当前位置:文档之家› 大型水电厂电气设计

大型水电厂电气设计

大型水电厂电气设计
大型水电厂电气设计

大型水电厂电气设计

1 前言

电力已成为人类历史发展的主要动力资源,要科学合理驾驭电力,必须从电力工程的设计原则和方法上来理解和掌握其精髓,提高电力系统的安全可靠性和运行效率,从而达到降低生产成本,提高经济效益的目的。

我国水力资源十分丰富,但由于水电厂建设投资大、周期长,至今只有10%~15%被用以发电。而且,在全国总装机容量和年发电量中,水电比重近年来还出现逐渐下降的趋势。这种不能很好利用既廉价有洁净水能的状况必须改变。为此,应加速水利资源的勘察和水电厂建设。 发电厂是电力系统的重要组成环节,它直接影响整个电力系统的安全与经济运行。在发电厂中,电气一次系统是主干系统,处于关键的地位。此次课程设计的内容主要即为大型水力发电厂的电气一次部分。

本设计主要内容为大型水力发电厂电气一次部分设计,主要内容有:电气主接线方案的确定、短路电流计算、导体和主要电气设备选择。最后还给出了电气主接线图。

1 设计任务内容:大型水电厂电气设计

2 1发电厂情况: (1)大型水电厂电气设计 (2)机组容量与台数:5×300MW

(3)电厂所在地区最高温度35℃海拔1000m ,地震烈度5级,土壤电阻率600Ω.m ;,;

(4)机组年利用小时数=max T 3246小时; 2.负荷与系统情况:

(1)接入系统:以4回330kV ,90~240 km 架空线路接入枢纽变电所,系统

容量按无穷大考虑,系统归算至水电厂母线最小电抗标么值"X =0.1285(j S =1000MVA ,已计入十年发展)。;

(2)发电机额定电压15.75kV , 8.0cos =?75, ="d X 0.2 (3)主变压器,电抗标么值0.14; (4)继电保护:主保护0.1s ,后备保护2s (5)厂用电:无高压厂用电设备 3.设计目的

发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训练,通过

课程设计的实践达到:

(1)巩固“发电厂电气部分”、“电力系统分析”等课程的理论知识。 (2)熟悉国家能源开发策略和有关的技术规范、规定、导则等。 (3)掌握发电厂电气部分设计的基本方法和内容。

(4)学习工程设计说明书的撰写。

(5)培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。 4、任务要求

(1)分析原始资料 (2)设计主接线 (3)计算短路电流 (4)电气设备选择 5、设计原则、依据 原则:

电气主接线的设计是发电厂或变电站设计的主体。电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定和标准为准绳,结合工程实际情况,以保证供电可靠、调度灵活,在满足各项技术要求的前提下,兼顾运行方便、尽可能节省投资、就地取材,力争设备原件和设计的先进性与可靠性,坚持可靠、适用、先进、经济、美观的原则。 依据:

(1) 发电厂、变电所在电力系统中的地位和作用 (2) 发电厂、变电所的分期和最终建设规模 (3) 负荷大小和重要性 (4) 系统备用容量大小 (5) 设计题目的原始资料 6、设计基本要求

设计要满足可靠性、灵活性、经济性的要求 二、原始资料分析

1.工程情况:设计电厂为大型水电厂,其容量为5×300MW,利用小时数为3000h <3246h <5000h ,为承担腰荷的发电厂,又因其多承担系统调峰,调相任务,其主接线应以供电调度灵活为主选择接线方式;。

2.电力系统情况:j S =1000MVA ,已计入十年发展,系统容量按无穷大考虑,为简化网络结构及发电厂主接线,减少电压等级宜接入220kV 系统,且出线数目应尽量减少,以利于简化配电装置的规模及维护;

3.负荷情况发电机额定电压15.75kV , 8.0cos =?75, ="d X 0.2

4.环境条件:电厂所在地区最高温度35℃,海拔1000m ,地震烈度5级,土壤电阻率600Ω.m ;水力发电厂不会由于海拔高度而影响发电效果,故可不予考虑,土壤电阻率也很小,也可不予考虑。

5.继电保护:主保护0.1s ,后备保护2s

6.无高压厂用电设备

三、主接线方案确定

水力发电厂的特点是,一般距离负荷中心较远,基本上没有发电机电压负荷,几乎全部电能用生高电压送入系统;水力发电厂的装机台数和容量,是根据水能利用条件一次性确定的,不必考虑发展和扩建;水力发电厂附近地形复杂,电气主接线应尽量简单,使配电装置紧凑。

1、主接线方案拟定

根据对原始资料的分析,现将各电压级可能采用的较佳方案列出,进而,以优化组合方式,组成最佳可比方案。

1)10KV 电压级.鉴于10KV 出线回路多,并且发电机单机容量为300MW,远大于有关设计规程对选用单母线分段接线不得超过24MW 的规定,应确定为双母线分段接线形式,4台300MW 机组分别接在两段母线上,剩余功率通过主变压器送往一级电压110KV.由于10KV 电压最大负荷20MW,远小于2*50MW 发电机组装容量,即使在发电机检修的情况下,也可保证该电压等级负荷要求.由于2台50MW 机组均接于10KV 母线上,有较大短路电流,为选择合适的电气设备,应在分段处加装母线电抗器,各条电缆线上装设线路电抗器.

2.110KV 电压级.出线回路大于4回,为使其出线断路器检修时不停电,应采用单母线分段带旁路接线或双母线带旁路接线,以保证其供电的可靠性和灵活性.

3.220KV 电压级.200KV 负荷容量大,其主接线是本厂向系统输送功率的主要接线方式,为保证可靠性,可能有多种接线形式.

方案一:图一。为大型水力发电厂的主接线,5台300MW 的发电机组(Un=15.75kV )以发电厂变压器单元接线直接把电能送到至330kV 的电力系统,但由于发电机内阻很小,所以直接厂用电变压器与发电机用封闭线直接连接,即厂用分支封闭母线(在发电厂中,发电机至变压器的连接母线如采用敞露式母线,会导致绝缘子表面易被灰尘污染,尤其是母线布置在屋外时,受气候变化和污染更为严重,很容易造成绝缘子闪络及由于外物所致造成母线短路故障。随着机组容量的增大,对出口母线的可靠性要求越来越高,而采用封闭母线是一种较好的

解决方法。)。330kV 侧为三串23台短路器接线和一串13

1

台断路器接线。实现5

条电源进线和4条出线配对成串,增加了可靠性。在各发电机出口均装有出口短路器,给运行带来了极大的灵活性。

方案二:图二。同样为大型水力发电厂的主接线,5台300MW 的发电机组(Un=15.75kV ),发电机组经双母线分段接线连接,经变压器把电能送到330kV 电力系统。330kV 侧为三角形接线方式。其接线方式可以减少一台断路器的使用又可以拥有双母接线的稳定性,操作方便。但是,检修断路器是,多角形就要开环运行,如果此时出现故障,又有断路器断开,将使供电造成紊乱;而且其灵活 性又差了一些。

图一方案一图

图二方案二图

综合考虑各种因素,方案I 在可靠性和经济性方面均优于方案II ,且该水电站在保证可靠性的情况下,要看其灵活性,故选择方案I 为最终的设计方案。 四、厂用电设计

1. 水电厂的主要厂用电负荷

⑴机组自用电部分:压油装置油泵、机组调速和轴承润滑系统用油泵、水内冷水系统水泵、水轮机顶盖排水泵、漏油泵、主变压器冷却设备等。 ⑵全厂公用电部分:厂房吊车、快速闸门启闭设备、闸门室吊车、尾水闸门吊车、蓄电池组和浮充电装置、空气压缩机、中央修配厂、漏油机、全场照明等。

2. 厂用电源选择

⑴厂用电供电电压确定:

对于水电厂,由于水轮发电机组辅助设备使用的电动机功率不大,采用动力和照明三相四制系统供电。但是坝区和水利枢纽距厂区较远,故可选用厂用电电压等级为6kV 。

⑵厂用电系统接地方式:

厂用变采用不接地方式,高压低压都为三角电压。 ⑶厂用工作电源引线方式:

因为发电机与主变压器采用单元接线,高压常用工作电源由该单元主变压器低压侧引借 ⑷厂用备用电源

采用一台备用变压器,以13

1

台断路器接线方式连于主接线中。

3. 厂用主变压器的选择

⑴厂用电主变压器选择的原则:

1.变压器、副边额定电压应分别与引接线和厂用电系统的额定电压相适应。

2.连接组别的选择,宜使用同一电压级的厂用工作、备用变压器输出电压的相位一致。

3.阻抗电压及调压形式的选择,宜使在引接点电压及厂用点负荷正常波动范围内,厂用点各级母线的电压偏移不超过额定电压的5%。

4.变压器的容量必须保证厂用机械及设备能从电源获得足够的功率。 ⑵确定厂用电主变压器容量:

按常用电率确厂用电主变压器的容量

S N =875.0%8300 =27.43MV A

选择型号为:SJL1—30 五、主变压器的确定

1.变压器的台数:依据方案I ,该变电所装设2台三绕组变压器,以充分保证

供电可靠性。 2.容量:单元接线中的主变压器SN 应按发电机的额定容量扣除本机组的厂用容量负荷后,留有10%的裕度。

1.1(1)N NG P S P K =-/cos G Φ

P NG ——发电机容量;为300MW 。 S N ——通过主变压器的容量。 Kp ——厂用电;Kp=8%。

cos G Φ——发电机的额定功率;cos ФG =0.875.

发电机的额定容量为300MW ,扣除厂用电后经过变压器的容量为:

S N =875

.0)08.01(3001.1-?=346.97MV A

3.由于设计理念中变压器直接与发电机相连,把电能送至330kV 电力系统中。故应选330kV 双绕组变压器。

综上,选择5台330kV 双绕组变压器,型号为SSP-360000/330 双绕组主变压器SSP-360000/330

六、短路电流计算 1.短路电流计算的目的

⑴ 在选择电气主接线是,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需要进行必要的短路电流计算。

⑵ 在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。

⑶ 在设计屋外高压配电装置时。需按短路条件校验软导线的相间和相对地的安全距离。

⑷ 在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。

2. 计算短路电流 过程见附录

3. 计算短路电流的方法

由于当变压器发生短路时,其余4台发电机也同时断开,故在计算短路电流时只单独计算单条输电线路的短路电流。

等值阻抗图为

七、电气设备选择

电气设备选择的原则:

1、应满足正常运行、检修、短路和过电压情况的要求,并考虑远景发展;

2、应按当地环境条件校核;

3、应力求技术先进和经济合理;

根据各电压等级和相应的短路电流计算结果,选择相应的电气设备。列表如下(具

各个电气设备的参数

八、设计总结

本次课程设计主要是对330kV水电站电气部分的一次设备进行设计。主要包括电气主接线的设计、厂用电设计、主变压器的选择、短路电流计算和电气设备的选择。

在这次课程设计的过程中,我和同组的几个同学一起查阅了相关资料,对课程设计的题目、要求和具体内容等做了讨论,并协力完成了此次设计。通过本次设计,我能够巩固所学的基本理论、专业知识,并综合运用所学知识来解决实际的工程问题,学习工程设计的基本技能和基本方法。

采用的电气主接线具有供电可靠、调度灵活、运行检修方便且具有经济性等特点。选择的电气设备能够提高运行的可靠性,节约运行成本。但由于设计时间较短,且经验不足,许多方面考虑不太全面,有待进一步改进。

总之,此次课程设计,使我能把在课堂上学习的理论知识应用到实践中,更好的发现了自己在学习中的不足之处。在设计中,通过查阅资料,咨询老师,解决了在设计中所遇到的一些问题。通过此次课程设计,我受益匪浅,学到了很多东西。

九、参考文献

1、西北电力设计院.电力工程设计手册.中国电力出版社

2、熊信银.发电厂电气部分. 中国电力出版社

3、黄纯华.发电厂电气部分课程设计参考资料. 中国电力出版社

4、李光琦.电力系统暂态分析(第三版).中国电力出版社

附录A 完整主接线

主接线另附图。

附录B 短路电流计算 一. 电抗计算

选取基容量为Sj=100MV A, Uj=Uav=1.05Ue

Sj ——基准容量(MV A )

Uj ——所在线路的平均额定电压)

注:均采用标幺值算法,省去“*”。

330KV 系统

15

11 12 13 14

6 7 8 9 10

1 2 3 4 5 G1 G2 G3 G4 G5

图3 电抗图

1.对于TS1264/160-48发电机电抗 X1 = X2 = X3 = X4 = X5 = Xd ’’φ583

.0"

cos /=?

N j d S S X

2.对于SSP-360000/330 双绕组变压器的电抗:

X6 = X7 = X8 = X9 = X10 = 0.14×

431.0345363360100022

=?

3.对于架空线的电抗

由于接入系统以90 ~ 240km 架空线路接入枢纽变电站,故选择100km ,电抗为0.4Ω/km

X11 = X12 = X13 = X14 = X15 =100×0.4×336.0345

1000

2

= 4.对于系统的电抗:

X15 =0.1285

二.当主变压器高压330kV 侧发生短路时的计算

由于当变压器发生短路时,其余4台发电机与变压器也同时断开,故在计算短路电流时只单独计算单条输电线路的短路电流。 将系统电抗图化简并计算

17 16 G3

选择G3发电机的那条线路计算,有

X 17 = X 15+X 13 = 0.1285+0.336=0.4645 X 16 = X 3+X 8 = 0.431+0.583=1.014

短路点短路电流的计算:

系统是在为无穷大容量系统:因此对于无限大容量系统:

j

j

j u S I 3=

1=∑E 所以0秒短路周期分量标幺值

*=X I 1''

16.24645.01'

'1==I

986.0014

.11'

'2==I

146.3''=I

0秒时的短路电流周期分量有效值,

KA I U S I I I j

j j Z 27.5146.3674.1146.3346

310003'''

'=?=??=

?=

?=由于 t=2.06s 。

所以不需要考虑短路电流非周期分量。 短路电流:I:Z I =5.27kA

短路冲击电流:I K i sh sh ?=2 =2×1.8×5.27=13.41kA

附录C

校验过程

一、 高压断路器的校验 1、高压断路器的校验 a 、 安装断路器地点的工作电压为330kV ,断路器的额定电压为330kV 。 即:U N et >=U N ,满足电压选择条件。 b 、由于变压器型号为SSP_360000/330型号。则N S =360000kV A ,N U =363kV

N

N NT U S I 3=

=573A

NT g I I 05.1max ==601A

所以,断路器的最大持续工作电流Igmax=601A ,断路器的额定电流

Net I =3150A 即:max g Net I I >=, 满足选择条件。

c 、 断路器的最大持续电流为Nk I =35kA ,其330kV 侧短路电流最大值的有效值

sh I =13.41kA ,即sh Nk I I >=,满足选择条件。 d 、短路情况下的热稳定校验

KW4—330型断路器在5s 内的热稳定电流te I =35KA ,其值大于电流I ‘’=5.27KA ,因此即使对于无限大电流供电系统来说,满足热稳定要求。 热稳定电流te I 是断路器能承受短路电流热效应的能力。按照国家标准规定,断路器通过热稳定电流在5s 时间内,温度不超过允许发热温度,且无触头溶解和妨碍其正常工作的现象,则认为断路器是热稳定的。

s KA I t /4900435222

=?= s KA t I s /21.5706.227.5222

=?=∞

由上式得:jx t t I t I 22∞>=满足条件

e 、 短路情况下动稳定校验

动稳定电流KA i et 100=短路冲击电流KA i sh 41.13= 即sh et i I >=满足动稳定条件

二、330KV 侧高压隔离开关的校验

1、安装隔离开关地点的的工作电压为330kV ,隔离开关的额定电压为330kV ,

即N Net U U >=满足电压选择条件。

2、通过隔离开关的最大持续工作电流Igmax=601A 小于隔离开关的额定电流

Net I =1500A ,即Net I max g I >=,满足电流条件。 3、短路情况下动稳定校验

动稳定电流I et =100KA ,短路冲击电流KA i sh 41.13=。 即sh et i I >=,满足动稳定条件。

三、

电流互感器校验

1、

热稳定校验:1s 允许通过热稳定电流I t =K t I 1N =50×1000=50000A

短路冲击电流sh i =13410A 。短路电流发热Q k =)(2

Np K t t I +∞ 即I et 满足热稳定。 2、动稳定校验:

电流互感器动稳定电流i es =1000A ×90=90kA 短路冲击电流

sh i =13.41kA ,即i os >=i sh 。满足动稳定

试论中小型水电站的电气二次设计

试论中小型水电站的电气二次设计 发表时间:2019-04-03T11:13:36.270Z 来源:《防护工程》2018年第35期作者:杨海东 [导读] 而中小型水电站中的电气二次设计对于整个水电站的运行的安全与稳定发挥着极为重要的作用。本文主要就中小型水电站的电气二次设计进行探讨。 摘要:随着社会经济的不断发展,人们生活水平的不断提高以及企业规模的不断扩大,人们在生产经营以及日常生活中的用电量逐渐增大。随着用电需求的不断扩大,就使得各种发电系统得到了较为快速的发展。在近些年间,水电站以其可再生、清洁无污染、运行成本低等诸多优点成为发电行业的新宠。而随着经济的发展以及能源的日益紧张,中小型水电站在近些年得到了广泛的重视和应用,而中小型水电站中的电气二次设计对于整个水电站的运行的安全与稳定发挥着极为重要的作用。本文主要就中小型水电站的电气二次设计进行探讨。 关键词:中小型水电站电气二次设计探讨? 中小型水电站是将流动的水能转化为电能的大型工程,它的主要运行原理是通过水库将从高处泄落的水引入水电站的引水系统中,用水的落差形成重力作用,从而形成动力,推动水电站系统中的机组正常运行,将水能转化为电能,并将电能输送至发电厂,为居民日常生活和企业生产经营提供电力资源使用。在水电站的电气设备中一般包括电气一次设备与电气二次设备,常见的电气二次设备主要包括计算机监控系统设备、机组继电保护系统设备、机组励磁系统设备、机组状态监测系统设备、高压系统保护及自动装置所组成的设备等等。电气二次设备在水电站的电气设计中作用极大,是保障水电站正常运行的基础,也是水电站电气设计中必不可少的重要组成部分[1]。? 1 计算机监控系统设计? 中小型水电站电气二次设备中的计算机监控系统主要是对其它运行的设备进行监控,并对监控结果作出相应的调节,能够有效维护设备的正常运行。一般中小型水电站中的计算机监控系统均采用符合国际开放系统标准的分层分布结构,采用计算机监控系统的主要目的就是为了减少工作人员的工作量,尽可能地减少值班人员。计算机监控系统分为电站终端控制级与现场控制级两层,采用100Mb/s光纤通过太网进行连接。电站终端控制级主要负责对其它运行设备进行终端监控,实时反馈信息,并对监控结果进行相应调节;现场控制机则负责对水轮发电机组、电气一次设备以及公用设备等进行现场实时监控和调节,当电站终端控制级出现故障时,现场控制级可以不受其影响,单独运行和调节。电气二次设备中对计算机监控系统的要求为,必须实行与调度、水情测试状况、泄洪闸门控制等系统的实时联系与通讯[2]。? 2 机组继电保护系统设计? 电气二次设备中的机组继电保护系统设备的功能主要是为了给水电站运行过程中一些其它的重要设备提供继电保护。受机组继电保护系统保护的设备主要有水轮发电机组、变压器、110kV线路、厂用变保护等设备,电气二次设计中的保护装置内部含有自检功能,能够有效检查出水电站运行过程中一些重要的设施设备是否受到了电磁的影响,并对受到电磁影响的设施设备进行相应地保护和调节。另外,在电气二次设计中在机组继电保护系统中设计了一个与计算机监控系统相连接的接口,可以实现机组继电保护系统与计算机监控系统的实时通讯。? 3 机组励磁系统设计? 在中小型水电站电气二次设计中,应该为每台发电机、每台主变压器、110 kV线路以及厂用变保护设备等配备一块交流采样电量综合测试仪,检测每个设备中的所有的电气量,从而确定是否应该为发电机的励磁电压、励磁电流等配备电量变送器。而每台发电机的有功功率、无功功率、单相定子电压、单相主变低压侧6.3kV母线电压、0.4kV厂用电母线电压、220V直流母线电压、UPS电源交流电压以及频率等是否需要分别配置电量变送器,是由发电机的实际需要来决定的。除此之外,为了给宏观监控提供方面以及为计算机监控系统准备备用设备,在中央控制系统中还应该配备少量的常规电测电子仪表,可以采用数字式仪表或者指针式的仪表,但为了更为精准地进行检测,数字电子仪表更为合适[3]。? 4 直流电源设计? 在中小型水电站电气二次设计中直流电源系统一般设计为220V的直流电源,对水电站中全部设备的电气保护、控制、操作、自动装置、事故照明等提供直流电源。为了加强水电站系统设备的防爆功能,在进行直流电源设计时,应同时设计出一组104只铅酸蓄电池的电池组,容量为200AH,电池组需要具备阀控、免维护、防爆等功能,还要设计一套充电装置。直流母线上为单母线,母线上挂一组铅酸蓄电池与一套充电装置,并配备微机绝缘检测装置以及蓄电池巡察装置。充电装置中一般采用微机控制高频开关整流模块,采用N+1冗余模式。? 5 交流电源设计? 中小型水电站中一般采用独立的一组10kVA的UPS交流电源装置,在此交流电源装置中不需要配备蓄电池。在水电站正常运行时,由交流220V的厂用电进行供电,在装置中要配置无触点旁路开关[4]。在UPS中某单元发生故障时,开关可以自动切换交流电源,而当交流电源中断时,可以无障碍地切换至直流电源,这样就能保证交流输出的不间断,从而保障水电站运行的安全与稳定。? 6 结语? 综上所述,中小型水电站中的电气二次设备对于整个水电站的安全、平稳运行发挥着极为重要的作用。在电气二次设计中的接线设计通常是对一次系统进行实时地检测、控制和保护,同时也对一次系统中的一次设备进行监测和保护,以保证一次设备的正常平稳运行。因此,在中小型水电站中应该加强对电气二次设计的重视程度,同时注重设计的科学性与合理性,提升电气二次设计水平,使其能够充分发挥保证水电站正常运行的作用,进一步提升水电站运行效益。? 参考文献:? [1] 王成明,邓鹏,朱冠廷.缅甸道耶坎水电站电气二次设计[J].人民长江,2013(S2):71-73+113.? [2] 朱冠廷,黄天东,陈吉祥,邹来勇.湖北三里坪水电站电气二次设计[J].人民长江,2013(20):68-71.? [3] 周业荣,严映峰,宋柯,刘立春,王蓓蓓.瀑布沟水电站电气二次系统总体设计介绍[J].水电站机电技术,2014(06):28-32+35.?

某水电站电气主接线设计毕业设计(论文)word格式

前言 电力系统是由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。 一、主接线的设计原则和要求 主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。因此,主接线的设计是一个综合性的问题。必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。 Ⅰ. 电气主接线的设计原则 电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。 1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:

中型水力发电厂电气部分初步设计

专业 班级 学生姓名 指导教师 课程设计任务书

目录 1.前言 (2)

1.1.变电站设计原则………………………………………………(2 1.2.对电气主接线的基本要求………………………………………) 2 1.3.主接线的设计依据……………………………………………(3 1.4.设计题目 (3) 1.5.设计内容 (3) 2.课程设计的任务要求 (4) 2.1.原始资料分析 (4) 2.2.主接线方案的拟定 (5) 2.3. 厂用电的设计…………………………………………() 8 2.4.1.发电机的选择及参数…………………………………() 8 2.4.2.变压器的选择及参数…………………………………() 9 2.4. 3.厂用变的选择及参数…………………………()9 2.5.短路电流计算………………………………()10 2.6.主要电气设备的选择…………………………()11 2.7.配电装置的选择……………………………()13 3.设计总结 (15) 参考文献 (15) 附录A………………………………………………………() 16 附录B……………………………………………………() 17 附录C……………………………………………………………() 22

1.前言 变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。 1.1变电站设计原则 1. 必须严格遵守国家的法律、法规、标准和规范,执行国家经济建设的方针、政策和基本建设程序,特别是应贯彻执行提高综合经济效益和促进技术进步的方针。 2.必须从全局出发,按照负荷的等级、用电容量、工程特点和地区供电规划统筹规划,合理确定整体设计方案。 3.应做到供电可靠、保证人身和设备安全。要求供电电能质量合格、优质、技术先进和经济合理。设计应采用符合国家现行标准的效率高、能耗低、性能先进的设备。 1.2.对电气主接线的基本要求 变电站的电气主接线应满足供电可靠、调度灵活、运行,检修方便且具有经济性和扩建的可能性等基本要求。 1.供电可靠性:如何保证可靠地(不断地)向用户供给符合质量的电能是发电厂和变电站的首要任务,尽量避免发电厂、变电所全部停运的可能性。防止系统因为某设备出现故障而导致系统解裂,这是第一个基本要求。 2.灵活性:其含义是电气主接线能适应各种运行方式(包括正常、事故和检修运行方式)并能方便地通过操作实现运行方式的变换而且在基本一回路检修时,不影响其他回路继续运行,灵活性还应包括将来扩建的可能性。

中型发电厂电气主接线设计

电气主接线设计 1.1对原始资料的分析 设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。 从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW 发电机的机端电压相等,采用直馈线为宜。300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。 1.2主接线方案的拟定 在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。 发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下: (1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。由于两台100MW机组均接于10.5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。 (2)110kV电压级:出线回数大于4回,为保证检修出线断路器不致对该回路停电,采取双母线带旁路母线接线形式,以保证其供电的可靠性和灵活性。 (3)220kV电压级:出线4回,考虑现在断路器免维护减小投资,采用双母线分段接线。通过两台三绕组变压器联系10.5kV及110kV电压,以提高可靠性。2台300MW机组与变压器组成单元接线,直 页脚内容2

小型水电站设计2×15MW的水力发电机组

; 小型水电站设计2×15MW的水力发电机组

目录 一选题背景 (3) 原始资料 (3) 设计任务 (3) 二电气主接线设计 (3) 对原始资料的分析计算 (3) 电气主接线设计依据 (4) 主接线设计的一般步骤 (4) 技术经济比较 (4) 发电机电侧电压(主)接线方案 (4) 主接线方案拟定 (4) 三变压器的选择 (7) 3. 1主变压器的选择 (7) 相数的选择 (7) 绕组数量和连接方式的选择 (7) 厂用变压器的选择 (8) 四.短路电流的计算 (9) 电路简化图8: (9) 计算各元件的标么值 (10) 短路电流计算 (11) d1点短路电流计算 (11) d2点短路 (13) 五电气设备选择及校验 (15) 电气设备选择的一般规定 (15) 按正常工作条件选择 (15) 按短路条件校验 (16) 导体、电缆的选择和校验 (16) 断路器和隔离开关的选择和校验 (17) 限流电抗器的选择和校验 (17)

电流、电压互感器的选择和校验 (18) 避雷器的选择和校验 (18) 避雷器的选择 (18) 本水电站接地网的布置 (19) 六.设计体会 (19) 附录 (20) 参考文献 (22)

一选题背景 原始资料 (1)、待设计发电厂为水力发电厂;发电厂一次设计并建成,计划安装2×15MW的水力发电机组,利用小时数4000小时/年; (2)、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; (3)、电力系统的总装机容量为600MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; (4)、低压负荷:厂用负荷(厂用电率)%; (5)、高压负荷:110kV电压级,出线4回, Ⅲ级负荷,最大输送容量60MW,cosφ=; (6)、环境条件:海拔<1000m;本地区污秽等级2级;地震裂度<7级;最高气温36℃;最低温度-℃;年平均温度18℃;最热月平均地下温度20℃;年平均雷电日T=56日/年;其他条件不限。 设计任务 (1)、根据对原始资料的分析和本变电所的性质及其在电力系统中的地位,拟定本水电站的电气主接线方案。经过技术经济比较,确定推荐方案。 (2)、选择变压器台数、容量及型式。 (3)、进行短路电流计算。 (4)、导体和电气主设备(各电压等级断路器、隔离开关、母线、电流互感器、电压互感器、电抗器(如有必要则选)、避雷器)的选择和校验。 (5)、厂用电接线设计。 (6)、绘制电气主接线图。 二电气主接线设计 对原始资料的分析计算 为使发电厂的变压器主接线的选择准确,我们原始资料对分析计算如下; 根据原始资料中的最大有功及功率因数,算出最大无功,可得出以下数据

水电站电气部分设计说明

题目:水电站电气部分设计

容摘要 电力的发展对一个国家的发展至关重要,现今300MW及其以上的大型机组已广泛采用,为了顺应其发展,也为了有效的满足可靠性、灵活性、及经济性的要求,本设计采用了目前我国应用最广泛的发电机—变压器组单元接线,主接线型式为双母线接线,在我国已具有较多的运行经验。设备的选择更多地考虑了新型设备的选择,让新技术更好的服务于我国的电力企业。并采用适宜的设备配置及可靠的保护配置,具有较好的实用性,能满足供电可靠性的要求。 关键词:电气主接线;水电站;短路电流;

目录 容摘要 .............................................................. I 1 绪论 . (1) 1.1 水电站的发展现状与趋势 (1) 1.2 水电站的研究背景 (1) 1.3 本次论文的主要工作 (2) 2 电气设计的主要容 (3) 2.1 变电所的总体分析及主变选择 (3) 2.2 电气主接线的选择 (4) 2.3 短路电流计算 (4) 2.4 电气设备选择 (10) 2.5 高压配电装置的设计 (19) 3 变电所的总体分析及主变选择 (21) 3.1 变电所的总体情况分析 (21) 3.2 主变压器容量的选择 (21) 3.3 主变压器台数的选择 (21) 3.4 发电机—变压器组保护配置 (22) 4 电气主接线设计 (24) 4.1 引言 (24) 4.2 电气主接线设计的原则和基本要求 (24) 4.3 电气主接线设计说明 (25) 5 短路电流计算 (27) 5.1 短路计算的目的 (27) 5.2 变电所短路短路电流计算 (27) 6 结论 (30) 参考文献 (31)

发电厂电气部分初步设计

发电厂电气部分初步设计

188发电厂电气部分初步设计任务书 一、毕业设计的目的 电能有许多的优点,随着电力工业和国民经济的可持续发展,电力已成为国民经济建设中不可缺少的动力,并广泛应用于一切生产和日常生活方面。而电力的安全运行则是电力生产过程中的重中之重,本次设计主要考察学生对电站方面的认识,通过对可能问题的分析来加深学生对电站的理解和应用以及其在电力系统中的作用。 二、主要设计内容 1.电气主接线及高压厂用电接线设计; 2.短路电流计算及主要电气设备选择; 3.配电装置设计; 4.发电机、变压器、输电线路的保护配置设计; 5.发电机保护设计; 6.发电机保护整定计算。 三、重点研究问题 1、电气主接线及高压厂用电接线设计; 2、短路电流计算及主要电气设备选择; 3、配电装置设计。 四、主要技术指标或主要设计参数 本电厂拟采用1条110KV输电线路(厂系线)直接与系统联系;另一条110KV输电线路(厂甲线)经过变电站甲与系统构成环网。该电厂还以双回110KV线路(厂乙线I、厂乙线II)向变电站乙供电。甲、乙变电站的主要用户是煤矿、化肥厂、钢铁厂及一些乡镇工业、农副产品加工业、农业、居民生活用电等。

电厂装机容量 2×65MW+2×75MW,其中:QF 2 -65-2-10.5型2台,QFQ-75-2-10.5型2台。厂用电率:65MW机组取8%,75MW机组取8%。 五、设计成果要求 1. 完成电站电气主接线方案设计,并确定主变压器的台数和型号; 2. 根据设计资料计算短路电流; 3. 选择设计站110KV高压电气设备并进行动、热稳定计算; 4. 主变压器保护的配置; 5. 设计说明书、计算书一份;5. CAD绘制电气主接线图、开关站平面布置图、发电机保护原理接线图及展开图、10KV配电室平面布置图。 六、其他 负荷资料表 电压线路名称最大功率cosφ距离(km)Tmax(h/y) 其它 110KV 厂系线100 联络线厂甲线35MW 0.8 20 5100 东北方厂乙线40MW 0.8 90 5100 西方 10KV 棉I厂线2400KW 0.8 2 5500 棉II厂线2250KW 0.8 2 5500 钢铁厂线2230KW 0.8 4 4000 印染厂I线6100KW 0.8 3 52300 印染厂II 线 5150KW 0.8 3 5230 市区I线7500KW 0.8 4 4300 市区II线7340KW 0.8 8 4300 市区III线8370KW 0.8 10 3500 市区IV线6820KW 0.8 10 3500 备用I线6250KW

小型水电站电气设计

毕业设计 Graduation practice achievement 设计项目名称小型水电站电气设计

目录 设计计算书 第一章电气一次部分设计 1、电气主接线方案比较 (1) 2、主变压器容量选择 (3) 3、电气一次短路电流计算 (4) 4、高压电气设备的选择和校验 (13) 第二章厂用电系统设计 1、厂用变压器选择 (29) 2、厂用主要电气设备选择 (29) 第三章继电保护设计 1、继电保护方案 (32) 2、电气二次短路电流计算 (33) 3、继电保护整定计算 (37)

第一章电气一次部分设计 1、电气主接线方案比较 方案一:3台发电机共用一根母线,采用单母线接线不分段; 设置一台变压器,其容量为12000KVA; 方案二:1、2号发电机采用单母线接线;3号发电机-变压器单元接线; 设置了2台变压器,其容量分别为8000KVA、4000KVA; 35KV线路采用单母线接线不分段。

电气主接线方案比较: (1)供电可靠性 方案一供电可靠性较差; 方案二供电可靠性较好。 (2)运行上的安全和灵活性 方案一母线或母线侧隔离开关故障或检修时,整个配电装置必须退出运行,而任何一个断路器检修时,其所在回路也必须退出运行,灵活性也较差; 方案二单母线接线与发电机-变压器单元接线相配合,使供电可靠性大大提高,提高了运行的灵活性。 (3)接线简单、维护和检修方便 很显然方案一最简单、维护和检修方便。 (4)经济方面的比较 方案一最经济。 各种方案选用设备元件数量及供电性能列表:

综合比较:选方案二最合适。 经过综合比较上述方案,本阶段选用方案二作为推荐方案,接线见“电气主接线图”。 2、 变压器容量及型号的确定: 1、1T S =θCOS P ∑=KVA 80008 .032002=? 经查表选择SF7-8000/35型号,其主要技术参数如下: 2、KVA COS P S T 40008 .032002===∑θ 经查表选择SL7-4000/35型号, 其主要技术参数如下:

发电厂电气设计

发电厂电气部分课程设计 题目:220KV/35KV黄埠变电站一次系统设计学院:自动化工程学院 专业:电气工程及其自动化 姓名: 指导教师: 2011年9 月14 日

设计题目:220KV/35KV黄埠变电站一次系统设计 原始资料: (1)220KV进线2回。分别从主系统220KV双母线接线带旁路上引接;35KV 出线10回供给下级变电站。 (2)工程建设规模:主变压器两台,容量均为63MV A,年最大负荷利用小时数均为6000h,电压等级220KV/35KV。 (3)系统短路容量:两台主变压器分裂运行时,220KV母线三相最大短路容量为6137.35MV A,短路电流16.38KA;35KV母线三相最大短路容量为936.15MV A,短路电流15.44KA。 设计要求 1.为该变电站设计出电气主接线图。 2.选择主变压器型号。 3.选择变压器出口断路器和隔离开关(220KV)。 4.利用经济电流密度选择变压器出口母线。 5.选择35KV出口断路器和隔离开关。 6.选择电压互感器和电流互感器型号。

接线图

各部分设计 (1) 变压器 根据两台主变压器的容量和变比,根据华鹏变压器厂提供的产品样本 选择S (F )(P )Z11-63000,额定电压为220±8×1.25%/35KV ,联结组标号为YNd11的变压器。 (2) 变压器出口断路器和隔离开关 变压器出口(220KV 侧)最大持续电流为 A U S N N ax 6.173220 *363000*05.1305.1I m == = 根据变压器出口的U NS 、I max ,根据《发电厂电气部分》附表6,可选

[施工图][浙江]600MW大型发电厂电气初步设计图 D-45 厂用接线专题

初步设计 电气部分 高压厂用电方案研究 初步设计 电气部分 高压厂用电方案研究

批准:审核:校核:编制:

目录 1、本工程的基本特点 2、6kV厂用电接线方式 2.1 影响厂用电接线的几个主要因素2.1.1 高压厂变调压方式 2.1.2 脱硫辅机电源的接线方式 2.1.3 6kV输煤段的设置 2.2 主厂房6kV厂用电原则接线方案 2.3 事故保安电源接线 3 厂用电系统中性点的接地方式

1 本工程的基本特点 a)4台60万机组一起设计。 b)主接线方案在前一阶段中已经确定采用发电机设出口断路器。 c)每台机组按单元设FGD脱硫系统。脱硫系统为单套辅机方案。 d)汽机房经优化以后,留给6kV配电装置的空间受到限制,每台机组只有一跨。 e)由于本工程为超临界机组,汽机锅炉附机的电动机容量比亚临界大很多,而电动给水泵则达到9100KW。 e)运煤系统采用铁路运输,运煤工艺有明确的双路皮带同时运行要求,尤其是卸煤系统。当一路皮带失去电源时,即可能造成压车。因此,必须考虑双路电源皆能同时可靠供电。 2 6kV厂用电接线方式 2.1 影响厂用电接线的几个主要因素 2.1.1 高压厂变调压方式 发电机设有出口断路器,机组通过高压厂变直接启动,备变仅为停机备用。主变22kV侧最大电压波动已达88%-105%,因此主变或高压厂变必须采用带负荷调压方式。 在主变或高压厂变二种带负荷调压方式中,本工程采用高压厂变带负荷调压方式。此方式具有下列优点: 1、投资相近,但更有利于6kV厂用母线的电压稳定。采用+8?1.25%/-10?1.25%有载调压开关后,6kV厂用母线正常电压波动很容易稳定在±5%以内。而主变带负荷调压方式理论上只能保证主变低压侧(22kV)的电压稳定,不能抵消厂用母线上因厂用电负荷潮流变化引起的电压波动。

2×100MW发电厂电气部分设计毕业设计

2×100MW发电厂电气部分设计毕业设计 引言 随着高速发展的现代社会,电力工业在国民经济中的作用已为人所共知,它不仅全面的影响国民经济其他部门的发展,同时也极大的影响人民的物质与文化水平的提高,影响整个社会的进步,其中发电厂在电力系统中起着重要的作用.我国正在飞速发展,经济快速的增长使得对电能的需求量在不断提高,各类发电厂的数量随之而增加,特别是火力发电厂依然十分重要。 我本次设计的题目为“2 100MW发电厂电气部分设计”,设计的主要内容为:确定电气主接线图;选择主变压器的型号;对主接线上的短路点进行短路电流计算;设备选型及校验;发电机保护整定计算;防雷接地计算;屋外配置设计。 在佈仁图老师的认真辅导下使我在此次的毕业设计中对发电厂等方面的知识有了更多的了解,真是受益匪浅.

第一章绪论 随着我国经济发展速度的不断加快,特别是伴随西部大开发和振兴东北老工业基地的力度加大,我国的电力需求猛增。为了提高国家电力工业的效益,促进相关工业的技术水平的提高,增加新的经济增长点。近期的重点是:发展大容量、高效低污染的常规火电机组,积极开发洁净煤发电新技术,解决提高燃煤发电机组的效率和改善环境污染两大关键问题;开发水电站老机组的改造技术,提高机组效益和对水利资源的的效利用;加强电网关键技术的开发研究,积极推进跨大区电网互联,优化资源配置,建立有效电力市场体系;大力开发和推广节能降耗技术,加速对中小机组、老机组、城市和农村电网的技术改造,降低损耗,提高效益。 我国电力的发展将朝向“大机组、超高压、大电网、新能源”方向发展。 火力发电中的主要环节是热能的传递和转换,将初参数提高到超临界状态,提高了可用能的品位。使热能转换效率提高,这是大容量火电机组提高效率的主要方向。与同容量亚临界火电机组比较,超临界机组可提高效率2-2.5%,超临界机组可提高效率约5%。大型超临界机组的开发与应用,可以有效的改变我国电力工业目前能耗高和环境污染及依赖进口设备的局面,具有现实的经济、社会效益。 由于空冷电站的耗水量仅为湿冷电站的1/3,适合于我国富煤缺水的“三北”地区建设大型坑口电站,变输煤为输电。对减轻铁路运煤压力、促进“三北”及相邻地区的经济发展具有非常重要的现实意义。 设计为(2 100)MW发电厂电气部分设计,要任务是电气主接线,厂用电设计、短路计算、主要设备的选择和校验、防雷与接地装置设计、发电机保护的整定计算、配电装置设计。技术要求主接线可靠、灵活、经济、便于扩建。所有设计过程均需要考虑国家电力部门的技术规程和规范。

发电厂电气部分课程设计

发电厂电气部分课程设计设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1.对原始资料的分析 2.主接线方案的拟定(至少两个方案) 3.变压器台数和容量的选择 4.所选方案的经济比较 5.主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2~3天:分析原始资料,拟定主接线方案 第4天:选择主变压器的台数和容量,对方案进行经济比较 第5~6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1.按照设计计划按时完成 2.设计成果包括:设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 指导教师: 教研室主任: 时间:

发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。 发电厂一次接线,即发电厂电气主接线。其代表了发电厂高电压、大电流的电气部分主体结构,是电力系统网络结构的重要组成部分。它直接影响电力生产运行的可靠性与灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面有决定性的关系。 本设计是对配有2?50MW供热式机组,2?600MW凝汽式机组的的大型火力发电厂电气主接线的设计,包括对原始资料的分析、主接线方案的拟定、变压器台数和容量的选择、方案的经济比较、主接线最终方案的确定。 关键词:火力发电厂;电气主接线

毕业设计-小型水电站电气部分设计

毕业设计成果 Graduation practice achievement 设计项目名称110KV变电站初步设计

序 毕业设计是我们完成大学学习的最后一次总结与学习的机会,是对我们所学各门功课的综合运用与提高。通过这次毕业设计,巩固与加深了我们所学的理论专业知识,锻炼了我们分析与解决实际工程问题的能力培养和提高了我们综合实用技术规范,技术资料和进行有关计算,设计和绘图,编写技术文件的初步技能,为今后的工作和学习打下坚实的基础。 这次的毕业设计是由仇新艳老师带领的,在设计期间老师和我们共同讨论,一起学习,对我的启发良多。对此我很感谢仇老师的耐心指导,尤其是仇老师碰到问题时那积极解决问题的态度很值得我学习。 最后我还要感谢我们这组同学,在设计期间,大部分都是经过我们的仔细讨论我才解决了我的一些疑惑。通过短路电流的计算,教会了我对于高压电气的具体选型及校验方法;对于在设计过电压防护中我学会了如何来确定避雷针的高度;对于厂用变压器的选择,我也有了很深刻的认识。以上种种问题的解决,才使我的毕业设计最后能按时的完成,对此我很感谢。 这期间我查阅了大量的资料,极大的锻炼了我搜集资料和分析资料的能力,为我以后的就业提供了很大的帮助。最后我很感谢学院的领导和老师们对我这三年的教育和关怀。

目录 序 第一章原始资料 (4) 1.1水能资料 (4) 1.2 电力系统资料 (4) 第二章电气主接线设计 (6) 2.1 电气主接线设计概述 (6) 2.2 主接线方案的选择 (7) 第三章短路电流计算 (9) 3.1 短路电流计算的目的 (9) 3.2 短路电流计算的一般规定 (9) 3.3 短路电流计算的内容 (9) 3.4 短路电流计算方法 (10) 3.5 短路电流的计算 (10) 第四章厂用电的设计 (23) 4.1 厂用电设计的基本要求 (23) 4.2 水电站厂用电的特点 (23) 4.3 统计原则及计算分析过程 (23) 4.4 厂用电气的选择 (26) 4.5校验 (27) 第五章电气设备的选择及校验 (28) 5.1 35KV断路器选择与校验 (28) 5.2 35KV隔离开关选择与校验 (29) 5.3 35KV电流互感器选择与校验 (30) 5.4 35KV电压互感器选择与校验 (31) 5.5 熔断器的选择与校验 (32) 5.6 避雷器的选择 (33) 5.7 母线的选择 (33) 5.8 6.3KV开关柜及电气设备的选择 (34) 第六章过电压保护 (37) 6.1 造成水电站事故的原因 (37) 6.2 感应雷和雷电侵入波的防护 (37) 6.3 直击雷的防护 (37) 参考文献 (39) 附图

水电厂设计

目录 一、题目 二、原始资料 三、水电站电气部分研究的背景 四、电气主接线的设计 1)、电气主接线须满足以下要求2)、主接线方案的拟定 3)、方案比较 五、导线的初步选择和变压器的选择 1)、与系统相连45km导线的选择 2)、变压器的选择 六、短路电流计算 七、电气一次设备的选择计算 1)、母线的选择 2)、110kV母线的选择 3)、断路器和隔离开关的选则 八、发电机机端电缆的选择 九、参考文献

一、题目:2×15MW水力发电厂电气一次部分设计 二、原始资料: 1、待设计发电厂类型:水力发电厂; 2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年。 3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回; 4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为,基准容量Sj=100MVA; 5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。 6、低压负荷:厂用负荷(厂用电率) %; 7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = ; 8、环境条件:海拔 < 1000m;本地区污秽等级 2 级;地震裂度< 7 级;

最高气温 36°C;最低温度?°C;年平均温度18°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。 三、水电站电气部分研究的背景 地方中小型水电站的电气主接线选择,以及一次设备和二次设备的选择等等,应本着具体问题具体分析的原则,根据变电站在电力系统中的地位和作用、负荷性质、出线回路数、设备特点、周围环境及变电站规划容量等条件和具体情况,在满足供电可靠性、功能性、具有一定灵活性、还拥有一定发展裕度的前提下,尽量选择经济、简便实用的电气主接线以及一次设备和二次设备。如终端变电站,我们可根据其进线回路数较少的特点,选择线路变压器组接线,或者是桥型接线;中间变电站,我们可根据其交换系统功率和降压分配功率的双重功能的特点,选择单母线接线、单母线分段、单母线带旁路接线等形式。总之,电力网络的复杂性和多样性决定了我们不能教条地选择电站的电气主接线、一次设备、二次设备等等,要具体问题具体分析,选择具有自己特色的电气主接线和设备。 发电厂电气主接线的论证,电气一次设备及二次设备的选择,厂房、配电装置布置,自动装置选择和控制方式对电厂设计的安全性及经济性起着重要作用。同时对电力系统运行的可靠性,灵活性和经济性起决定性作用。 四、电气主接线的设计 1)、电气主接线须满足以下要求: 1、根据发电厂、变电站在电力系统中的地位、作用和用户性质,保证必要的供电可靠性和电能质量的要求。 2、应力求接线简单、运行灵活和操作简便。 3、保证运行、维护和检修的安全和方便。 4、应尽量降低投资,节省运行费用。 5、满足扩建的要求,实现分期过渡。 2)、主接线方案的拟定 方案一:低压侧母线采用单母线,高压侧采用单母线分段,如图一所示。 方案二:低压侧采用单母线,高压侧采用双母线分段,如图二所示。

火电厂电气部分设计

发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

课程设计标准评分模板课程设计成绩评定表

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1. 对原始资料的分析 2. 主接线方案的拟定 3. 方案的经济比较 4. 主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2 ~ 3天:分析原始资料,拟定主接线方案 第4天:方案的经济比较 第5 ~ 6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1. 设计必须按照设计计划按时完成 2. 设计成果包括设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 3. 答辩时本人务必到场 指导教师: 教研室主任: 时间:2013年1月13日

设计原始数据及主要内容 一、原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 10.5kV),凝汽式机组2 ? 300MW(U N = 15.75kV),厂用电率6%,机组年利用小时T max = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷23.93MW,最小负荷18.93MW,cos?= 0.8,电缆馈线10回; (2) 220kV电压级最大负荷253.93MW,最小负荷203.93MW,cos?= 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MV A),500kV架空线4回,备用线1回。 二、主要内容 1. 对原始资料的分析 2. 主接线方案的拟定 (1) 10kV电压级 (2) 220kV电压级 (3) 500kV电压级 3. 方案的经济比较 (1) 计算一次投资 (2) 计算年运行费 4. 主接线最终方案的确定

2×600MW火电厂电气部分设计

学业作品题目:2×600MW火电厂电气部分设计 学院:机电学院 班级:电力201301班 姓名:李超 学号:201308011107 指导老师:姜永豪 完成日期年月日

目录 摘要........................................................ III III第一章前言. (1) 1.1 电力工业的发展概况 (1) 1.2 本次课设的主要问题及应达到的技术要求 (1) 第二章电气主接线设计 (2) 2.1 对原始资料的分析 (2) 2.2 主接线方案 (3) 2.3比较并确定主接线方案 (3) 第三章变压器的选择 (5) 3.1 主变压器选择 (5) 3.2 短路电流分析计算 (6) 3.3 短路电流计算目的及规则................. 错误!未定义书签。 3.4短路等值电抗电路 (7) 3.5各短路点短路电流计算 (8) 第四章电气设备的选择 (12) 4.1电气设备选择概述 (12) 4.2电气设备选择的一般原则及校验内容 (12) 4.3 断路器和隔离开关的选择 (12) 4.4母线、电缆的选择 (16) 4.5发电机出口处电抗器选择 (17) 第五章配电装置 (12) 5.1屋内配电装置 (12) 5.2屋外配电装置 (12) 第六章防雷设计 (12) 致谢 (19) 结论 (19) 参考文献 (19)

摘要 火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。 “十五”期间我国火电建设项目发展迅猛。2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168546MW,同比增长420%。随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。 关键词:火力发电;火电厂;电气部分设计

中小型水电站电气部分初步设计毕业设计论文

郑州电力职业技术学院 学生毕业论文 论文题目:中小型水电站电气部分初步设计 院系:电力工程系 年级: 2011级 专业:发电厂及电力设备 摘要 本篇毕业设计主要是对某水电站电气部分的设计,包括主接线方案的设计,主要设备选择,短路电流计算,电气一次设备的选择计算。通过对

水电站的主接线设计,主接线方案论证,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于毕业设计的具体要求和设计时间的限制,本毕业设计主要完成了对水电站电气主接线设计及论证,短路电流计算,电气一次设备的选择计算,电气设备动、热稳定校验、电气设备型号及参数的确定做了较为详细的理论设计,而对其他方面分析较少,这有待于在今后的学习和工作中继续进行研究。 关键词 电气主接线;短路电流;电气一次设备。

目录 摘要 ..........................................................I Abstract ...................................... 错误!未定义书签。 第1章前言 (1) 1.1设计题目 (1) 1.2水电站电气部分研究的背景 (2) 1.3本课题的研究意义 (2) 1.3.1 电站电气主接线的论证意义 (2) 1.3.2 电气一次设备和二次设备选择及计算的意义 (3) 1.3.3 短路电流计算的意义 (3) 1.3.4 本课题研究的现实意义 (3) 1.4本课题的来源 (4) 1.5论文设计的主要内容 (4) 第2章主接线方案确定 (5) 2.1电气主接线释名 (5) 2.2主接线方案的拟定 (5) 2.2.1 方案一 (5) 2.2.2 方案二 (6) 2.2.3 方案三 (6) 2.2.4 方案比较说明 (7)

相关主题
文本预览
相关文档 最新文档