当前位置:文档之家› 有关圆锥曲线弦切线问题

有关圆锥曲线弦切线问题

有关圆锥曲线弦切线问题
有关圆锥曲线弦切线问题

关于圆锥曲线的弦切线问题

武汉市青山区第四十九中学 李清华

联系电话;67119386

在华中师范大学继续教育学院参加了为期5天的新教材的培训,听了张景中院士的超级画板与高中数学课程的整合的报告,学习了郭熙汉、徐学文教授对高中新教材的解读及几个特级教师精彩的报告。同时听了彭树德老师的一节公开课。受益非浅。在讲解中田化谰老师、刘运新老师、朱运才老师都讲到一个解析

几何问题,即设点00(,)P x y 在直线2

p

x -=上,过点P 作抛物线)0(22>=p px y 的

两条切线PA PB 、,切点为A 、B ,求证直线AB 过定点)0,2(P

M 。此结论可以推

广为设点00(,)P x y 在直线(,01)x m y m m =≠±<<上,过点P 作双曲线221

x y -=的两条切线PA PB 、,切点为A 、B ,求证直线AB 过定点1

(

,0)M m

.这类题是关于圆锥曲线的弦切线问题,它把代数和解析几何有效的结合起来,它是近几年高考的热点。如何处理这样的问题?而且还可以推广到其他圆锥曲线,并且还可以推广到更一般的情形。下面介绍关于圆锥曲线的弦切线有两个结论。 结论一;直线与圆锥曲线无交点过直线上任意一点作他的切线切点弦所在的直线恒过一定点 结论二;圆锥曲线过一定点的弦与圆锥曲线有两个交点过两交点的切线的交点的轨迹是一条直线

证明结论一,以椭圆为例直线Ax+By+C=0(A ?B ≠0)与椭圆)

0(122

22>>=+b a b

y a x 相离,点M (x 0,y 0)是直线上的任意一点,过M 点作椭圆的切线,切点分别为点P (x 1,y 1)、Q (x 2,y 2)过P 、Q 的切线为

1,122222121=+=+b

yy a xx b yy a xx 且000=++C By Ax 又两切线过M 点所以

1,122

022*******=+=+b

y y a x x b y y a x x 所以直线

120

20=+b

yy a xx (1) 是切点弦所在的直线方程又x 0,y 0满足000=++C By Ax (2)

若A ≠0时,则将(2)代人(1)得直线PQ 恒过点(C

Bb C Aa 2

2,--)(C ≠0)

其它的圆锥曲线同样证明。

证明结论二,以椭圆为例椭圆)0(122

22>>=+b a b

y a x ,点M (x 0,y 0)(不是椭

圆的中心)是椭圆内的任意一点,过M 点作椭圆的弦PQ ,过P 、Q 作椭圆的切线两切线有交点为N (x ',y ')点,设切点的坐标分别为P (x 1,y 1)、Q (x 2,y 2)过P 、Q 的切线为1,122222121=+=+b

yy a xx b yy a xx 则

1'

'22=+b

yy a xx 表示过P 、Q 的直线,又点M 在直线PQ 上 所以有

1''2020=+b y y a x x 故1''20

20=+b

y y a x x 就是所求的轨迹方程 即为

120

20=+b

yy a xx 而方程

120

20=+b

yy a xx 表示一条直线 同理可证明其他圆锥曲线仍有此结论

下面看两道题 例1、

例2.(08江西卷21).(本小题满分12分)

设点00(,)P x y 在直线(,01)x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A 、B ,定点1

(,0)M m

. (1)求证:三点A M B 、、共线。

(2)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN ?的重心G 所在曲线方程.

证明:解法一(1)设1122(,),(,)A x y B x y ,由已知得到120y y ≠,且22111x y -=,

22221x y -=,

设切线PA 的方程为:11()y y k x x -=-由1122

()

1y y k x x x y -=-??-=?得

2221111(1)2()()10k x k y kx x y kx ------=

从而2222211114()4(1)()4(1)0k y kx k y kx k ?=-+--+-=,解得1

1

x k y = 因此PA 的方程为:111y y x x =- 同理PB 的方程为:221y y x x =-

又0(,)P m y 在PA PB 、上,所以1011y y mx =-,2021y y mx =- 即点1122(,),(,)A x y B x y 都在直线01y y mx =-上

又1

(

,0)M m

也在直线01y y mx =-上,所以三点A M B 、、共线 法二; 若用上面的结论,马上可以得到直线恒过一定点M 。尽管高考不能用这个结论做题,但这个结论的推导方法是较容易推导出结论的。

(2)垂线AN 的方程为:11y y x x -=-+,

由110y y x x x y -=-+??-=?得垂足1111(,)22x y x y N ++,

设重心(,)G x y

所以111111

11()321(0)32x y x x m x y y y +?=++???+?=++?? 解得113934

1934

x y m x y x m y ?

--?=????-+?=

??

由22111x y -= 可得11(33)(33)2x y x y m m --+-=即2212

()39

x y m -

-=为重心G 所在曲线方程。

高中数学-圆锥曲线有关焦点弦的几个公式及应用.

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在 直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以 。

图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得,所以 ,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?u u u r u u u r u u u r 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?u u u r u u u r u u u r u u u r 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

圆锥曲线焦点弦问题

圆锥曲线焦点弦问题

θ2222 sin 2c a ab - 高考题:1.过抛物线)0(22 >=p py x 的焦点F 作倾斜角为300的直线与抛物线交于A 、B 两点(点A 在y 轴左侧),则 =FB AF 解:由公式:11cos +-= λλθe 得:11-21+=λλ,解得λ=3,∴=FB AF 3 1 2.双曲线122 22=-b y a x ,AB 过右焦点F 交双曲线与A 、B ,若直线AB 的斜率为3, 4=则双曲线的离心率e= 解:∵由已知tan θ=3∴θ=600, 由公式:11cos +-= λλθe 得:e 11-21+=λλ=1 41 -4+ ∴ e= 5 6 3.(2010高考全国卷)已知椭圆C :12222=+b y a x (a>b>0),离心率23 =e ,过右焦点且 斜率为k (k>0)的直线与C 相交于A 、B 两点,若3=,则k=( B )

A 、1 B 、2 C 、3 D 、2 解:由公式:11 cos +-= λλθe 得cos θ=3 1∴ k=tan θ=2;故选B 。 4.2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为 ,过 且斜率为的直线交 于 两点。若 ,则 的离心率为( ) 解 这里,所以,又,代入公式得,所 以 ,故选。 5.(08高考江西)过抛物线的焦点作倾斜角为的直线,与抛物 线交于 两点(点在轴左侧),则有____ 图3 解 如图3,由题意知直线 与抛物线的地称轴的夹角 ,当点 在 轴左侧时, 设,又,代入公式得,解得,所以。

6.(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 7.已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。8.(2009年高考福建)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___ 解由抛物线焦点弦的弦长公式为得,,解得。 11.(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___ 解易知均在右支上,因为,离心率,点准距 ,因倾斜角为,所以。由焦半径公式得, 。

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

圆锥曲线中弦长问题的解决策略

圆锥曲线中弦长问题的解决策略 张秀梅 张建强 弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式 a k x x k AB /1||1||2212?+=-+=就能解决问题。但实际中,除个别简单题(本文从略) 外,直接利用弦长公式会使问题变得非常繁琐。本文试图对此进行系统的总结,给出不同类型题目的解决策略。 一、两线段相等 类型I 有相同端点的不共线线段 例1、(2204,北京西城区二模) 已知定点)4,2(--A ,过点A 做倾斜角为? 45的直线L ,交抛物线)0(22>=p px y 于A 、 B 两点,且|||||| AC BC AB 、、成等比数列 (1)求抛物线方程; (2)问(1)中抛物线上是否存在D ,使得|||| DC DB =成立?若存在,求出D 的坐标。 策略分析:由于D 、B 、C 三点不共线,要使得|||| DC DB =成立,只需取BC 中点P ,满足BC DP ⊥。 由于这种类型题目的常见性与基础性,我们再举一个例子作为练习: 例2、(2005,孝感二模) 已知)2()2(),,1(),0,(b a b a y b x a -⊥+== (1)求点P(x,y)的轨迹方程C ; (2)若直线L :b kx y +=(0≠k )与曲线C 交与AB 两点,D(0,-1),且有||||BD AD =,试求b 的取值范围。 类型II 共线线段 例3、直线L 与x 轴不垂直,与抛物线22+=x y 交于AB 两点,与椭圆2222=+y x 交于CD 两点, 与x 轴交于点M )0,(0x ,且|||| BD AC =,求0x 的取值范围。 策略分析:不妨设A ),(11y x 在B ),(22y x 下方,C ),(33y x 在D ),(44y x 下方,由于ABCD 共线,要使 ||||BD AC =,只需4213x x x x -=-,即4321x x x x ==+,结合韦达定理可得结果。 二、三线段相等 类型I 正三角形 例 4、(2003,北京春招) 已知动圆过定点P(1,0)且与定直线L :x=-1相切,点C 在L 上 (1)求动圆圆心的轨迹M 的方程;

焦点弦公式及其应用

焦点弦公式及其应用 焦点弦公式及其应用论文关键词:焦点弦公式,应用 在近年来的高考数学试题中,经常出现圆锥曲线焦点弦问题.用常规方法解决这类问题时,由于解题过程复杂,运算量较大,所以很容易出现差错. 为了准确而迅速地解决圆锥曲线焦点弦问题.我们可以利用下面介绍的焦点弦公式. 设圆锥曲线的离心率为,焦准距为,过焦点的弦AB与主轴(即椭圆长轴、双曲线实轴、抛物线对称轴)的夹角为θ,则可以推导出弦AB的长度公式,简称焦点弦公式.特别当离心率时,焦点弦公式还可以化简. 1、当时,圆锥曲线为椭圆, ; 2、当时,圆锥曲线为抛物线, . 图1 下面对焦点弦公式进行证明. 证法一如图1,设椭圆C:焦点为,过焦点F的弦AB的倾斜角为,当时,弦AB在直线L:上.由直线L和椭圆C的方程可得 .

设点A、B的坐标分为和,则.由焦半径公式得弦AB的长度为 ∵焦准距为,∵.当时,公式也成立. 对于双曲线和抛物线用同样的方法可以证明. 证法二设圆锥曲线的离心率为,焦准距为,则极坐标方程为,过焦点的弦AB与x轴的夹角为θ.当时,如图2.∵,. ∵ .即. 当时,同理可以推得. 利用焦点弦公式,可以巧妙地解决与圆锥曲线焦点弦有关的各种问题.现在分别举例如下. 一、在椭圆中的应用 例1 (2008年高考安徽卷文科22题) 已知椭圆,其相应于焦点F(2,0)的准线方程为x=4. (∵)求椭圆C的方程; (∵)已知过点F1(-2,0)倾斜角为的直线交椭圆C于A,B两点.,求证: (∵)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求的最小值. 解:(∵)由已知得,又,所以. 故所求椭圆C的方程为. (∵)因为直线AB倾斜角为,,,,。 由焦点弦,可得=得证.

与焦点弦相关的问题

三、与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1 ) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=? 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2 ) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=? 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -=+ 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -=+ 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值 3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ= 恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

圆锥曲线.03圆锥曲线的弦长面积问题.知识讲解和练习

2014年一轮复习圆锥曲线的弦长面积问题

内容明细内容 要求层次 了解理解掌握圆锥曲线 椭圆的定义与标准方程√ 椭圆的简单几何意义√ 抛物线的定义及其标准方程√ 抛物线的简单几何意义√ 双曲线的定义及标准方程√ 双曲线的简单几何性质√ 直线与圆锥曲线的位置关系√ 题型一:弦长问题 设圆锥曲线C∶() ,0 f x y=与直线:l y kx b =+相交于() 11 , A x y,() 22 , B x y两点, 则弦长AB为: () 222 121212 1141x AB k x x k x x x x k a ? =+-=++-=+ () 121212 222 111 1141y AB y y y y y y k k k a ? =+-=++-=+ 或 题型二:面积问题 1.三角形面积问题 直线AB方程:y kx m =+00 2 1 kx y m d PH k -+ == + 00 2 2 11 1 22a1 x ABP kx y m S AB d k k ? ?-+ =?=+? + 自检自查必考点 圆锥曲线 2014年高考怎么考 H O y x P B A

2. 焦点三角形的面积 直线AB 过焦点21,F ABF ?的面积为 1 1212121 2y ABF c S F F y y c y y a ??=?-=-= F 2 F 1 O y x B A 3. 平行四边形的面积 直线AB 为1y kx m =+,直线CD 为2y kx m =+ 122 1m m d CH k -== + 2222 12121211()41x AB k x x k x x x x k a ?=+-=++-=+ 12 122 2 11x x ABCD m m m m S AB d k a a k ??--=?=+? = + 题型三:范围问题 首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 222(,)a b ab a b R +≥∈ 变式:2 2(,);( )(,)2 a b a b ab a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等 圆锥曲线经常用到的均值不等式形式: (1)222 64 64t S t t t = =++(注意分0,0,0t t t =><三种情况讨论) (2)22 422 2121212 333196123696 k AB t k k k =+=+≤+++?+++ 当且仅当22 1 9k k = 时,等号成立

圆锥曲线的焦点弦问题(特征梯形)

课题:探究抛物线中的焦点弦问题 【学习目标】: 探讨解决抛物线中有关焦点弦问题的思想方法. 【问题探究】: 抛物线定义:平面内与一个定点F 的距离和一条定直线l 距离相等的点的轨迹. 问题一:已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则?AB = (1):12AB x x p =++ (2):m i n AB 问题二、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,' ',A B 为,A B 在准线上的射影, 则' ' ?A FB ∠= (3):' ' 90A FB ∠= (4):以Q 为圆心,以'' A B 为直径的圆切AB 于F 点 (x 1,y 1) (x 2,y 2) x y B′ A′ (x 1,y 1) (x 2,y 2) x y F′B′ A′Q

问题三、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,'' ,A B 为,A B 在准线上的射影, 则以,A B 为直径的圆与准线的位置关系? (5):以P 为圆心,以AB 为直径的圆切''A B 于Q 点 (6):90AQB ∠ = 问题四、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则1212?,?x x y y == (7):22 121 2,4 p x x yy p ==- 问题五、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则11 ?AF BF += (8):112A F B F p += (x 1,y 1) (x 2,y 2) x y B′ A′Q P (x 1,y 1) (x 2,y 2) x y (x 1,y 1) (x 2,y 2) x y

圆锥曲线焦点三角形和焦点弦性质的

圆锥曲线焦点三角形和焦点弦性质的探讨 数学系2008级6班唐流聪 指导教师 XXX 摘要:圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点,因而成为高考的重点考查内容。而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的有关问题,学生在求解此类题目时,常常感到无从下手。为解除这种困惑,在全面研究了高中数学教材及要求的基础上,通过分析、推导的方法,文章对椭圆焦点三角形的性质,双曲线焦点三角形的性质及圆锥曲线焦点弦的性质进行了研究和探讨,得出圆锥曲线焦点三角形的五条基本性质,以便使学生对相关知识有一个更全面、更系统、更深刻的了解,从而进一步提高运用这些性质去解决相关题目的数学能力和应用能力。 关键词:圆锥曲线;焦点三角形;性质;焦点 On the Properties of Conic Focal Point Triangle and Focal Point String Abstract: The cone curve, as an important part of content of analytical geometry in present high school, is rated not only as a key point but also a difficulty in mathematics teaching in senior high school, and so it becomes a key examination point in the college entrance examination. The most important content of cone curve is the problems concerning the string or straight line which passes through the conic focal point. Faced with this kind of questions, some students do not always know what to begin with. To relieve their confusion, this paper, on the basis of a thorough study of the mathematical teaching material for high schools and by means of analysis and deduction, probes into the nature of ellipse focal point triangle, the nature of hyperbolic curve focal point triangle and the nature of conic focal point string, and points out five basic properties of the conic focal point triangle. These properties can help students further understand the conic knowledge systematically and improve their mathematics competence and application ability in solving mathematical problems. Key words: cone curve; focal point triangle; properties; focal point 1引言 圆锥曲线是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点.而圆锥曲线的主要内容之一是过圆锥曲线焦点的弦或直线的相关问题.在求解这类问题时,许多学生常常感到束手无策,部分学生由于计算量大的繁锁,产生厌学数学的情绪.为了解除这种困惑,培养或提高学生学习数学的兴趣,让学生掌握一定的解题方法或数学思想是很必要的.在数学中,我们常常是利用性质去讨论问题,因此,文章首先探讨圆锥曲线焦点三角形及焦点弦的性质,然后再讨论这些性质的应用. 圆锥曲线焦点三角形及焦点弦具有不少性质,许多教师或专家已做过研究.文献[2]主要是对椭圆焦点三角形的性质进行研究,而文献[7]主要是对双曲线焦点三角形的性质进行研究.文献[2]、[7]都是孤立地进行探讨,缺乏系统性,显得单一.文献[1]、[10]主要围绕焦点三角形的内切圆将椭圆焦点三角形与双曲线焦点三角形的性质结合起来探讨,弥补了文

圆锥曲线三种弦长问题

圆锥曲线三种弦长问题的探究 一、一般弦长计算问题: 例1、已知椭圆()22 22:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为2 2 8a b +=,………① 又e =,即2223c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而12x x -= = , 由弦长公式,得12AB x =-== , 即弦AB 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 例2、过点()4,1P 作抛物线2 8y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦 AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导 周华生 本文介绍圆锥曲线标准方程的两个用定比λ表示的斜率公式及解题时的巧妙应用。 定理1 若 AB 是椭圆 )0b a (b a y a x b :2222221>>=+Γ或双曲线 2222222b a y a x b :=-Γ或抛物线)0p (px 2y :23>=Γ的焦点弦,F 为焦点且λ=,(A 在B 之上),则弦AB 所在直线斜率k 满足 )1,0(1e ) 1()1(k 2 2 22 ±≠λ≠λ--λ+λ= (1) 证明:设AB 的倾角为α。 (1)当?<α<900时,l 为F 对应的准线,如图1对曲线1Γ: ?? ?α-α=±=+-=+-=+λ-λ== λ) F (cos e ) F (cos e |AB ||)BC |(e |BF ||AF ||)'BB ||'AA (|e | BF ||AF || BF ||AF |11,|'BB || 'AA ||BF ||AF |为右焦点为左焦点 所以2 22 2 )1()1(e sec -λ+λ=α,即1e )1()1(tan 2222--λ+λ=α。 (2)当?<α

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?恒成立.并由此求∣A B∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C,D两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?恒成立.并由此求四边 形AB CD面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长 轴于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

专题5 圆锥曲线中的弦长问题(解析版)-2021年高考数学圆锥曲线中必考知识专练

1 专题5:圆锥曲线中的弦长问题(解析版) 一、单选题 1.椭圆2 214 x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一 个交点为P ,则2PF =( ) A . 3 B .3 C . 72 D .4 【答案】C 【解析】 试题分析:,所以当时, ,而 , 所以 ,故选C. 考点:椭圆的性质 2.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y , ()22,B x y .若12 3x x +=,则弦AB 的长是( ) A .4 B .5 C .6 D .8 【答案】A 【分析】 由题意得1p =,再结合抛物线的定义即可求解. 【详解】 由题意得1p =, 由抛物线的定义知:121231422 p p AB AF BF x x x x p =+=+++=++=+=, 故选:A 【点睛】 本题主要考查了抛物线的几何性质,考查抛物线的定义,属于基础题. 3.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在 EFP △中,sin 2EFP FEP ∠=∠,则||EP 的值是( ) A .2 B .4 C .2 D .1 【答案】A

试卷第 2页,总18页 【分析】 过点P 作PH 垂直于准线于点H ,由双曲线的定义得cos PF PH m FEP ==∠,在 EFP △中利用正弦定理可求出FEP ∠,带入所给等式即可推出2 EFP π ∠= ,即可求 得PE 的值. 【详解】 如图所示,过点P 作PH 垂直于准线于点H , 设PE m =,则cos PF PH m FEP ==∠, 在EFP △中,由正弦定理知 sin sin PF PE PEF EFP =∠∠,即 cos sin 2sin m FEP FEP FEP ∠=∠∠, 所以2 cos 2 FEP ∠= ,又()0,FEP π∠∈,所以4FEP π∠=, 则sin 21EFP FEP ∠= ∠=,又()0,EFP π∠∈,所以2 EFP π ∠= , 在直角EFP △中,2EF =,4 FEP π ∠=,所以22PE =故选:A 【点睛】 本题考查抛物线的定义与几何性质、正弦定理解三角形,属于中档题. 4.椭圆()22 22:10x y C a b a b +=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24 e ??∈???? ,则线段AB 的长度的取值范围是( )

相关主题
文本预览
相关文档 最新文档