数据.选址探测设备主要包含三对相互垂直的蝶形天线,可以对三个极化方向进行全方位采样;DAQ(数据采集),采集板初始信号段接有30∼100MHZ的无源模拟滤波器,滤波后的信号通过阈值比较,若满足触发条件则将信号包络通过12 位ADC(模数转换器)以每秒5 000 万次采样数字化,每隔3×3.6 µs 将GPS、时间信息一同打包发送到中央DAQ.此次选址探测是为了推行GRAND阶段中GRANDProto300的实施,该阶段计划在100∼300km2的面积上部署300根天线,目的是对水平簇射的射电探测实验进行验证.为解决由射电信号通过与地面反射波的相互作用强烈衰减带来的水平方向簇射的检测问题,以及到达方向分辨率随着靠近地平线而降低,导致信号难以重建的问题,选择将部分或全部部署在5∼10o的山坡上.选址探测步骤:(1)对周围环境进行视觉检测,查看周围是否有大量人类活动、高压输电线以及山体,评估访问和部署的便利性;(2)将天线X轴对向北方架设天线,测量30∼80MHz频段的瞬态噪声;(3)数据处理画出瞬态噪声图、Fourier变换后的频谱图.以下为在内蒙古、巴里坤地区的探测情况,以及在1KHz、10KHz 基线时,将乌拉斯台数据当作理想数据进行对比,同时通过设置触发阈值可以较好的消除一部分人为噪声.2.1 明安图太阳观测基地在内蒙古明安图太阳观测基地附近,海拔1 300∼1 400m.有较为平缓的山坡,人为活动较少,短距离内有基础的设施.在该地使用两副天线进行瞬态噪声探测,处理数据结果如表1,相比较理想数据而言相差较大.在后面的探测过程中,推测是由于两副天线距离较近产生的射频干涉引起,具体数据见表1.表1 明安图太阳观测基地Tab 1 Mingantu observing station探测编号测量值/理想值测量值/理想值(1kHz)(10kHz)1006.66.2 10210.09.9 10310.514.3 10514.312.8 10617.620.1表2 巴里坤山谷内Tab 2 Within the vally of Balikun探测编号测量值/理想值测量值/理想值(1kHz)(10kHz)B103A7.57.8 B31337.46.8 B31303.03.1B31324.54.6 B31316.26.12.2 巴里坤地区在巴里坤地区的探测,主要可以分为在山谷内、天籁基地附近、戈壁滩周边三部分.巴里坤山谷被大山环绕,地形宽阔平坦,15km左右有个村庄,易于访问和部署.但山谷规模有限,缺乏可用的基础设施.探测结果如表2,从山谷入口的小路旁开始探测,入口处B103A、B3133有较高的噪声,在山谷内部噪声较低,当到达山谷末端时,海拔升高,B3131的噪声也有所提高,具体数据见表2.天籁观测基地处于一个小的山谷中,有较为便利的基础设施和方便的部署和访问条件,但是其面积太小,使用相同的方式,从山谷入口处开始探测直到山谷末端停止探测.其中B3125、B3141几乎在同一地点不同时间进行探测的结果,其他测量结果,比山谷区域的结果稍好,噪声较低.具体数据见表3.在位置靠近大山的路边上,其周围有大面积的开阔区域,人为活动较少,易于访问和部署.对比在路边的两次探测结果,在戈壁路边的结果非常好,噪声较低,具体数据见表4,其中B101、3134巴里坤山谷附近;B3111、103B、3110在巴里坤县附近;B3143天籁基地附近;B3144、3146戈壁路旁.因此与大山相连接的戈壁也是值得GRAND项目考虑的部署区域.3 探测分析对两个探测点B3122、B3111的原始数据进行处理分析(图2、图3).图2 运行编号B3122测试结果Fig 2 The result of run number B3122图中为三个极化方向各自的经过傅里叶变换后频谱图和噪声频谱图.其中,右侧坐标单位 1 ADC=0.0125mV,左侧图垂直轴单位为mV,图上127 特指数据采集板的编号,三个探极化方向的数据分别对应于C1、C2、C3.图中所示从上往下分别为x轴,y轴,z轴三个极化方向的测量结果,左侧为Fourier变换后频谱图,右侧为对应的瞬态噪声.由于主要考虑到从水平方向来的噪声问题,因此偏重于x轴和y 轴的结果.对于B3122处的a、c、e 图均在30MHz附近出现峰值,其中a、c 两图在其他频率上有一些较小的起伏,而B3111处的探测数据在30∼80MHz频段内存在强烈的干扰信号,尤其是在60MHz、70MHz处存在两个尖锐的峰.b、d、f 图中分别为对应噪声,B3122处探测结果显示,趋势线集中在300ADC 范围内,而B3111处,趋势线变化不均匀,且一直延伸至最大值.在选址中观测两图,频谱图越平缓、噪声图趋势线越窄则证明探测点处没有嘈杂的电磁噪声,可以在较低的触发阈值情况下进行有效的探测,获得更多有用的信息.图3 运行编号B3111测试结果Fig 3 The result of run number B3111表3 天籁观测基地附近Tab 3 Near the Tianlai observing station探测编号测量值/理想值测量值/理想值(1kHz)(10kHz)B312517.610.0 B31414.04.7B31274.75.0 B31222.42.6 B31422.73.2 B31246.23.7 B31284.24.6表4 路边探测Tab 4 Roadside detection探测编号测量值/理想值测量值/理想值(1kHz)(10kHz)B10113.013.1 B31344.65.0 B311114.211.3B103B8.97.4 B31103.53.7 B31434.34.7 B31444.95.7 B31463.33.74 总结探测结果表明在内蒙古探测过程中,两根天线间距较近会严重影响探测结果.在新疆巴里坤地区探测结果显示,在四周环山的区域电磁噪声相对较小其大部分结果都符合选址要求.新疆地区具有优越的地理位置,为GRAND的选址提供了优质的选项.为GRAND 原型阵列的建造,进一步对相关技术进行验证,选址探测为GRANDProto300以及将来建造的射电探测阵列提供了依据.GRAND 的建成将提供大的机遇,开启高能中微子天文学潜力巨大的观测窗口,使我国能在该领域快速发展,使该地区成为国际高能中微子研究的探测中心、学术中心.致谢感谢中国科学院院士武向平老师给予的帮助,使得我能够有这样一个机会接触到该项目,了解目前中微子探测的进展,参与到选址探测的工作中来.感谢国家自然科学基金11763007,11473024,11463005,11863005,11803026 和11503008的支持,也感谢新疆天山雪松基金2017Q014的支持.参考文献:【相关文献】[1]Anchordoqui L A,Barger V,Cholis I.Cosmic neutrino pevatrons:A brand new pathway to astronomy,astrophysics,and particle physics[J].J HEAP,2014,1:1-30.[2]Aartsen M G,Abbasi R,Abdou Y.Evidence for high-energy extraterrestrial neutrinos atthe IceCubedetector[J].Science,2013,342:1242856.[3]Aartsen M G,Abbasi R,Abdou Y.et al.,Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A[J].Science,2018,361:6398.[4]Akiyama K,Alberdi A,Alef W,et al.First M87 Event Horizon Telescope Results.I.The Shadow of the Supermassive Black Hole[J].Ap J,875,1.[5]Cao Z,Xiao G.The status of Ultra high energy neutrino experiments[J].ModPhys,2007,19:18-24.[6]翁路华,施浒立,高超,等.高能宇宙射线射电探测系统接收天线设计[J].电气与仪表技术,2009,4:93-96.[7]张建立,张毅.天山射电实验探测极高能中微子和宇宙射线[J].中国科学,2015,45(11):119511-1-7.[8]Giant Radio Array for Neutrino Detection:Science and Design.arXiv:1810.09994v1.[9]Waxman E,Bahcall J N.High energy neutrinos from astrophysical sources:An upper bound[J].Phys Rev D,1999,59:023002.[10]O C 阿尔科费尔.宇宙线入门[M].徐春娴,朱清棋,译.北京:科学出版社,1987:3-7.[11]Raj Gandhi,Chris Quigg,Mary Hall Reno,et al.Ultra high-energy neutrino interactions[J].Astroparticle Physics,1996,5:81.[12]Raj Gandhi,Chris Quigg,Mary Hall Reno,et al.Neutrino Interactions at Ultrahigh Energies[J].Physical Review D,1998,58:093009.。
Two New Pulsars Discovered Using FAST佚名【期刊名称】《中国科学院院刊:英文版》【年(卷),期】2017(31)3【摘要】Chinese scientists announced their first discovery of two new pulsars in the Southern Galactic plane using the Five hundred-meter Aperture Spherical radio Telescope(FAST),the world’s largest single dish radio telescope,in Beijing on October 10.Two new pulsars,PSR J1859-01(FP1 or FAST pulsar#1)and PSR J1931-01(FP2 or FAST pulsar#2),have been confirmed by the Parkes telescope【总页数】1页(P172-172)【关键词】Two New Pulsars Discovered Using FAST;FP;PSR【正文语种】中文【中图分类】N0【相关文献】1.The first pulsar discovered by FAST [J], Lei Qian;ZhiChen Pan;DiLi;George Hobbs;WeiWei Zhu;Pei Wang;ZhiJie Liu;YouLing Yue;YanZhu;HongFei Liu;DongJun Yu;JingHai Sun;Peng Jiang;GaoFeng Pan;Hui Li;HengQian Gan;Rui Yao;XiaoYao Xie;Fernando Camilo;Andrew Cameron;Lei Zhang;Shen Wang;FAST Collaboration;;2.Three pulsars discovered by FAST in the globular cluster NGC 6517 with apulsar candidate sifting code based on dispersion measure to signal-to-noise ratio plots [J], Zhichen Pan;Xiao-Yun Ma;Lei Qian;Lin Wang;Zhen Yan;Jin-Tao Luo;Scott M.Ransom;Duncan R.Lorimer;Peng Jiang3.Spatial modulation search applied to the search and confirmation of highly scintillated pulsars at FAST with a pulsar discovered in M3 [J], 钱磊;潘之辰4.An Arecibo follow-up study of seven pulsars discovered by Five-hundred-meter Aperture Spherical radio Telescope(FAST) [J], 王珅;朱炜玮;李菂;潘之辰;王培;James M.Cordes;Shami Chatterjee;姚菊枚;钱磊;岳友岭;张蕾;赵汝双;王双强;牛佳瑞;袁懋;缪晨晨;谢晓尧;刘志杰;于徐红;游善平;孟令祺;FAST Collaboration因版权原因,仅展示原文概要,查看原文内容请购买。
a r X i v :a s t r o -p h /0204219v 1 13 A p r 2002T HE A STROPHYSICAL J OURNAL ,2002,IN PRESSPreprint typeset usingL A TE X style emulateapj v.11/12/01DISCOVERY OF RADIO PULSATIONS FROM THE X-RAY PULSAR J0205+6449IN SUPERNOV AREMNANT 3C58WITH THE GREEN BANK TELESCOPEF.C AMILO ,1I.H.S TAIRS ,2D.R.L ORIMER ,3D.C.B ACKER ,4S.M.R ANSOM ,5,6B.K LEIN ,7R.W IELEBINSKI ,7M.K RAMER ,3M.A.M C L AUGHLIN ,3Z.A RZOUMANIAN ,8AND P.M ÜLLER 7Accepted for publication in The Astrophysical Journal Letters April 12,2002ABSTRACTWe report the discovery with the 100m Green Bank Telescope of 65ms radio pulsations from the X-ray pulsar J0205+6449at the center of supernova remnant 3C58,making this possibly the youngest radio pulsar known.From our observations at frequencies of 820and 1375MHz,the free electron column density to PSR J0205+6449is found to be 140.7±0.3cm −3pc.The barycentric pulsar period P and ˙Pdetermined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations.The averaged radio profile of PSR J0205+6449consists of one sharp pulse of width ≈3ms ≈0.05P .The pulsar is an exceedingly weak radio source,with pulse-averaged flux density in the 1400MHz band of ∼45µJy and a spectral index of ∼−2.1.Its radio luminosity of ∼0.5mJy kpc 2at 1400MHz is lower than that of ∼99%of known pulsars and is the lowest among known young pulsars.Subject headings:ISM:individual (3C58)—pulsars:individual (PSR J0205+6449)—supernova remnants1.INTRODUCTIONThe “Crab-like”supernova remnant (SNR)G130.7+3.1(3C58)has long been suspected of containing a pulsar at its center (e.g.,Becker,Helfand,&Szymkowiak 1982).This SNR is of particular interest because it is thought to be the remnant of the explosion recorded in 1181AD (SN 1181),and hence to have a known age of 820yr.After more than 20years of search-ing in the X-ray and radio bands,the pulsar J0205+6449with period P =65.68ms was recently discovered at the SNR center with the Chandra X-ray Observatory (Murray et al.2002).The historical record associating the pulsar-powered syn-chrotron nebula 3C58with SN 1181is compelling.Neverthe-less,3C58has some properties suggesting a larger age (see,e.g.,Slane,Helfand,&Murray 2002,and references therein).Also,the nebular radio emission of 3C58is ∼10×lower than the comparably aged Crab Nebula’s,while the X-ray emission is ∼1000×weaker.Because the synchrotron lifetime of X-ray-emitting electrons is short (unlike of those generating radio emission),it is surprising that the ratio of the X-ray luminosities from the 2SNRs does not match the relative present-day spin-down luminosities of the pulsars:˙ECrab /˙E J0205+6449≈15.Since ˙E∝˙P /P 3,the power injected into the nebula as a function of time depends strongly on P (t ),which therefore is an important quantity to constrain;the subsequent nebular evolution is gov-erned in addition by the pressure of the ambient medium.Thecharacteristic age τc =P /2˙P=5400yr of J0205+6449can be reconciled with the 1181AD explosion by appealing to a large initial spin period of ∼60ms (Murray et al.2002).However we do not know the form of the spin evolution of the pulsar:measuring its “braking index”n ,where the angular frequencyof rotation evolves as ˙Ω∝−Ωn ,would constrain P (t )and help to understand the energetics of 3C58.The study of J0205+6449at radio wavelengths could con-tribute significantly towards the determination of the braking index:precise long-term monitoring of the pulsar rotation,es-pecially important for young pulsars which often experience pe-riod glitches,may prove easier from the ground than from satel-lites.In addition,the absolute phase alignment of radio and X-ray pulses should provide information regarding the emission mechanism.A radio detection would also yield the dispersion measure (DM),giving an independent distance constraint or,alternatively,the average free electron density along the line of sight.Finally,measuring the radio luminosity and spectrum of very young pulsars is essential for constraining the population of these objects in the Galaxy.Motivated by these factors we made deep searches for radio pulsations from PSR J0205+6449,culminating in their discovery with the new Green Bank Tele-scope as reported here.2.OBSERVATIONSThe SNR 3C58was most recently searched for a radio pulsar by Lorimer,Lyne &Camilo (1998),with a resulting flux den-sity limit for the pulsar of S 600<1.1mJy at a search frequency of ν=600MHz.This corresponds to S 1400<0.3mJy for a median pulsar spectral index of α=−1.6(Lorimer et al.1995),where S ν∝να.At a distance d =3.2kpc (Roberts et al.1993)the implied luminosity limit L 1400≡S 1400d 2<3mJy kpc 2is somewhat larger than the radio luminosity of at least one young pulsar (Camilo et al.2002),and the discovery of X-ray pulsa-tions from PSR J0205+6449at the center of 3C58by Murray et al.(2002)led us to attempt more sensitive searches.On 2001October 8we used the 100m Effelsberg telescope to conduct a search of PSR J0205+6449.We observed the pulsar1Columbia Astrophysics Laboratory,Columbia University,550West 120th Street,New York,NY 100272National Radio Astronomy Observatory,P.O.Box 2,Green Bank,WV 249443University of Manchester,Jodrell Bank Observatory,Macclesfield,Cheshire,SK119DL,UK 4Astronomy Department,University of California,Berkeley,CA 947205Physics Department,McGill University,3600University Street,Montreal,QC,H3A 2T8,Canada 6Center for Space Research,Massachusetts Institute of Technology,Cambridge,MA 021397Max-Planck-Institut für Radioastronomie,Auf dem Hügel 69,D-53121,Bonn,Germany 8Universities Space Research Association/NASA-GSFC,Code 662,Greenbelt,MD 2077112Camilo et al.position for12.5hr at a center frequency of1410MHz.Sig-nals werefiltered in8×4MHz-wide channels for each of2 polarizations,after which they were detected and digitized ev-ery0.8ms.Samples from orthogonal polarizations were added in hardware and the8total power time series were written to disk for offline analysis.We also recorded short data sets on strong pulsars for calibration purposes.We analyzed the data in standard fashion(see below for description of the search at Green Bank),de-dispersing the time series for a number of trial DMs in the range0–500cm−3pc,with no significant candidates found at the expected period.From these observations we in-ferred S1400<0.1mJy for a pulsar duty-cycle of∼0.05P.On2002February22–23we used18hr at the Green Bank Telescope to search for radio emission from PSR J0205+6449. We divided the time nearly equally between an observation cen-tered at1375MHz with a Gregorian focus receiver,followed by one at820MHz with a prime focus receiver.The telescope gain and system temperature,including a large contribution from the SNR,are given in Table1.We also performed short calibra-tion observations of strong pulsars at both frequencies.The re-ceivers,sampling2orthogonal polarizations,had band-limiting filters installed of width150and80MHz centered on1375and 820MHz respectively.The radio frequency(RF)signals were converted to an intermediate frequency(IF)and transmitted via opticalfibers to the control room,where they were passed to the Berkeley-Caltech Pulsar Machine(BCPM).The BCPM is one of several signal processors of similar de-sign(Backer et al.1997).The2input IF signals are distributed to an array of2×6mixer/filter modules.These accept sig-nals from6local oscillator modules for baseband mixing and low-passfiltering with the bandwidth set by subsequent signal processing requirements.The signals are sent to2×6digital filter boards which4-bit sample and form detected powers in 16independent and adjacent frequency channels.The BCPM is thus an analog/digitalfilter bank with2×96channels.Time decimation of the power samples and optional summing of the 2IFs(which we used)is accomplished in combiner boards.The combiner board output is reduced to4-bit power deviation by mean removal and scaling.The power vector(s)are passed to the host Sun workstation through an EDT9DMA card.The Sun attaches a header and places data on a disk for offline process-ing as well as monitoring data quality10.For our2observations we used the data-taking parameters listed in Table1.3.DATA ANALYSIS AND RESULTSAlthough we knew the pulsar period a priori,we did not know its DM and chose to use standard search algorithms to analyze the data.Also,despite the presence of strong RF inter-ference(RFI)visible in a spectrum analyzer during data collec-tion(most notably as persistent radar in the1400MHz band and sporadic but very strong RFI of unknown origin in the800MHz band)in afirst pass we masked no portions of thefluctuation spectra.For both observations data from225decimated time samples(see Table1)were de-dispersed at204trial DMs in the range0–203cm−3pc(the DM predicted by the Taylor& Cordes1993electron density/distance model is∼70cm−3pc). Each of the204resulting time series was then searched for peri-odic signals over a range of duty cycles with an FFT-based code (described in detail by Lorimer et al.2000)identifying signif-icant features in the fundamental amplitude spectrum as wellas in spectra with2,4,8,and16harmonics folded in.The 1375MHz data were heavily corrupted by RFI—in particularthe182nd harmonic of a radar signal repeating every∼12s co-incided with the expected pulsar rotation frequency.Therefore we eventually reanalyzed these data while blanking the radarfrequency and itsfirst150harmonics in the amplitude spectra.The820MHz data were clean in the spectral range of interest and a signal was unambiguously detected at the expected pe-riod and clearly dispersed,peaking at DM≈143cm−3pc witha signal-to-noise ratio S/N=10.9,as shown in Figure1.After excision of the radar-related RFI,the1375MHz data yieldeda signal at the same period within the uncertainty peaking atDM≈140cm−3pc with S/N=8.8.F IG.1.—Search signal-to-noise ratio as a function of trial dispersion mea-sure(DM)for the candidate with period P≈65.69ms in the820MHz data set. Each curve corresponds to the addition of the number of harmonics indicated. We then measured pulse times-of-arrival(TOAs)referenced to the observatory atomic time standard from both data sets:6good TOAs were obtained in each of the800and1400MHzbands with individual uncertainty≈0.5ms.A further17TOAs of similar quality were obtained on8additional days of obser-vations,with a total data span of35d.We used the TOAs andthe TEMPO timing software11tofit for P,˙P,and DM,obtaining the values listed in Table2.The table also lists the celestial co-ordinates of PSR J0205+6449obtained by Slane et al.(2002),which were heldfixed in our timingfit.Our values of P and ˙P determined from a phase-connected timing solution spanning 35d are much more precise than,but agree with,the equiva-lent values obtained by Murray et al.(2002)based on only2 periods measured1.2and4.4yr before:the barycentric period P listed in Table2differs by15±18ns from that extrapolated to the epoch of our observations using the P and˙P determined by Murray et al.,while our˙P is consistent with theirs at the 2σlevel.Such a close match of spin parameters over an inter-val greater than4yr suggests that no significant period glitch occurred during this time span.Both search data sets,de-dispersed at DM=141cm−3pc and folded at the best search periods,are shown in Figure2.The average pulse profile at both frequencies consists of a single9Engineering Design Team,Inc.10For further details of BCPM installation at Green Bank see /∼dbacker. 11See /tempo.Radio pulsar in SNR 3C583narrow pulse of width ≈0.05P (see Table 2);such a profile is expected based on Figure 1,where the search S/N is a maxi-mum for 8harmonics summed.There is no evidence for the existence of an interpulse at either frequency with amplitude 15%that of the sharp pulse,in contrast with the X-ray pro-files that show an interpulse with amplitude ∼30%that of the main pulse (Murray et al.2002).F IG . 2.—Pulse profiles of PSR J0205+6449displayed as a function of time (bottom )and summed (top ).Left :Data at a center frequency of ν=1375MHz presented with 100phase bins.The pulse full-width at half maximum (FWHM)is 2.3±0.3ms.Right :Data at ν=820MHz displayed with 60bins.The pulse FWHM =3.8±0.4ms.All data were de-dispersed at DM =141cm −3pc and one phase bin in each panel matches the dispersion smearing resolution of the respective profile.Two full periods are shown at each frequency for clarity.The increasing/decreasing slope of each reduced χ2curve traces pulsation significance as measured against a constant flux (or non-pulsed)model.Decreases in reduced χ2are most likely caused by inter-stellar scintillation or RFI.Note that the S/N in the 820MHz data appears to be smaller near the beginning of the integration and again towards the end (Fig.2),possibly as a consequence of scintillation.Assuming that the search S/Ns in the 2long integrations reflect the respec-tive long-term time-averaged flux densities in both frequency bands,we have integrated the area under the pulse profiles and measured their baseline rms to determine the respective flux densities.We converted to a Jy scale using the observing pa-rameters listed in Table 1together with the radiometer equation (Dicke 1946).In this manner we estimate that S 1400∼45µJy and S 800∼130µJy,with ∼25%accuracy.The resulting spec-tral index in the 800–1400MHz range is α∼−2.1±0.6,and the radio luminosity is L 1400∼0.5(d /3.2kpc)2mJy kpc 2.These values will be much improved by the averaging of several cali-brated observations.The 947yr-old Crab pulsar was detected initially through its individual “giant”pulses rather than through its time-averaged pulsed emission (Staelin &Reifenstein 1968).As the emission of giant pulses may be related to the magnetic field strength at the pulsar light cylinder,B lc (e.g.,Cognard et al.1996),and PSR J0205+6449has the 10th largest value of B lc among known pulsars,we searched for aperiodic,dispersed pulses from PSR J0205+6449.No excess of single pulses was foundat the DM of the pulsar.Inferring a quantitative limit is com-plicated by significant levels of RFI,and this search will be reported in detail elsewhere.4.DISCUSSIONWe have discovered radio pulsations from the direction of PSR J0205+6449in SNR 3C58in an unbiased search of 2independent data sets acquired at center frequencies of 820and 1375MHz.The pulsations are clearly dispersed and have a precisely determined period matching that observed from PSR J0205+6449at X-ray wavelengths (Murray et al.2002).We have therefore discovered radio pulsations that are unam-biguously from PSR J0205+6449which supplants the Crab pul-sar as the youngest neutron star with known radio emission.The DM =141cm −3pc of PSR J0205+6449,located at(l ,b )=(130.◦72,3.◦08),is approximately twice that predicted by the Taylor &Cordes (1993)model for the usually ac-cepted distance to 3C58(3.2kpc,determined from H I absorp-tion measurements 12).This implies an average free electron density to 3C58of n e ≈0.044cm −3.The neutral column den-sity to the SNR is 3×1021cm −2(Helfand,Becker,&White 1995),implying an ionized fraction of roughly 15%,which is somewhat higher than might be expected towards the Galactic plane.However,the SNR lies on the eastern edge of the large W3/W4/W5complex of H II regions (e.g.,Reynolds,Sterling,&Haffner 2001),and in fact may be on the edge of a cavity being ionized by the star-forming regions (R.J.Reynolds and G.Madsen,private communication).It is not known if the pro-genitor of SN 1181belonged to,or was a runaway star from,this region of star formation.In any case,the relative locations of 3C58and W3/W4/W5may account for the apparent excess of ionized material towards the pulsar.We note that the reported detection of PSR J0205+6449with DM =24cm −3pc at a frequency of 110MHz (Malofeev,Malov,&Glushak 2001)is incompatible with the results we present:the dispersion smearing timescale for a signal with DM =141cm −3pc within one of the 20kHz-wide spectral chan-nels used by Malofeev et al.(2001)at 110MHz is 17ms.De-dispersing and summing their 32individual such channels with DM =24cm −3pc would result in an overall smearing of the pulse far in excess of P =65ms,rendering pulsations unob-servable from PSR J0205+6449.The main X-ray pulse from PSR J0205+6449has es-sentially the same sharp structure and width (≈0.04P ;Murray et al.2002)as the radio pulse (Fig.2and Table 2).This morphology suggests that the X-ray emission is likely magne-tospheric in nature,but absolute alignment of radio and X-ray profiles will provide further clues for understanding the emis-sion mechanism(s).Considering the obvious existence of mag-netospheric emission,we might expect this pulsar to be a γ-ray source.The flux sensitivity of the EGRET instrument to emis-sion from PSR J0205+6449,using a photon index Γ=2typi-cal of γ-ray-emitting pulsars,is F γ∼5×1032erg s −1kpc −2(>100MeV;Hartman et al.1999),corresponding to a luminosity limit L γ≡F γd 2 5×1033erg s −1.With spin-down luminos-ity ˙E=2.7×1037erg s −1,its efficiency at converting rotational power into beamed high-energy γ-rays is η≡L γ/˙E2×10−4.This compares to η∼10−4for the Crab pulsar,with the largestvalue of ˙Eknown in the Galaxy,and larger efficiencies for 12Depending on data set and Galactic rotation curve used,the inferred distance ranges from 2.6kpc to “just beyond”3.2kpc (see Roberts et al.1993,and referencestherein).We adopt d =3.2kpc in this Letter.4Camilo et al.(generally older)pulsars with smaller values of˙E such as Vela (η∼6×10−4)and Geminga(η∼0.02).If PSR J0205+6449 follows the approximateη∝˙E−1/2relation that seems to ap-ply to knownγ-ray-emitting pulsars(Thompson et al.1999), itsflux may be just below the detection threshold of EGRET and should be detected by next-generation observatories such as GLAST.The discovery of extremely weak radio pulsations from PSR J0205+6449highlights the vexing issue of the true lu-minosity distribution of(particularly young)pulsars.The past year has witnessed the discovery of3very young(τc 10kyr) radio-emitting pulsars with0.5 L1400 3mJy kpc2,1–2or-ders of magnitude less luminous than any young pulsars previ-ously known(Halpern et al.2001;Camilo et al.2002,this Let-ter).It now seems abundantly clear that we have yet to probe the depths of the luminosity function of young pulsars.The state-of-the-art forfinding young radio pulsars(∼10hr integra-tions at telescopes with gain 1K Jy−1and bandwidths100–300MHz atν∼1400MHz)yields limits usually no better than L1400∼1mJy kpc2.Nevertheless,many worthy targets remain to be searched at this level.Improving the existing limits helps to constrain better the“beaming fraction”for young pulsars (e.g.,Frail&Moffett1993,based in part on the non-detection of the pulsar in3C58with a limit of0.15mJy at1400MHz,estimated a beaming fraction of0.6which needs to be revised in light of recent discoveries),and is important for building an accurate census of Galactic neutron stars.In this regard,the detection of PSR J0205+6449,an820yr-old pulsar,at a fre-quency of820MHz—only the2nd pulsar ever discovered in the800MHz band(D’Amico et al.1988)—suggests that the availability of the magnificent GBT provides a new region of phase space with significant,and as yet untapped,discovery potential.We are deeply grateful to the dedicated staff of NRAO,and in particular to the GBT project team,whose hard work has made the Robert C.Byrd Green Bank Telescope a great re-search instrument.We thank Bryan Jacoby and Stuart Anderson for assistance with the BCPM,Jay Lockman for helpful discus-sions,and David Helfand for early communication of discovery of X-ray pulsations.The National Radio Astronomy Observa-tory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities,Inc. FC acknowledges support from NASA grants NAG5-9095and NAG5-9950.IHS is a Jansky Fellow.DRL is a University Re-search Fellow funded by the Royal Society.SMR is a McGill University Tomlinson Fellow.REFERENCESBacker,D.C.,Dexter,M.R.,Zepka,A.,Ng,D.,Werthimer,D.J.,Ray,P.S.,& Foster,R.S.1997,PASP,109,61Becker,R.H.,Helfand,D.J.,&Szymkowiak,A.E.1982,ApJ,255,557 Camilo,F.,Manchester,R.N.,Gaensler,B.M.,Lorimer,D.R.,&Sarkissian, J.2002,ApJ,567,L71Cognard,I.,Shrauner,J.A.,Taylor,J.H.,&Thorsett,S.E.1996,ApJ,457, L81D’Amico,N.,Manchester,R.N.,Durdin,J.M.,Stokes,G.H.,Stinebring, D.R.,Taylor,J.H.,&Brissenden,R.J.V.1988,MNRAS,234,437 Dicke,R.H.1946,Rev.Sci.Instrum.,17,268Frail,D.A.&Moffett,D.A.1993,ApJ,408,637Halpern,J.P.,Camilo,F.,Gotthelf,E.V.,Helfand,D.J.,Kramer,M.,Lyne, A.G.,Leighly,K.M.,&Eracleous,M.2001,ApJ,552,L125Hartman,R.C.et al.1999,ApJS,123,79Helfand,D.J.,Becker,R.H.,&White,R.L.1995,ApJ,453,741Lorimer,D.R.,Kramer,M.,Müller,P.,Wex,N.,Jessner,A.,Lange,C.,& Wielebinski,R.2000,A&A,358,169Lorimer,D.R.,Lyne,A.G.,&Camilo,F.1998,A&A,331,1002Lorimer,D.R.,Yates,J.A.,Lyne,A.G.,&Gould,D.M.1995,MNRAS,273, 411Malofeev,V.,Malov,O.,&Glushak,A.2001.IAU circular7775Murray,S.S.,Slane,P.O.,Seward,F.D.,Ransom,S.M.,&Gaensler,B.M. 2002,ApJ,568,226Reynolds,R.J.,Sterling,N.C.,&Haffner,L.M.2001,ApJ,558,L101 Roberts,D.A.,Goss,W.M.,Kalberla,P.M.,Herbstmeier,U.,&Schwarz,U.J. 1993,A&A,274,427Slane,P.O.,Helfand,D.J.,&Murray,S.S.2002,ApJ,in press(astro-ph/0204151)Staelin,D.H.&Reifenstein,III,E.C.1968,Science,162,1481Taylor,J.H.&Cordes,J.M.1993,ApJ,411,674Thompson,D.J.et al.1999,ApJ,516,297Radio pulsar in SNR3C585T ABLE1S UMMARY OF O BSERVATIONS AND A NALYSES AT GBTObserving frequency(MHz)1375820T ABLE2P ARAMETERS OF PSR J0205+6449Parameter ValueNote.—Numbers in parentheses represent1σuncertaintiesin the least-significant digits offitted parameters.a Position known with≈0.′′5accuracy from Chandra data(Slane et al.2002).。