福建省三明市2017-2018学年高二下学期期末考试英语---精校 Word解析版
- 格式:doc
- 大小:285.28 KB
- 文档页数:20
设全集,集合,,则(B. C. D.,从而求得详解:因为,又因为集合,,故选点睛:研究集合问题,一定要抓住元素,看元素应满足的属性且不属于集合”是“在,则有必要性:若,”是“和结论分别是什么,然后直接依据定义、定理、性质尝试已知椭圆的参数方程为为参数),则B. C. D.【解析】分析:将参数方程化为普通方程,判断出焦点在即可得结果椭圆的参数方程为为参数)椭圆的标准方程是,椭圆的焦点在轴上,且,,椭圆的两个焦点坐标是,则下列不等式不B.D.【答案】B正确;根据对数函数的单调性可得正确;利用不等式的性质可得时不成立,所以,故选B.点睛:本题主要考查对数函数的单调性、指数函数的单调性以及不等式的基本性质的应用,意在考查综合对该班得到如下图所示的.B. C. D.至少有的把握认为喜爱打篮球与性别有关,故选独立性检验的一般步骤:根据样本数据制成根据公式的值;查表比较已知幂函数的图象经过点,则幂函数定义域为,将,幂函数图象过点由的性质知,是非奇非偶函数,值域为若输出的的值为B. C. D.公差为该等差数列首项为,公差为是减函数;②指数函数是减函数;③函是指数函数,则按照演绎推理的三段论模式,排序正确的是(A. ①→②→③已知指数函数因为函数点睛:本题主要考查演绎推理三段论的基本原理,意在考查对基础知识的掌握,属于简单题“已知求证:”时,可假设““若或或”.以下结论正确的是(详解:①的命题否定为”的否定应是“且已知直线的参数方程为(为参数)直线与圆相交于,则线段B. C. D.将直线的参数方程化为普通方程,详解:直线(为参数),化简可得,,即的中点的纵坐标为,的中点的横坐标为,的中点的坐标为已知命题:恒成立,命题:为减函数,若为真命题,则实数的取值B. C. D.【答案】【解析】分析:利用的最小值不小于化简命题,从而求出,利用指数函数的单调性化简当命题为真命题时,只须的最小值不小于即可,的最小值为应有,解得为真命题时,为真命题时,①应有,解得综上①②得,实数的取值范围是,且为真命题,则实数的取值范围是点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的单调性以及不等式恒成立问题,设曲线上任一点处的切线斜率为,则函数B. C. D.【解析】分析:对求导可求得数的解析式,根据函数的奇偶性以及特殊值,利用排除法详解:对求导可求得的定义域是是奇函数,函数图象关于原点对称,排除选项和时,,排除点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及已知函数,若存在唯一的零点,且,则实数B. C. D.函数存在唯一的零点,且,,时的解为或,在上递增,在处有极大值,在处有极小值,因为函数,若存在唯一的零点,且则,实数的取值范围是设函数的极大值为;两个零点或;三个零点且,其中②函数,恒有,恒有B. C. D.时,可判定其错误;对于②,时,可判定其错误;对④,时,,故①错误;对于②,,时,,不是奇函数,故②错误;时,时,,故③正确.时,,故选已知复数满足,其中为虚数单位,则复数【答案】【解析】分析:变形,故答案为点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握已知函数,且,则__________【解析】分析:由,先求得的值,从而可得函数,且,即,,,故答案为点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题设数列的前项和为,已知,猜想【答案】【解析】分析:令,由,得,可依次求出中令可求得,得,两式相减,得…归纳可得,故答案为.点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质若函数与函数,,则函数的极大值为【答案】【解析】分析:利用反函数的性质可得,从而可得究函数的单调性,利用单调性可得结果.是与是与应为反函数,函数关于垂直,与的交点,当时,,在时,,在上递减,在所以函数在处取得极大值的极大值为,故答案为本题主要考查反函数的性质、求函数求导数解方程求出函数定义域内的所有根;在的根左右两侧值的符号,如果左正右负(左增右减),那么在正(左减右增),那么在小题,共年份需求量,.关于的线性回归方程:时间代号(万件))根据所求的线性回归方程,预测到(附:线性回归方程,其中,万件.)根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标,从而求可中所需数据,求出再结合样本中心点的性质可得,进而可得的回归方程;(2)当时,,所以,则.(1)列表如下:时间代号(万件),,,∴.2)解法一:将,,代入,即时,,∴预测到万件解法二:当时,,,所以预测到年年底,该某商品的需求量是万件的值;③计算回归系数;是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势已知为复数,为虚数单位,且和)求复数)若复数,在复平面上对应的点分别是,的面积(.,,由和均为实数可得,从)知,可得,,在复平面上对应的点分别是,,,利用三角形面积公式可得结果)设复数,均为实数,,解得:则所求复数,,在复平面上对应的点分别是,,,即的面积为点睛:本题主要考查的基本概念、复数的运算以及复数的几何意义,属于中档题已知函数是定义域为)求实数的值并判断函数时,不等式恒成立,求实数.)由奇函数可得,解得,经检验,当时,函数为奇函数;且,利用指数函数的性质可证明,从而可得结果;(与奇偶性可得,当时,不等式恒成立,等价于对恒成立,换元后,利用二次函数的性质列不等式组求解即可)解法一:∵函数是定义域为,解得.经检验,当时,函数为奇函数,即所求实数的值为.上恒成立,所以是,解得.经检验,当时,函数为奇函数,即所求实数的值为.且,,∵,∴,,即,所以是上的减函数.,可得是,是对恒成立,,∵,∴恒成立,,,解得所以实数的取值范围为求解,偶函数一般由求解,用特殊法求解参数后,一定要)已知,,函数,求中,式子不可能小于的图象过点,可得,,则详解:(1)∵函数的图象过点,,当且仅当”成立,所以的最小值为,.当且仅当时,“不可能小于点睛:本题主要考查利用基本不等式求最值,属于难题或已知函数,)若函数在其定义域上为单调增函数,求的导函数为,当时,证明:,且.(函数在等价于对任意恒成立,恒成立,只需,,利用导数研究函数的单调性,利用单调性求出函数最大值,从而可得结果;(2)由(1)得,其中∵,∴与令,存在,是.)依题意函数的定义域为且函数在对任意对任意恒成立,对任意,,∴当时,,为增函数;当,时,,即的取值范围是,其中,,,∴与,,∴当时,,即函数在,∴,,∴存在,使得,时,,,是减函数,时,,,时,存在,使是得,,,点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合已知直线的参数方程为(,以坐标原点轴正半轴为极轴,建立极坐标系,圆的极坐标方程为)求直线的普通方程和圆的直角坐标方程;若点是直线作直线与圆、若使四边形求此时点,的坐标为.)利用代入法消去参数可得直线的普通方程,将圆的极坐标方程,利用两角差的余弦公两边同乘根据互化公式可得圆若使四边形则只需最小即可,最小,则最小时,)直线的参数方程为(消去参数得直线的普通方程为.两边同乘得,,,∴圆的直角坐标方程为)依题意,若使四边形的面积最小,则,其中等于圆的半径∴要使的面积要最小,只需最小即可,∴若最小,则最小,为圆心,点是直线上动点,∴当最小时,,解得,∴当四边形的面积最小时,点的坐标为.点睛:本题主要考查参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及斜率公式的换成即可已知函数;)设函数,若存在,使,求实数的取值范围)【解析】分析:(1)原不等式等价于,即,可得当时,)∵,∴,即,,∴所以不等式的解集为.,时,,,即或,所以实数.。
第 I 卷(满分 65 分)第一部分听力理解(共两节,满分 20 分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共 5 小题:每小题 1 分,满分 5 分)听下面 5 段对话。
每段对话后有一个小题,从题中所给的A、 B、C 三个选项中选出最佳选项,并标在试卷的相应位罝。
听每段对话前,你都有 5 秒钟的时间阅读题目;听完后,每小题给出 5 秒钟的作答时间。
每段对话仅读一遍,b5E2RGbCAP例: How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是 B。
1. What kind of chicken does the woman want?A. A fresh one.B. A small one.C. A frozen one. p1EanqFDPw2. How does the boy usually go to school?A. By car.B. By underground.C. By bike.3. When will the man have a math test?A. On the 23 rd .B. On the 24 th .C. On the 25th . DXDiTa9E3d4. What did the woman get?A. A skirt.B. A dress.C. A raincoat.5. What is the boy doing?A. Watching TV.B. Singing songs.C. Listening to music RTCrpUDGiT第二节(共 15 小题:每小题 1 分,满分 15 分)听下面 5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位罝。
听每段对话或独扫前,你将有时间阅读各个小题,每小鹿 5 秒钟;听完后,各小题将给出 5 秒钟的作答时间。
福建省宁德市2017-2018学年高二下学期英语期末质量检测试卷一、阅读理解(共4题;共30分)1.(6分)阅读理解If you're new to San Francisco,paying the city a visit,or simply looking for a new playground for you and your dog,here are four of the finest dog parks in San Francisco.Corona Heights Dog ParkOften visited by residents from all over the city because of its nearness to the Randall Museum, Corona Heights Dog Park offers pets and owners breathtaking view after a steep hillside climb,and a fenced dog area that allows dogs to let loose without a leash(狗链).Owners will also enjoy the playground,tennis courts and basketball courts.Dolores Dog ParkThe grounds of Dolores Park once served as camps for those who were left homeless by the1906 earthquake,but now are often visited by crowds of Mission District people.Four-legged friends can also wander about carefree off-leash while making friends with other members of the doggie community.Pine Lake Dog ParkFamous for its place as a rest stop for hundreds of species of birds to fly to and from warmer climates,Pine Lake Park is also prized by city dogs and their owners for their nice hiking paths,picturesque lake suited for swimming,and off-leash area on the park's west end that lets dogs run free.Buena Vista Dog ParkWith a history of146years,Buena Vista Park is San Francisco's oldest park.Dogs and owners with plus energy will love burning it on this park's steep paths and winding staircases.Dog owners should have good control over their dogs,as it's quite easy for dogs to get separated when going through Buena Vista's many twists and turns.(1)(2分)Why do dog owners take their pets to Dolores Dog Park?A.To let them socialize.B.To give them rescue lessons.C.To help them lose weight.D.To increase their physical activities.(2)(2分)Which dog park is popular with bird lovers?A.Dolores Dog Park.B.Pine Lake Dog Park.C.Buena Vista Dog Park.D.Corona Heights Dog Park.(3)(2分)What is special about Buena Vista Dog Park?A.Dogs can go climbing.B.It is close to a museum.C.Dogs must be on a leash.D.It is suitable for swimming.2.(8分)阅读理解Last April,on a Sunday,we took one of our“nowhere”drives.My husband was quietly driving along a back road.I was occupied in the front passenger seat watching the scenery.I noticed out of the corner of my eye that my husband was struggling to look out of my window.This frightened me,since his eyes should be on the road in front of him.I asked him what he was looking at out of the windows,and he quietly replied,“Nothing.”After a few minutes,I looked over at my husband and noticed a tear running down his cheek.I asked him what was wrong.This time he told me,“I was just thinking about Pop and a story he had once told me.”It had something to do with Pop,his friend from childhood,and I wanted to know the story,so I asked him to share it with me.He said,“When I was8years old,Pop and I were out fishing and he told me that the pine trees know when it is Easter.”I have no idea what he meant by that,so I pressed him for more information.He continued on…“The pine trees start their new growth in the weeks before Easter because spring is drawing near.If you look at the tops of the pine trees,you will see the yellow shoots.As the days get closer to Easter Sunday,the tallest shoot will branch off and form a cross.By the time Easter Sunday comes around,you will see that most of the pine trees will have small yellow crosses on all of the tallest shoots.”I turned to look out of the window and I couldn't believe my eyes.It was a week before Easter,and you could see all of the trees with the tall yellow shoots stretching to the sky.The tallest ones shone in the sunlight like rows of tiny golden crosses.May you find your Easter season filled with beautiful golden crosses!(1)(2分)How did the author feel when she found her husband looking outward while driving? A.Curious.B.Calm.C.Afraid.D.Excited.(2)(2分)Why did the husband cry?A.He saw something strange out of the window.B.He was scolded by his wife for driving carelessly.C.He was too frightened to drive the car on the road.D.He thought of an old friend and was moved by his story.(3)(2分)What can we infer from the text?A.The author knew Pop's story very well.B.Pop was travelling together with the couple.C.The author was amazed at the appearance of pine trees.D.Pine trees have something to do with the origin of Easter.(4)(2分)What does the author intend to tell us?A.We should be careful while driving.B.Pine trees are more beautiful before Easter.C.Easter should be decorated with golden crosses.D.Easter promises hope with the coming of spring.3.(8分)阅读理解If you've been diagnosed with high blood pressure,you might be worried about taking medication to bring your numbers down.Chronic(慢性的)stress may contribute to high blood pressure.More research is needed to determine the effects of chronic stress on blood pressure.Occasional stress also can contribute to high blood pressure if you react to stress by eating unhealthy food,drinking alcohol or smoking.Take some time to think about what causes you to feel stressed,such as work,family,finances or illness.Once you know what's causing your stress,consider how you can rid or reduce stress.If you can't rid all of your stressors,you can at least handle them in a healthier way.Try to:Change your expectations.For example,plan your day and focus on your strengths.Avoid trying to do too much and learn to say no.Understand there are some things you can't change or control,but you can focus on how you react to them.Focus on issues you can control and make plans to solve them.If you are having an issue at work, try talking to your manager.If you are having a conflict with your kids or spouse,take steps to resolve it.Avoid stress triggers(诱因).Try to avoid triggers when you can.For example,if rush-hour traffic on the way to work causes stress,try leaving earlier in the morning,or take public transportation.Avoid people who cause you stress if possible.Make time to relax and to do activities you enjoy.Take time each day to sit quietly and breathe deeply.Make time for enjoyable activities or hobbies in your schedule,such as taking a walk,cooking orvolunteering.Practice gratitude.Expressing gratitude to others can help reduce your stress.If you successfully control your blood pressure with reducing stress,you might avoid,delay or reduce the need for medication.(1)(2分)Which of the following is likely to be a stress trigger?A.Going to work during rush-hour traffic.B.Leaving earlier to do something.C.Taking public transportation to work.D.Staying away from stressful people.(2)(2分)According to the passage,which one is a healthy way to deal with stressors? A.Being occupied with activities.B.Answering violence with violence.C.Doing something within one's ability.D.Refusing to solve the issues you can control.(3)(2分)What is the purpose of writing the passage?A.To inform us of some effects of stress.B.To tell us cures for high blood pressure.C.To warn us of the dangers of high blood pressure.D.To instruct us to control blood pressure by reducing stress.(4)(2分)In what section of a newspaper can you probably read the passage?A.News.B.Health.C.Diet.D.Entertainment. 4.(8分)阅读理解The BeiDou Navigation Satellite System(BDS)is a Chinese satellite navigation system.It consists of two separate satellite constellations(星座).The first BeiDou system,officially called the BeiDou Satellite Navigation Experimental System and also known as BeiDou-1,consists of three satellites,which since2000 has offered limited coverage and navigation services,mainly for users in China and neighboring regions. Beidou-1was decommissioned at the end of2012.The second generation of the system,known as COMPASS or BeiDou-2,became operational in China in December2011with a partial constellation of10satellites in orbit.Since December2012,it has been offering services to customers in the Asia-Pacific region.In2015,China started the build-up of the third generation BeiDou system(BeiDou-3)in the global coverage constellation.The first BDS-3satellite was launched on30March2015.Up to January2018,nine BeiDou-3satellites have been launched.BeiDou-3will eventually consist of35satellites and is expected to provide global services upon completion in2020.So far,China has sent27BeiDou satellites into space. When fully completed,BeiDou,the world's fourth navigation satellite system,following GPS in the United States,GLONASS in Russia and Galileo in the European Union,will provide an alternative global navigation satellite system to the United States owned Global Positioning System(GPS),and is expected to be more accurate than the GPS.It was claimed in2016that BeiDou-3will reach millimeter-level accuracy (with post-processing),which is ten times more accurate than the finest level of GPS.According to China Daily,in2015,fifteen years after the satellite system was launched,it was generating a turnover of$31.5billion annually for major companies such as China Aerospace Science and Industry Corp,AutoNavi Holdings Ltd,and China North Industries Group Corp.(1)(2分)What does the underlined word“decommissioned”in the1st paragraph mean?A.out of service B.out of control C.under repair D.under work(2)(2分)How many BeiDou-3satellites had been sent into space by January2018?A.3.B.9.C.27.D.35.(3)(2分)Which of the following statements about BDS is true according to the passage? A.Beidou-2began to operate in December,2012.B.Beidou-1cannot cover all the Asia-Pacific regions.C.Beidou-3had reached the finest accuracy of GPS by2016.D.BDS ranks fourth among the existing navigation satellite systems in the world.(4)(2分)What is the passage mainly about?A.The service of BDS.B.The accuracy of BDS.C.The development of BDS.D.The comparisons among the satellite systems.二、任务型阅读(共1题;共10分)5.(10分)任务型阅读A volunteering vacation can be a meaningful way to spend your time off,but to make the trip satisfying both for you and the cause you are supporting,several factors need to be considered.Here is some advice on planning the ideal vacation:There are hundreds of causes to volunteer for,and finding one close to your heart will lead to a more worthwhile trip.Possibilities include wildlife conservation,education,environmental protection, health and nutrition.Also,consider any personal and professional skills that you can contribute.Choose your destination and setting.Your volunteering trip will be more enjoyable if you use it to reach a favorite destination.If Southeast Asia is on your mind,helping with tree-planting programs in Bali would benefit the environment and let you appreciate the scenic island.Is volunteering outdoors in a hot or snowy climate appealing,or do you prefer being in anair-conditioned office?Ask the right questions.Be aware that most volunteering programs require a weeklong commitment.Ask other questions like:How many hours of work per day is required?Are there days off? Will you be working individually or as part of a team?And what are the goals of your efforts?Ask if the cost includes only accommodations or meals and transportation too.A.Figure out your cause.B.Find a well-respected organization.C.And think about the surroundings you want.D.Your duty there is to help,as well as to rest and relax.E.The more you know about your trip,the more successful it will be.F.Despite the word“volunteer”,these vacations usually cost you some money.G.If you're a doctor,for example,working at a health clinic could be an ideal fit.三、完形填空(共1题;共20分)6.(20分)阅读下面短文,从短文后各题所给的A、B、C和D四个选项中,选出可以填入空白处的最佳选项。
三明市2017—2018学年第二学期普通高中期末质量检测高二文科数学试题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,请把答案填在答题卷相应的位置上)1. 设全集,集合,,则()A. B. C. D.【答案】D【解析】分析:求出函数的定义域,化简集合,从而求得,利用交集的定义求解即可.详解:因为,,又因为集合,所以,故选D.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.2. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:利用对数函数的单调性与定义域,结合充分条件与必要条件的定义求解即可.详解:充分性:在为增函数,若,则有,所以充分性成立.必要性:若,取,则都没有意义,所以必要性不成立,综上所述,“”是“”的充分不必要条件,故选A.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3. 已知椭圆的参数方程为(为参数),则的两个焦点坐标是()A. B. C. D.【答案】B【解析】分析:将参数方程化为普通方程,判断出焦点在轴上,利用即可得结果.详解:椭圆的参数方程为为参数),椭圆的标准方程是,椭圆的焦点在轴上,且,,,椭圆的两个焦点坐标是,故选B.点睛:本题主要考查椭圆的参数方程以及椭圆的简单性质,属于中档题.参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程.4. 设,则下列不等式不.成立的是()A. B.C. D.【答案】B【解析】分析:根据指数函数的性质、对数函数的性质以及不等式的性质逐一验证选项中的命题可得结果.详解:根据指数函数的单调性可得正确;根据对数函数的单调性可得正确;利用不等式的性质可得正确;时不成立,所以错,故选B.点睛:本题主要考查对数函数的单调性、指数函数的单调性以及不等式的基本性质的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.5. 为了解某班学生喜爱打篮球是否与性别有关,对该班名学生进行问卷调查,得到如下图所示的列联表,则至少有()的把握认为喜爱打篮球与性别有关.附参考公式:,.A. B. C. D.【答案】C【解析】分析:根据列联表中数据,利用公式求得,对照临界值即可的结果.详解:根据所给的列联表,得到,至少有的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.6. 已知幂函数的图象经过点,则幂函数具有的性质是()A. 在其定义域上为增函数B. 在其定义域上为减函数C. 奇函数D. 定义域为【答案】A【解析】分析:设幂函数,将代入解析式即可的结果.详解:设幂函数,幂函数图象过点,,,由的性质知,是非奇非偶函数,值域为,在定义域内无最大值,在定义域内单调递增,故选A.点睛:本题主要考查幂函数的解析式以及幂函数的单调性、奇偶性与定义域,意在考查对基础知识掌握的熟练程度,属于中档题.7. 《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.”为了计算每天良马和驽马所走的路程之和,设计框图如图.若输出的的值为,则判断框中可以填入()A. B. C. D.【答案】B【解析】分析:由程序框图可知,该程序的功能是求等差数列的通项,该等差数列的首项为,公差为,根据等差数列的通项公式求解即可.详解:由程序框图可知,该程序的功能是求等差数列的通项,该等差数列首项为,公差为,由,解得,所以判断框中可以填入,故选B.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.8. 某演绎推理的“三段”分解如下:①函数是减函数;②指数函数是减函数;③函数是指数函数,则按照演绎推理的三段论模式,排序正确的是()A. ①→②→③B. ③→②→①C. ②→①→③D. ②→③→①【答案】D【解析】分析:根据三段论的基本原理,结合指数函数的性质可得结果.详解:按照演绎推理的三段论模式可得,已知指数函数是减函数,因为函数是指数函数,所以函数是减函数,即排序正确的是②→③→①,故选D.点睛:本题主要考查演绎推理三段论的基本原理,意在考查对基础知识的掌握,属于简单题.9. 用反证法证明命题①:“已知,求证:”时,可假设“”;命题②:“若,则或”时,可假设“或”.以下结论正确的是()A. ①与②的假设都错误B. ①与②的假设都正确C. ①的假设正确,②的假设错误D. ①的假设错误,②的假设正确【答案】C【解析】分析:利用命题的否定的定义判断即可.详解:①的命题否定为,故①的假设正确.或”的否定应是“且”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题.用反证法证明时,假设命题为假,应为原命题的全面否定.10. 已知直线的参数方程为(为参数),直线与圆相交于,两点,则线段的中点坐标为()A. B. C. D.【答案】C【解析】分析:将直线的参数方程化为普通方程,与圆方程联立,由韦达定理结合中点坐标公式可得结果.详解:直线(为参数),即,代入圆化简可得,,即的中点的纵坐标为,的中点的横坐标为,故的中点的坐标为,故选C.点睛:本题主要考查参数方程化为普通方程,以及直线与圆的位置关系,属于中档题.消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.11. 已知命题:恒成立,命题:为减函数,若且为真命题,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:利用的最小值不小于化简命题,从而求出,利用指数函数的单调性化简命题,解不等式组即可得结果.详解:当命题为真命题时,恒成立,只须的最小值不小于即可,而有绝对值的几何意义得,即的最小值为,应有,解得,得为真命题时,当命题为真命题时,①为减函数,应有,解得,②综上①②得,实数的取值范围是,若且为真命题,则实数的取值范围是,故选C.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的单调性以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.12. 设曲线上任一点处的切线斜率为,则函数的部分图象可以是()A. B. C. D.【答案】A【解析】分析:对求导可求得数的解析式,根据函数的奇偶性以及特殊值,利用排除法可得结果.详解:对求导可求得,,函数的定义域是,定义域关于原点对称,令,在,是奇函数,函数图象关于原点对称,排除选项和选项,当时,,排除选项,故选A.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.13. 已知函数,若存在唯一的零点,且,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:利用导数研究函数的单调性,求出函数的极值,结合函数单调与图象列不等式即可可得结果.详解:函数,且存在唯一的零点,且,,时的解为,令得或,令得,在上递增,在上递减,在处有极大值,在处有极小值,因为函数,若存在唯一的零点,且,,则,实数的取值范围是,故选B.点睛:本题主要利用导数研究函数的单调性、函数的极值以及函数的零点,属于中档题.对于与“三次函数”的零点个数问题,往往考虑函数的极值符号来解决,设函数的极大值为,极小值为:一个零点或;两个零点或;三个零点且.14. 著名的狄利克雷函数,其中为实数集,为有理数集.现有如下四个命题:①;②函数为奇函数;③,恒有;④,恒有.其中真命题的个数是()A. B. C. D.【答案】A【解析】分析:对于①,时,可判定其错误;对于②,时,可判定其错误;对④,时,可判定其错误;对③,利用分段函数的解析式判断其正确.详解:对于①,时,,,故①错误;对于②,时,,时,,不是奇函数,故②错误;对③,时,,,时,,,故③正确.对④,时,,,④错误,故真命题个数为,故选A.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的解析式、函数的奇偶性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意利用特值法判断假命题以及从简单的、自己已经掌握的知识点入手,然后集中精力突破较难的命题.二、填空题:(本大题共4小题,每小题5分,共20分.请把答案写在答题卷相应位置上)15. 已知复数满足,其中为虚数单位,则复数__________.【答案】【解析】分析:变形,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,即可的结果.详解:,,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.16. 已知函数,且,则__________.【答案】6【解析】分析:由可求得,先求得的值,从而可得的值.详解:函数,且,,即,,,,故答案为.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.17. 设数列的前项和为,已知,猜想__________.【答案】【解析】分析:令,可求得,由,得,两式相减,得,可依次求出,观察前四项,找出规律,从而可得结果.详解:中令可求得由,得,两式相减,得,即,可得…归纳可得,故答案为.点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.18. 若函数与函数的零点分别为,,则函数的极大值为__________.【答案】【解析】分析:利用反函数的性质可得,从而可得,利用导数研究函数的单调性,利用单调性可得结果.详解:是与交点横坐标,是与交点横坐标,与应为反函数,函数关于对称,又与垂直,与的中点就是与的交点,,,当时,,在上递减,在上递增,当时,,在在上递减,在上递增,所以函数在处取得极大值,即函数的极大值为,故答案为.点睛:本题主要考查反函数的性质、利用导数判断函数的单调性与极值,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)19. 随着经济的发展,某地最近几年某商品的需求量逐年上升.下表为部分统计数据:年份需求量为了研究计算的方便,工作人员将上表的数据进行了处理,令,.(1)填写下列表格并求出关于的线性回归方程:时间代号(万件)(2)根据所求的线性回归方程,预测到年年底,某地对该商品的需求量是多少?(附:线性回归方程,其中,)【答案】(1)见解析(2)万件.【解析】分析:(1)根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程;(2)当时,,所以,则,从而可得结果.详解:(1)列表如下:时间代号(万件)∵,,,,∴,,∴.(2)解法一:将,,代入得到:,即,∴当时,,∴预测到年年底,该商品的需求量是万件.解法二:当时,,所以,则.所以预测到年年底,该某商品的需求量是万件.点睛:本题主要考查线性回归方程,属于中档题. 求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知为复数,为虚数单位,且和均为实数.(1)求复数;(2)若复数,,在复平面上对应的点分别是,,,求的面积.【答案】(1)(2).【解析】分析:(1)设复数,,由和均为实数可得,解得,从而可得结果;(2)由(1)知,可得,,则复数,,在复平面上对应的点分别是,,,利用三角形面积公式可得结果.详解:(1)设复数,,则,,∵和均为实数,∴,解得:,则所求复数.(2)由(1)知,所以,,则复数,,在复平面上对应的点分别是,,,所以,即的面积为.点睛:本题主要考查的基本概念、复数的运算以及复数的几何意义,属于中档题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.21. 已知函数是定义域为的奇函数.(1)求实数的值并判断函数的单调性;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1)见解析(2).【解析】分析:(1)由奇函数可得,解得,经检验,当时,函数为奇函数;设且,利用指数函数的性质可证明,从而可得结果;(2)结合函数的单调性与奇偶性可得,当时,不等式恒成立,等价于对恒成立,换元后,利用二次函数的性质列不等式组求解即可.详解:(1)解法一:∵函数是定义域为的奇函数,∴,解得.经检验,当时,函数为奇函数,即所求实数的值为.∵,在上恒成立,所以是上的减函数.解法二:∵函数是定义域为的奇函数,∴,解得.经检验,当时,函数为奇函数,即所求实数的值为.设且,则,∵,∴,,∴,即,所以是上的减函数.(2)由,可得.∵是上的奇函数,∴,又是上的减函数,所以对恒成立,令,∵,∴,∴对恒成立,令,,∴,解得,所以实数的取值范围为.点睛:本题主要考查函数的奇偶性与单调性,属于中档题. 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性. 22. (1)已知,,函数的图象过点,求的最小值;(2)类比(1)中的解题思路,证明:在平面四边形中,式子不可能小于.【答案】(1)(2)见解析【解析】分析:(1)由函数的图象过点,可得,,利用基本不等式可得结果;(2),则,从而可得结果.详解:(1)∵函数的图象过点,∴,又,,∴,当且仅当时,“”成立,所以的最小值为.(2)∵,∴.当且仅当时,“”成立,∴,即不可能小于.点睛:本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).23. 已知函数,.(1)若函数在其定义域上为单调增函数,求的取值范围;(2)记的导函数为,当时,证明:存在极小值点,且.【答案】(1)(2)见解析【解析】分析:(1)函数在上为单调增函数,等价于对任意恒成立,对任意恒成立,只需,,利用导数研究函数的单调性,利用单调性求出函数最大值,从而可得结果;(2)由(1)得,其中,,,∵,∴与同号,令,,存在,使得,是的极小值点,.详解:(1)依题意函数的定义域为且函数在上为单调增函数,所以对任意恒成立,∴对任意恒成立,∴对任意恒成立,∴,,令,,∴,∴当时,,为增函数;当时,,为减函数,∴当时,,∴,即的取值范围是.(2)由(1)得,其中,,∴,∵,∴与同号,令,,∴,∴当时,,即函数在上单调递增,∵,∴,,∴存在,使得,∴当时,,,是减函数,∴当时,,,是增函数,∴当时,存在,使是的极小值点.又由得,所以,,所以.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.24. 已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程和圆的直角坐标方程;(2)若点是直线上的动点,过作直线与圆相切,切点分别为、,若使四边形的面积最小,求此时点的坐标.【答案】(1),(2)点的坐标为.【解析】分析:(1)利用代入法消去参数可得直线的普通方程,将圆的极坐标方程,利用两角差的余弦公式展开,两边同乘,根据互化公式可得圆的直角坐标方程;(2)若使四边形的面积最小,则的面积要最小,要使的面积要最小,只需最小即可,若最小,则最小,当最小时,,进而可得结果.详解:(1)直线的参数方程为(为参数),消去参数得直线的普通方程为.由,两边同乘得,,∴,∴圆的直角坐标方程为.(2)依题意,若使四边形的面积最小,则的面积要最小,由,其中等于圆的半径,∴要使的面积要最小,只需最小即可,又,∴若最小,则最小,又点为圆心,点是直线上动点,∴当最小时,,设,∴,解得,∴当四边形的面积最小时,点的坐标为.点睛:本题主要考查参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及斜率公式的应用,属于中档题.消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.25. 已知函数.(1)解不等式;(2)设函数,若存在,使,求实数的取值范围.【答案】(1)(2).【解析】分析:(1)原不等式等价于,即,从而可得结果;(2)化简,可得当时,,可得,利用一元二次不等式的解法可得结果.. 详解:(1)∵,∴,∴,即,∴,∴,∴,所以不等式的解集为.(2)∵,∴,∴当时,,由题意可知,,即,解得或,所以实数的取值范围是.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
华安一中 长泰一中 南靖一中 平和一中 四校联考 2017—2018下学期高二 第二次月考英语试卷 第I 卷(选择题 共100分) 30分) 第一节(共5小题;每小题1.5分,满分7.5分) 听下面5段对话。
每段对话后有一个小题,从试题所给的A 、B 、C 三个选项中选出最佳10秒 钟的时间来回答有关小题和 A. Behind the door. B. Under the bed. C. In the closet. A. Go skiing. B. Stay home with his dog. C. Visit some overseas friends. A. From his school. B. From the community garden. C. From the grocery store. A. Junk food. B. Cheap food. C. Good quality food. A. Large. B. Medium. C. Small. 第二节 听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A 、B 、C 三个选并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
A. They eat turkey. B. They go skating. C. They hold a great party. A. A waiter. B. An actor. C. A reporter. 听第7段材料,回答第8、9题。
A. In January. B. In February. C. In August.A. Snow.B. Very hot water.C. Whales.听第8段材料,回答第10至12题。
A. The story is too exciting.B. She just wants to get it over with.C. She has to return it very soon.11. How many days are there before Saturday?A. Two.B. Three.C. Four.12. What will the woman do for the rest of the week?学校___________ 班级 _____________ 姓名 __________________ 考号_____________………………………………………………………… 装 ……………………… 订 ……………………………A. Read another book.B. Read the book again.C. Write a book review.听第9段材料,回答第13至16题。
绝密★启用前福建省宁德市2017—2018学年度第二学期期末高二质量检测英语试题一、阅读理解If you’re new to San Francisco, paying the city a visit, or simply looking for a new playground for you and your dog, here are four of the finest dog parks in San Francisco.Corona Heights Dog ParkOften visited by residents from all over the city because of its nearness to the Randall Museum, Corona Heights Dog Park offers pets and owners breathtaking view after a steep hillside climb, and a fenced dog area that allows dogs to let loose without a leash(狗链). Owners will also enjoy the playground, tennis courts and basketball courts.Dolores Dog ParkThe grounds of Dolores Park once served as camps for those who were left homeless by the 1906 earthquake, but now are often visited by crowds of Mission District people. Four-legged friends can also wander about carefree off-leash while making friends with other members of the doggie community.Pine Lake Dog ParkFamous for its place as a rest stop for hundreds of species of birds to fly to and from warmer climates, Pine Lake Park is also prized by city dogs and their owners for their nice hiking paths, picturesque lake suited for swimming, and off-leash area on the park’s west end that lets dogs run free.Buena Vista Dog ParkWith a history of 146 years, Buena Vista Park is San Francisco’s oldest park. Dogs and owners with plus energy will love burning it on this park’s steep paths and winding staircases. Dog owners should have good control over their dogs, as it’s quite easy for dogs to get separated when goin g through Buena Vista’s many twists and turns.1.Why do dog owners take their pets to Dolores Dog Park?A. To let them socialize.B. To give them rescue lessons.C. To help them lose weight.D. To increase their physical activities.2.Which dog park is popular with bird lovers?A. Dolores Dog Park.B. Pine Lake Dog Park.C. Buena Vista Dog Park.D. Corona Heights Dog Park.3.What is special about Buena Vista Dog Park?A. Dogs can go climbing.B. It is close to a museum.C. Dogs must be on a leash.D. It is suitable for swimming.【答案】1.A2.B3.C【解析】文章介绍了San Francisco的四个最好的宠物公园的详细情况。
2018-2019学年第二学期三明市三地三校联考期中考试联考协作卷高二英语(满分150分,完卷时间120分钟)第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个题,从题中所给的A,B,C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Who wants to borrow the camera?A. Jane.B. Alice.C. David.2. What does the man mean?A. Buy some more paint.B. Get someone to help them.C. Finish painting the rooms tomorrow.3. Where does the conversation take place?A. In a shop.B. In a supermarket.C. In a restaurant.4. What does the woman want to do?A. Buy tickets.B. Exchange notes.C. Have the machine repaired.5. What’s the regular price for the woman’s haircut?A. 20 yuan.B. 40 yuan.C. 60 yuan.第二节(共15小题:每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A,B,C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6和第7两个小题。
三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试英语试题(考试时间:2018年1月31日下午3:00-5:00满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。
1. Where was the woman’s phone yesterday?A. At her home.B. In a restaurant.C. In her office.2. What did the woman like about the coat?A. The quality.B. The color.C. The design.3. Why does the woman thank the man?A. He attended her party.B. He got her known to his friends.C. He found a new school for her.4. What’s the relationship between Lia and the woman?A. Neighbors.B. Classmates.C. Sisters.5. Which necklace will the woman buy?A. The red one.B. The blue one.C. A clear one.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
2017-2018学年福建省三明市高二(下)期末数学试卷(理科)一、选择题(共1小题,每小题5分,满分5分)1.已知复数z=(i是虚数单位),则z的共轭复数=()A.﹣i B.﹣+i C.﹣﹣i D. +i[4-4:坐标系与参数方程]2.平面直角坐标系中,在伸缩变换φ:的作用下,正弦曲线y=sinx变换为曲线()A.y′=sin2x′B.y′=2sin2x′C.y′=sin x′D.y′=sin2x′[4-5:不等式选讲]3.若>,则下列不等式一定成立的是()A.a2>b2B.lga>lgb C.2a>2b D.>4.设随机变量ξ~N(0,1),P(ξ>1)=0.2,则P(﹣1<ξ<1)=()A.0.1 B.0.3 C.0.6 D.0.85.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1 C.2k D.2k+16.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣57.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.B.C.D.8.若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.12[4-4:坐标系与参数方程]9.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,射线l:θ=(ρ>0)与⊙O1:(x﹣1)2+y2=1和⊙O2:x2+(y﹣2)2=4的交点分别为A,B,则|AB|=()A.2+B.2C.2﹣1 D.1[4-5:不等式选讲]10.设a,b,c为正数,p=a+,q=b+,r=c+,则下列说法正确的是()A.p,q,r都不大于2 B.p,q,r都不小于2C.p,q,r至少有一个不小于2 D.p,q,r至少有一个不大于211.某市汽车牌照号码构成是:前两位为英文字母,后三位数字,如DE668,其中牌照号码最后一个数字为8的牌照号码共有()A.(C)2A B.A AC.(C)2102D.A10212.已知函数f(x)=x2+cosx﹣5,f′(x)为f(x)的导函数,则f′(x)的图象可能是()A. B.C.D.13.某次数学考试的第一大题由10道四选一的选择题构成,要求考生从A、B、C、D中选出其中一项作为答案,每题选择正确得5分,选择错误不得分,以下是甲、乙、丙、丁四位据此可以推算考生丁的得分是()A.30 B.35 C.40 D.4514.已知函数f(x)=|x|3﹣ax2+(6﹣a)|x|+b(a,b∈R),若f(x)有六个不同的单调区间,则实数a的取值范围为()A.a<﹣2,或a>0 B.0<a<1 C.1<a<3 D.2<a<6六、填空题(共4小题,每小题5分,满分20分)15.计算=.16.已知线性回归方程=3x+0.3,则对应于点(2,6.4)的残差为.17.用五种不同的颜色对图中的A,B,C,D,E五个区域进行着色,相邻区域不能涂相同的颜色,则共有种不同的着色方案.(用数字作答)18.已知α,β为函数f(x)=x2﹣x﹣1的两个零点,g(x)为二次函数,满足g(α)=2β,g(β)=2α,g(1)=﹣1.若方程g(x)+2x=alnx(a>0)有且只有一个实根x0,且x0∈(0,n),则整数n的最小值为.七、解答题(共5小题,满分60分)19.已知m∈R,i为虚数单位,且(m+2i)2=﹣3+4i.(1)求实数m的值;(2)若|z﹣1|=|m+2i|,求复数z在复平面上所对应的点P的轨迹方程.20.某校一次运动会中,高二(1)班要从甲、乙等6名水平相当的同学中随机选出4人参加4×100米接力比赛.(1)求甲和乙中至少有一人被选中的概率;(2)现将选中的4人按照抽签结果决定接力棒次1,2,3,4.若甲乙同时被选中,求甲乙两人棒次之差的绝对值X的分布及数学期望.21.在厄尔尼诺现象中,经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度x i 和产卵数y i(i=1,2,…,7)的7组观测数据作了初步处理,得到如图的散点图及一些统计)))表中z i=lny i,=z i.(1)根据散点图判断,y=a+bx与y=c1e哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.①试求y关于x回归方程;②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny﹣9.43)+175,当温度x为何值时,培养成本的预报值最小?附:对于一组数据(u1,v1),(u2,v2),…(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=﹣β.22.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立.(1)根据以上结论猜想在n边形A1A2A3…A n中,有怎样的不等式成立.(不要求证明)(2)数列{a n},满足a1=1,a n+1﹣a n≤2,S n为数列{a n}的前n项和,试用(1)猜想的结论,证明不等式S n≤(A1+A2+…A n)(++…+)(n≥3).23.已知函数f(x)=lnx+ax﹣x2(a∈R).(1)若f(x)≤0恒成立,求实数a的取值范围;(2)证明ln(n+1)<++…+(n为正整数).[4-4:坐标系与参数方程]24.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),抛物线C的极坐标方程为ρsin2θ=2cosθ.(1)求出直线l的普通方程及抛物线C的直角坐标方程;(2)设点P(2,0),直线l与抛物线C相交于A,B两点,求|PA|•|PB|的值.[4-5:不等式选讲]25.已知函数f(x)=|2x﹣a|+a(a∈R).(1)当a=﹣1时,解不等式f(x)≤|2x﹣1|;(2)若a≥0,f(x)≤2,求证:|x|≤a+1.2017-2018学年福建省三明市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共1小题,每小题5分,满分5分)1.已知复数z=(i是虚数单位),则z的共轭复数=()A.﹣i B.﹣+i C.﹣﹣i D. +i【考点】复数代数形式的乘除运算.【分析】将z分母实数化,化简z,从而求出z的共轭复数即可.【解答】解:∵z===+,∴=﹣,故选:A.[4-4:坐标系与参数方程]2.平面直角坐标系中,在伸缩变换φ:的作用下,正弦曲线y=sinx变换为曲线()A.y′=sin2x′B.y′=2sin2x′C.y′=sin x′D.y′=sin2x′【考点】参数方程化成普通方程.【分析】由伸缩变换φ:,解得:,代入y=sinx即可得出曲线方程.【解答】解:由伸缩变换φ:,解得:,代入y=sinx可得:2y′=sin,即y′=sin,故选:C.[4-5:不等式选讲]3.若>,则下列不等式一定成立的是()A.a2>b2B.lga>lgb C.2a>2b D.>【考点】不等式的基本性质.【分析】根据不等式的基本性质,分别判断四个答案中的不等式是否恒成立,可得结论.【解答】解:∵>,∴a>b,此时2a>2b一定成立,其它的不等式不一定成立,故选:C.4.设随机变量ξ~N(0,1),P(ξ>1)=0.2,则P(﹣1<ξ<1)=()A.0.1 B.0.3 C.0.6 D.0.8【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布曲线关于x=μ对称,与x轴围成的面积之和为1求解,可得答案.【解答】解:由正态分布曲线的对称性得:P(ξ<﹣1)=P(ξ>1)=0.2,∴P(﹣1<ξ<1)=1﹣0.2×2=0.6.故选:C.5.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1 C.2k D.2k+1【考点】用数学归纳法证明不等式.【分析】考查不等式左侧的特点,分母数字逐渐增加1,末项为,然后判断n=k+1时增加的项数即可.【解答】解:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.故选C.6.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣5【考点】导数的几何意义.【分析】首先判断该点是否在曲线上,①若在曲线上,对该点处求导就是切线斜率,利用点斜式求出切线方程;②若不在曲线上,想法求出切点坐标或斜率.【解答】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,∴y′|x=1=﹣3,即切线斜率为﹣3.∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.7.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.B.C.D.【考点】相互独立事件的概率乘法公式.【分析】利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.【解答】解:P(A)==,P(AB)==.由条件概率公式得P(B|A)==.故选:B.8.若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.12【考点】二项式定理的应用.【分析】由等式右边可以看出是按照x﹣2的升幂排列,故可将x写为2+x﹣2,利用二项式定理的通项公式可求出a2的值.【解答】解:x3=(2+x﹣2)3,故a2=C322=6故选B[4-4:坐标系与参数方程]9.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,射线l:θ=(ρ>0)与⊙O1:(x﹣1)2+y2=1和⊙O2:x2+(y﹣2)2=4的交点分别为A,B,则|AB|=()A.2+B.2C.2﹣1 D.1【考点】简单曲线的极坐标方程.【分析】先求出射线l的直角坐标方程,再分别求出射线l与⊙o1的交点A的坐标和射线l 与⊙o2的交点B的坐标,最后利用两点间距离公式求出答案.【解答】解:∵射线l:θ=(ρ>0),∴射线l的直角坐标方程y=x(x>0,y>0),联立,解得x=0或(舍去0)∴x=,y=.∴射线l与⊙o1的交点A为(,)联立,解得x=0或(舍去0)∴x=,y=3.∴射线l与⊙o2的交点B为(,3).∴|AB|===2﹣1.故选:C.[4-5:不等式选讲]10.设a,b,c为正数,p=a+,q=b+,r=c+,则下列说法正确的是()A.p,q,r都不大于2 B.p,q,r都不小于2C.p,q,r至少有一个不小于2 D.p,q,r至少有一个不大于2【考点】反证法与放缩法.【分析】本题可以先猜想出相关结论,再用反证法加以证明.【解答】解:(反证法)假设p,q,r三个数均小于2,即p<2,q<2,r<2.则p+q+r<6 ①又p+q+r=a++b++c+=(a+)+(b+)+(c+)≥2+2+2=6.即p+q+r≥6 ②∴①②矛盾,假设不成立.∴p,q,r三个数至少有一个不小于2.故选C.11.某市汽车牌照号码构成是:前两位为英文字母,后三位数字,如DE668,其中牌照号码最后一个数字为8的牌照号码共有()A.(C)2A B.A AC.(C)2102D.A102【考点】排列、组合及简单计数问题.【分析】汽车牌照号码构成是:前两位为英文字母,后三位数字,最后一个数字为8,根据乘法原理可得结论.【解答】解:∵汽车牌照号码构成是:前两位为英文字母,后三位数字,最后一个数字为8,∴共有(C)2102,故选:C.12.已知函数f(x)=x2+cosx﹣5,f′(x)为f(x)的导函数,则f′(x)的图象可能是()A. B.C.D.【考点】导数的运算.【分析】先求导,再根据函数的奇偶性和函数值得变化趋势即可判断.【解答】解:∵f(x)=x2+cosx﹣5,∴f′(x)=x+sinx,∴f′(﹣x)=﹣x﹣sinx=﹣f′(﹣x)∴f′(x)为奇函数,即图象关于原点对称,当x>0时,f′(x)>0恒成立,故选:C.13.某次数学考试的第一大题由10道四选一的选择题构成,要求考生从A、B、C、D中选出其中一项作为答案,每题选择正确得5分,选择错误不得分,以下是甲、乙、丙、丁四位A.30 B.35 C.40 D.45【考点】进行简单的合情推理.【分析】由已知得第5,6题应为一对一错,所以丙和丁得分相同,即可得出结论.【解答】解:因为由已知得第5,6题应为一对一错,所以丙和丁得分相同,所以,丁的得分也是40分.故选:C.14.已知函数f(x)=|x|3﹣ax2+(6﹣a)|x|+b(a,b∈R),若f(x)有六个不同的单调区间,则实数a的取值范围为()A.a<﹣2,或a>0 B.0<a<1 C.1<a<3 D.2<a<6【考点】利用导数研究函数的单调性.【分析】判断函数f(x)为偶函数,则f(x)有六个不同的单调区间等价为当x≥0时,f (x)有3个不同的单调区间,求函数的导数,等价为当x≥0时,f′(x)=0有两个不同的根,利用根的分布进行求解即可.【解答】解:∵f(x)=|x|3﹣ax2+(6﹣a)|x|+b,∴函数f(x)是偶函数,若f(x)有六个不同的单调区间,则等价为当x≥0时,f(x)有3个不同的单调区间,即当x≥0时,f′(x)=0有两个不同的根,则当x≥0时,f(x)=x3﹣ax2+(6﹣a)x+b,f′(x)=x2﹣2ax+6﹣a,若当x≥0时,f′(x)=0有两个不同的根,则即,得,则2<a<6,故选:D六、填空题(共4小题,每小题5分,满分20分)15.计算=.【考点】定积分.【分析】欲求定积分,可利用定积分的几何意义求解,即可被积函数y=与x轴在0→1所围成的图形的面积即可.【解答】解:根据积分的几何意义,原积分的值即为单位圆在第一象限的面积.∴=,故答案为:.16.已知线性回归方程=3x+0.3,则对应于点(2,6.4)的残差为0.1.【考点】线性回归方程.【分析】由题意,预报值y=3×2+0.3=6.3,从而可得残差.【解答】解:由题意,预报值y=3×2+0.3=6.3,故残差为6.4﹣6.3=0.1.故答案为:0.1.17.用五种不同的颜色对图中的A,B,C,D,E五个区域进行着色,相邻区域不能涂相同的颜色,则共有780种不同的着色方案.(用数字作答)【考点】排列、组合及简单计数问题.【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,再对BD进行分类,若BD相同,若BD不同,根据乘法原理可得结论.【解答】解:先涂A,则A有5种涂法,再涂B,因为B与A相邻,所以B的颜色只要与A不同即可,有4种涂法,同理C有3种涂法,若B与D相同,则E有4种,若B与D不相同,则D有3种,E有3种,故有5×4×3×(4+3×3)=780种故答案为:78018.已知α,β为函数f(x)=x2﹣x﹣1的两个零点,g(x)为二次函数,满足g(α)=2β,g(β)=2α,g(1)=﹣1.若方程g(x)+2x=alnx(a>0)有且只有一个实根x0,且x0∈(0,n),则整数n的最小值为2.【考点】二次函数的性质.【分析】求出g(x)的表达式,问题转化为x2﹣x+1=alnx(a>0)有且只有一个实根x0,根据二次函数以及对数函数的性质判断即可.【解答】解:不妨设α<β,令f(x)=0,解得:α=,β=,设g(x)=ax2+bx+c,由g(α)=2β,g(β)=2α,g(1)=﹣1,得:,解得:,∴g(x)=x2﹣3x+1,∴方程g(x)+2x=alnx(a>0)有且只有一个实根x0,即x2﹣x+1=alnx(a>0)有且只有一个实根x0,显然y=x2﹣x+1的最小值是,而y=alnx<0在(0,1)恒成立,若x0∈(0,n),则整数n的最小值为2,x0∈(1,2),故答案为:2.七、解答题(共5小题,满分60分)19.已知m∈R,i为虚数单位,且(m+2i)2=﹣3+4i.(1)求实数m的值;(2)若|z﹣1|=|m+2i|,求复数z在复平面上所对应的点P的轨迹方程.【考点】复数代数形式的乘除运算.【分析】(1)根据对应关系求出m的值即可;(2)设z=x+yi,得到|x﹣1+yi|=|1+2i|,即(x﹣1)2+y2=5,从而求出轨迹方程即可.【解答】解:(1)∵(m+2i)2=﹣3+4i,∴m2+4mi﹣4=﹣3+4i,∴m=1;(2)若|z﹣1|=|m+2i|,由(1)得:|z﹣1|=|1+2i|,设z=x+yi,则|x﹣1+yi|=|1+2i|,∴(x﹣1)2+y2=5,故复数z在复平面上所对应的点P的轨迹方程是:以(1,0)为圆心,以为半径的圆.20.某校一次运动会中,高二(1)班要从甲、乙等6名水平相当的同学中随机选出4人参加4×100米接力比赛.(1)求甲和乙中至少有一人被选中的概率;(2)现将选中的4人按照抽签结果决定接力棒次1,2,3,4.若甲乙同时被选中,求甲乙两人棒次之差的绝对值X的分布及数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)求出从甲、乙等6名同学中随机选出4人,不同的基本事件数以及甲和乙都不参加的基本事件数,利用对立事件的概率即可求出结果;(2)根据题意,X的可能取值为1、2、3,求出对应的概率值,写出X的分布,计算X的数学期望值.【解答】解:(1)从甲、乙等6名同学中随机选出4人,不同的基本事件数为=15;甲和乙都不参加的基本事件为=1,所以甲乙二人中至少有一人被选中的概率为P=1﹣=;(2)设甲为a,乙为b,另两个同学为c、d;则所有的排列数为abcd,abdc,acbd,acdb,adbc,adcb,bacd,badc,bcad,bcda,bdac,bdca,cabd,cadb,cbad,cbda,cdab,cdba,dabc,dacb,dbac,dbca,dcab,dcba共24种;根据题意,X的可能取值为1、2、3,且P(X=1)==,P(X=2)==,P(X=3)==;XX的数学期望为EX=1×+2×+3×=.21.在厄尔尼诺现象中,经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度x i 和产卵数y i(i=1,2,…,7)的7组观测数据作了初步处理,得到如图的散点图及一些统计)))表中z i=lny i,=z i.(1)根据散点图判断,y=a+bx与y=c1e哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.①试求y关于x回归方程;②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny﹣9.43)+175,当温度x为何值时,培养成本的预报值最小?附:对于一组数据(u1,v1),(u2,v2),…(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=﹣β.【考点】线性回归方程.【分析】(1)根据散点图判断,看出样本点分布在一条指数函数的周围,可得结论;(2)①由变换后的样本点分布在一条直线附近,因此可以用线性回归方程来拟合,即可求出y对x的回归方程.②代入利用配方法,可得结论.【解答】解:(1)根据散点图判断,看出样本点分布在一条指数函数的周围,y=c1e适宜作为y与x之间的回归方程模型;(2)①令z=lny,则z=bx+a由b==,a=3.6﹣≈2.86得z=0.27x+2.86,有y=e0.27x+2.86②h(x)=x(lny﹣9.43)+175=x(0.27x+2.86﹣9.43)+175=0.27x2﹣6.57x+175,∴x=≈12时,培养成本的预报值最小.22.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立.(1)根据以上结论猜想在n边形A1A2A3…A n中,有怎样的不等式成立.(不要求证明)(2)数列{a n},满足a1=1,a n+1﹣a n≤2,S n为数列{a n}的前n项和,试用(1)猜想的结论,证明不等式S n≤(A1+A2+…A n)(++…+)(n≥3).【考点】进行简单的合情推理.【分析】(1)观察分子与多边形边的关系及分母中π的系数与多边形边的关系,即可得到答案.(2)利用叠加法,可得S n≤n2,根据(A1+A2+…A n)(++…+)≥(n﹣2)π•=n2,即可证明结论.【解答】解:(1)在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立…归纳可得:在n边形A1A2A3…A n中, +…+≥.证明:(2)∵数列{a n},满足a1=1,a n+1﹣a n≤2,S n为数列{a n}的前n项和,∴叠加可得a n﹣1≤2(n﹣1),∴a n≤2n﹣1,∴S n≤n2,∵(A1+A2+…A n)(++…+)≥(n﹣2)π•=n2,∴.S n≤(A1+A2+…A n)(++…+)(n≥3).23.已知函数f(x)=lnx+ax﹣x2(a∈R).(1)若f(x)≤0恒成立,求实数a的取值范围;(2)证明ln(n+1)<++…+(n为正整数).【考点】利用导数求闭区间上函数的最值.【分析】(1)问题植物a≤x﹣在(0,+∞)恒成立,设g(x)=x﹣,(x>0),根据函数的单调性求出g(x)的最小值,从而求出a的范围即可;(2)根据a=1时,f(x)≤0可以推出ln(x+1)﹣x2﹣x≤0,令x=,可以得到ln(+1)<+,利用此不等式进行放缩证明即可.【解答】解:(1)若f(x)≤0恒成立,即a≤x﹣在(0,+∞)恒成立,设g(x)=x﹣,(x>0),g′(x)=1﹣=,令h(x)=x2+lnx﹣1,(x>0),h′(x)=2x+>0,h(x)在(0,+∞)递增,而h(1)=0,∴x∈(0,1)时,h(x)<0,x∈(1,+∞)时,h(x)>0,即x∈(0,1)时,g′(x)<0,x∈(1,+∞)时,g′(x)>0,∴g(x)在(0,1)递减,在(1,+∞)递增,∴g(x)≥g(1)=1,∴a≤1.(2)由(1)得:a=1时,f(x)=lnx+x﹣x2≤0,故lnx≤x2﹣x,即ln(x+1)≤x(x+1),(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+,∴ln()<,故++…+>ln2+ln+ln+…+ln=ln(n+1),即ln(n+1)<++…+.[4-4:坐标系与参数方程]24.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的参数方程为(t为参数),抛物线C的极坐标方程为ρsin2θ=2cosθ.(1)求出直线l的普通方程及抛物线C的直角坐标方程;(2)设点P(2,0),直线l与抛物线C相交于A,B两点,求|PA|•|PB|的值.【考点】参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),消去t可得普通方程.抛物线C的极坐标方程为ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,利用x=ρcosθ,y=ρsinθ可得直角坐标方程.(2)把直线l的参数方程代入抛物线方程可得:8t2﹣15t﹣50=0,利用|PA|•|PB|=|t1||t2|=|t1t2|即可得出.【解答】解:(1)直线l的参数方程为(t为参数),消去t可得:3x﹣4y﹣6=0.抛物线C的极坐标方程为ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,可得直角坐标方程:y2=2x.(2)把直线l的参数方程(t为参数)代入抛物线方程可得:8t2﹣15t﹣50=0,∴t1t2=﹣=.∴|PA|•|PB|=|t1||t2|=|t1t2|=.[4-5:不等式选讲]25.已知函数f(x)=|2x﹣a|+a(a∈R).(1)当a=﹣1时,解不等式f(x)≤|2x﹣1|;(2)若a≥0,f(x)≤2,求证:|x|≤a+1.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)解法一:当a=﹣1时,不等式即|x+|﹣|x﹣|≤,再利用绝对值的意义求得不等式f(x)≤|2x﹣1|的解集.解法二:把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由条件|2x﹣a|+a≤2,利用绝对值三角不等式证得|x|≤1,从而证得结论.【解答】解:(1)解法一:当a=﹣1时,解不等式f(x)≤|2x﹣1|,即|2x+1|﹣1≤|2x﹣1|,即|x+|﹣|x﹣|≤.而|x+|﹣|x﹣|表示数轴上的x对应点到﹣对应点的距离减去它到对应点的距离,而对应点到﹣对应点的距离减去它到对应点的距离正好等于,故不等式f(x)≤|2x﹣1|的解集为{x|x≤}.解法二:不等式f(x)≤|2x﹣1|,即|2x+1|﹣|2x﹣1|≤1,∴①,或②,或③.解①求得x<﹣,解②求得﹣≤x≤,解求得x∈∅.综上可得,不等式f(x)≤|2x﹣1|的解集为{x|x≤}.(2)证明:∵f(x)=|2x﹣a|+a≤2,而由绝对值三角不等式可得|2x﹣a|≥|2x|﹣|a|=|2x|﹣a,∴|2x|﹣a+a≤2,即2|x|≤2,即|x|≤1.又∵a≥0,∴|x|≤a+1成立.2018年9月6日。
福建省三明市2017-2018学年高二下学期期末考试 英语试题 (试卷满分150分;考试时间120分钟。) 第Ⅰ卷(满分100分) 第一部分 听力(百强校英语解析团队专供)(共两节,满分30分) 做题时,先将答案标在试卷上。录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。 第二部分阅读理解(百强校英语解析团队专供)(共两节,满分40分) 第一节(共15小题;每小题2分,满分30分) 阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项。并在答题纸上将该项涂黑。 A Here are some recommendations for tourists to choose from. Banff, Canada
Banff, located in the Rockies, has a view of tall mountains, deep valleys and lakes, making it the first town to become part of the country’s national parks. Tourists can enjoy its beauty by hiking, horse riding and boat trips. Banff was founded in 1883 while a railroad was in construction. It was the water springs that drew the engineers’ attention to the place as a settlement. With such a fantastic view, it’s no surprise that Banff hosts a number of cultural festivals........................................ Lisbon, Portugal
Lisbon is the capital of Portugal, with the warmest winters of any major European city. Belem Tower and Jeronimos Monastery are listed as UNESCO World Heritage Sites. The former was built in the 16th century as a symbol of Portugal’s Extraordinary Age and the latter is one of the greatest examples of the Portuguese late-Gothic style of architecture. The Lisbon Oceanaium is among Europe’s finest aquariums. The Museu Calouste Gulbenkian is among the best museums in Europe containing priceless artworks covering 4000 years from ancient Egyptian times to the late 20th century. Portland, US
Portland is frequently recognized as one of the world’s most environmentally-friendly cities because of its well-built pavements, large community of cyclists and convenient public transportation. Its climate is ideal for growing roses and it’s called the “City of Roses”. Besides, the seaport is also known as a city of beer: it has the largest number of beer breweries(啤酒厂)of any city in the world. Today’s Portland is better known for its music. It’s called “the capital of karaoke” and “one of the most exciting music scenes” in the US. Bordeaux, France
Bordeaux attracts tourists with its rich cultural heritage, especially its wealth of architectural treasures. Besides the Cathedral of Saint Andrew dating back to 12th century, the Basilica of Saint Michael is another one of the city’s UNESCO World Heritage Sites. It took 200 years to build from 14th to 16th centuries. Other significant buildings include the Grand Theater built in 1780 in the new Classical style and the Stone Bridge built in 1821. 1. What may be the main reason for Banff to host a number of cultural festivals? A. It’s the first town in the country’s national parks. B. It provides impressive view with its natural beauty. C. It provides horse riding, winter sports and boat trips. D. Its water springs drew engineers to build a railway here. 2. What can we know about Lisbon? A. Lisbon enjoys the warmest winters of all European cities. B. The Lisbon Oceanaium is recognized as the world’s finest aquarium. C. The Museu Calouste Gulbenkian is one of the largest museums in the world. D. Jeronimos Monastary is typical architecture of the Portuguese late-Gothic style. 3. What’s Today’s Portland best known for? A. Karaoke bars and music. B. Ideal climate for roses. C. Well-built walkways. D. Convenient public transportation 4. Which city will probably appeal to an architect most? A. Banff. B. Lisbon. C. Portland. D. Bordeaux. 5. Where are tourists likely to be impressed by UNESCO World Heritage Sites? A. Banff and Portland. B. Lisbon and Bordeaux. C. Portland and Bordeaux. D. Lisbon and Banff. 【答案】1. B 2. D 3. A 4. D 5. B 【解析】 本文属于应用文,介绍了世界四个不同的旅游城市,加拿大的班夫,葡萄牙的里斯本,美国波特兰以及法国波尔多。 【1题详解】 细节理解题。根据第一段With such a fantastic view, it’s no surprise that Banff hosts a number of cultural festivals.可知,班夫有很多美丽的景色,因而吸引了很多文化活动的举办,故选B。 【2题详解】 细节理解题。根据第二段the latter is one of the greatest examples of the Portuguese late-Gothic style of architecture.可知,Jeronimos Monastary的建筑风格为哥特式晚期风格,故选D。根据第二段Lisbon is the capital of Portugal, with the warmest winters of any major European city.可知,里斯本的冬天比其他主要的欧洲城市
都暖和,而不是所有的欧洲城市,故不选A。 【3题详解】 细节理解题。根据第三段Today’s Portland is better known for its music. It’s called “the capital of karaoke” and “one of the most exciting music scenes” in the US.可知,现在的波特兰以音乐二出名,故选A。
【4题详解】 细节理解题。根据第四段Bordeaux attracts tourists with its rich cultural heritage, especially its wealth of architectural treasures.可知,波尔多保留很多古代的建筑,因而对建筑学家有吸引力,故选D。
【5题详解】 细节理解题。根据第二段Belem Tower and Jeronimos Monastery are listed as UNESCO World Heritage Sites.以及第四段Besides the Cathedral of Saint Andrew dating back to 12th century, the Basilica of Saint Michael is another one of the city’s UNESCO World Heritage Sites.可知,里斯本和波尔多两个城市拥有联合国教科文组