当前位置:文档之家› 供热工程水力计算说明书

供热工程水力计算说明书

供热工程水力计算说明书
供热工程水力计算说明书

供热工程课程设计说明书

设计题目:

城市某住宅小区热力外网设计

专业

学生姓名:

班级:

学号:

设计完成时间:

目录

第一章设计任务书——————————————————————1 第二章热网水力计算—————————————————————2

2.1 小区热负荷的计算———————————————————2

2.2 小区总设计流量的计算—————————————————2

2.3 主干线,支线的水力计算————————————————3 表1————————————————————————————5 表2————————————————————————————6 第三章施工组织部分设计——————————————————8 设计总结——————————————————————————8 参考文献——————————————————————————9

供热工程课程设计任务书

一.题目:花园小区热力外网设计。

二.设计任务:

1.完成该小区的热网施工图设计。

注明:学号为单号的选择课程设计(09A)底图,供热建筑选择1#,2#,3#,4#楼。

学号为双号的选择课程设计(09B)底图,供热建筑选择5#,4#,3#,1#楼。

三.设计资料:

1.建筑性质、设施及规模

该建筑群为一城市住宅小区,住宅为地上六层的多层建筑,地下车库不采暖。具体详见建

筑总平面图。

2.依据的建筑图纸

⑴小区建筑总平面图。

3.资料

⑴供热热源为小区热力站,供回水温度为95/70 oC。

⑵住宅采暖热指标60W/m2,按每个单元均分考虑。

⑶建筑物热力入口位置按每个单元入口处考虑。

⑷建筑物热力入口管道高度为室外地面下800mm。

⑸各建筑物面积如下:1# 1885 m2、2# 3100 m2、3# 7503 m2、4# 12868 m2、5# 12615

m2、

四.设计依据

1.《城市热力网设计规范》CJJ34-2002

2.《城市居住区规划设计规范》GB50180-93(2002版)

3.《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002

4. 《供热工程制图标准》CJJ/T78-2010

5. 《集中供热设计手册》.李善化,康慧等编.电力工业出版社,1996年

6. 相关设计用图集

五.设计要求

1.根据上述要求,进行该住宅小区热网各环节的设计计算并绘制施工图。

2.提交成果。

⑴设计计算说明书一份

⑵工程设计图纸,包括:

①设计施工说明;②图纸目录及图例;③管道平面布置图;

④管道横断面、纵断面布置图;⑤阀门井、热力入口大样图;

⑥绘制主干线水压图。

第二章热网水力计算

2.1 热负荷的计算

利用面积热指标法计算各分区的热负荷

Q n=q f·F×10ˉ3

Q n———建筑物的供暖设计热负荷,kW;

F———建筑物的建筑面积,m2;

q f———建筑物供暖面积热指标,W/ m2;

各楼总热负荷的计算:

一号楼1#:Q n=q f·F×10ˉ3=60×1885×10ˉ3=113.1kW

二号楼2#:Q n=q f·F×10ˉ3=60×3100×10ˉ3=186kW

三号楼3#:Q n=q f·F×10ˉ3=60×7503×10ˉ3=450.18 kW

四号楼4#:Q n=q f·F×10ˉ3=60×12868×10ˉ3=772.08kW

2.2 总设计流量的计算

分别计算各号楼的总流量。

G=3.6?Q/c(t g-t h)

G———热用户的设计流量,t/h;

Q———热用户的设计热负荷,W;

c———水的质量比热,J/(kg?℃),取4187 J/(kg?℃);

t g———热网供水温度,℃;

t h———热网回水温度,℃;

各号楼总流量分别如下:

一号楼:G1=3.6?Q/c(t g-t h)=3.6×113.1/4.187(95-70)=3.8 t/h 二号楼:G2=3.6?Q/c(t g-t h)= 3.6×186/4.187(95-70)=6.4 t/h

三号楼:G3=3.6?Q/c(t g-t h)= 3.6×450.18/4.187(95-70)=15.4 t/h 四号楼:G4=3.6?Q/c(t g-t h)= 3.6×772.08/4.187(95-70)=26.6 t/h 总流量为:

G= G1+ G2+ G3+ G4 =3.8+6.4+15.4+26.6=52.2 t/h 按照设计图纸各用户的流量按每个单元均分考虑。具体的各个管道流量集中列于表-1中。

2.3.1 主干线,支线的水力计算

主干线的选取:

选择比摩阻最小的干线为主干线。这里选择A-B-C-D-E-F-G1-G2-G3-G4-G5-G6-G7-G8-G9为供水主干线进行水利计算。

热水网路主干线的水利计算。

由于各用户内部阻力损失相等,所以从热源到最远用户G的管线为主干线。取主干线的平均比摩阻在30~70Pa/m的范围内。根据各管段的流量和平均比摩阻,查水力计算表,确定管径和实际比摩阻。下面以管段B~C为例来说明水力计算过程。

其余的主干线管段的计算方法与此类似,计算结果见表-1中。

计算流量为52.2(t/h),平均比摩阻在30~70Pa/m的范围内,查水力计算表,得出管径和实际比摩阻如下:

d=150mm;R=63.14Pa/m;v=0.859m/s

管段B~C上的所有局部阻力损失的当量长度可自规范上查出,

结果如下:1个直流三通:6.5

1?m;1个异径接头:56

1?m ;

.0

1个方形补偿器:4.

1?m

15

局部当量长度之和 l d=5.6+0.56+15.4=21.56

管段B~C的折算长度 l zh=26.4+21.56=47.96m

管段BC的压力损失△P=Rl zh=63.4×47.96=3041 Pa

用相同的方法,可确定主干线上其余管段的管径和压力损失,计算结果见表-1,表-2。

2.3.2管网支线的计算。

以支线B为例说明支线水力计算过程。

管段B-8的资用压力为:

P B-8=P BC+P CD+P DE+P EF+P FG=3041+2527+3072+1417+1614=11671 (Pa)管段B估算比摩阻为:

R=△P B-8/L B-8(1+аj)=11659/146.8/(1+0.6)=50 (Pa/m)

根据B-1段流量G=26t/h和估算的比摩阻,查水力表得:

D=125mm; R=41.1Pa/m;v=0.62m/s

管段B-1的局部阻力查规范得:

闸阀:m 2.22.21=?; 分流三通:m 6.66.61=?,

总局部当量长度:l d =8.8m ;

管段B-1的折算长度为:l zh =8.8+16.8=25.6m ;

管段B-1的实际压力损失为:△P B-1=Rl zh =41.1×25.6=1052 Pa

利用同样的方法估算比摩阻并计算出B 支线后面的几个分支的实际压力损失:

△P 1-2=1112 Pa

△P 2-3=1654 Pa △P 3-4=1955 Pa △P 4-5=708 Pa △P 5-6=1082 Pa

△P 6-7=1607 Pa △P 7-8=1683 Pa

支线B 的实际压力损失为其上各管段之和:

△ P B =△P B-1+△P 1-2+△P 2-3+△P 3-4+△P 4-5+△P 5-6+△P 6-7+△P 7-8

=1052+1112+1654+1955+708+1082+1607+1683=10853 Pa

支线B 和主干线并联环路BCDEFG 之间的不平衡率为:

X=(10853-11671)/ 10853=7.5%<15%

由此可知环路基本平衡,不必加调压装置。

用同样的方法可计算C 、D 、E 、F 支线的实际压力和不平衡率,计算结果分别列于表-1、表-2中。

通过计算,支线E (2号楼)的不平衡率为19.3%,超过允许值,所以支线E 上应加设调压装置,以消除剩余压头。调压板的孔径为74mm 。调压板安装在供水管上。

附:与个支线相连接的各个供热单元的管路与支线最末端供热单元的供水管管

径相同。每间隔50米左右应对管道进行补偿,这里选用方形补偿器,具体布置见管网布置平面图。

表-1(水力计算表)

表-2(局部阻力当量长度计算)

布置图:

F

E

D

C

第三章施工组织部分设计

施工要求

1.管材:采暖管道采用焊接钢管,连接方式均采用焊接。

2.防腐:所有管道、管件、固定支架表面除锈后,刷防锈漆两道,明装不保温部分再刷银粉两道。

3.保温:保温材料采用岩棉管壳

4.试压:系统安装完毕应进行分段和整体试压,10min没压力降低不大于0.02MP为合格

5.冲洗:系统投入使用前必须进行冲洗,冲洗前应将滤网、温度计、调节阀等拆除待冲洗合格后在装上。

6.入口:采暖入口作法见《建筑设备施工安装通用图集》

7.图中所注平面尺寸以mm计,标高以m计。

8. 未说明部分,请按《采暖工程施工及验收规范》的相关内容施工

敷设方式

1 室外供热、供冷管道宜采用地下敷设。当热水、冷水管道地下敷设时,宜采用直埋敷

设;蒸汽管道地下敷设时,可采用直埋敷设。

2当地下敷设困难时,可采用地上敷设。当地上敷设管道跨越人行通道时,保温结构下表面距地面不应小于2.Om;跨越车行道时,保温结构下表面距地面不宜小于4.5m;

采用低支架时,管道保温结构下表面距地面不应小于0.3m。

3 管沟敷设时,热力管道可与自来水管道、电压1OkV以下的电力电缆、通讯线路、压

缩空气管道、压力排水管道和重油管道一起敷设在综合管沟内,严禁与输送易挥发、易爆、有害、有腐蚀性介质的管道和输送易燃液体、可燃气体、惰性气体的管道敷设在同一管沟内。在综合管沟布置时,热力管道应高于冷水、自来水管道和重油管道,并且自来水管道应做绝热层和防水层。

设计总结

1.由于小区面积比较小,所以采面积热指标法估算的热负荷和实际的热负荷比较接近。2.管网的水力计算中不是所有的计算都十分精确,有时候得参照实际施工时的经验值。3.各管段管径大小的选取应尽量在保证系统水力平衡的情况下选择阻力数小且经济的数值,最好是利用变换管径的方法达到阻力平衡,避免使用减压伐等降压装置以节约能源。

4.管道的敷设应尽量避免机动车道。

参考文献

1. 李德英. 供热工程. 北京:中国建筑工业出版社,2004

2. 李岱森编.《简明供热设计手册》.中国建筑工业出版社,1998年

3.李德英. 供热工程. 北京:中国建筑工业出版社,2004

4. 中华人民共和国行业标准.《城市居住区规划设计规范》 GB50180-93

5. 中华人民共和国行业标准.《供热工程制图标准》CJJ/T 78-97

6.中华人民共和国行业标准.《建筑给水排水及采暖工程施工质量验收规范》 GB50242-2002

7. 中国建筑标准设计院:《全国民用建筑工程设计技术措施》2009年。

堰流公式

第八章 堰流及闸孔出流 水利工程中,为防洪、灌溉、航运、发电等要求,需修建溢流坝、水闸等控制水流的水工建筑物。例如,溢流坝、 水闸底槛、桥孔和无压涵洞进口等。 堰是顶部过流的水工建筑物。 图1、2中过堰水流均未受闸门控制影响 闸孔出流:过堰水流受闸门控制时,就是孔流 堰流和闸孔出流是两种不同的水流现象。它们的不同点在于堰流的水面线为一条光滑曲线且过水能力强,而孔流的闸孔上、下游水面曲线不连续且过水能力弱。它们的共同点是壅高上游水位;在重力作用下形成水流运动;明渠急变流在较短范围内流线急剧弯曲,有离心力;出流过程的能量损失主要是局部损失。 相对性: 堰流和孔流是相对的,堰流和孔流取决于闸孔相对开度,闸底坎及闸门(或胸墙) 型式以及上游来流条件(涨水或落水)。 平顶堰: e /H ≤0.65 孔 流 曲线型堰:e/H ≤ 0.75 孔 流 e/H > 0.75 堰 e/H >0.65 堰 流 式中:e 为 闸孔开度; H 为 堰上水头 堰流及孔流是水利工程中常见的水流现象,其水力计算的主要任务是研究过水能力。它包括堰闸出流水力特性和堰闸水力计算。 图4 闸孔出流 e H H v 0 图1 堰流 b H 图2 堰流 b e 图3 堰流及闸孔出流 H

第一节堰流的分类及水力计算基本公式 一、堰流的分类 水利工程中,常根据不同建筑材料,将堰作成不同类型。例如,溢流坝常用混凝土或石料作成较厚的曲线或者折线型;实验室量水堰一般用钢板、木板作成薄堰壁。 堰外形、厚度不同,能量损失及过水能力不同。 堰前断面:堰上游水面无明显下降的0-0 断面 堰上水头:堰前断面堰顶以上的水深,用H 表示 行进流速:堰前断面的流速称为行进流速,用v0表示 堰前断面距离上游壁面的距离:L =(3~5) H 研究表明,流过堰顶的水流型态随堰坎厚度与堰顶水头之比δ/H 而变,工程上,按δ与H的大小将堰流分薄壁堰、实用堰、宽顶堰。 1. 薄壁堰:δ/H<0.67 越过堰顶的水舌形状不受堰厚影响,水舌下缘与堰顶为线接触,水面呈降落线。由于堰顶常作成锐缘形,故薄壁堰也称锐缘堰。 2. 实用堰流:0.67 <δ/H <2.5 水利工程,常将堰作成曲线型,称曲线型实用堰。堰顶加厚,水舌下缘与堰顶为面接触,水舌受堰顶约束和顶托,已影响水舌形状和堰的过流能力。折线型实用堰:水利工程,常将堰作成折线形。 3. 宽顶堰:2.5<δ/ H<10 宽顶堰堰顶厚度对水流顶托非常明显。 水流特征:水流在进口附近的水面形成降落;有一段水流与堰顶几乎平行;下游水位较低时,出堰水流二次水面降。 4. 明渠水流:堰坎厚度δ>10H 0 v0 H δ 1 1 图6 曲线型实用堰 P v v H P 1 1 δ 图7 折线型实用堰 当水流接近堰顶,流线收缩,流速加大,自由表面逐渐下降 H P1 v0 1 11v1 P2 δ 图5 薄壁堰

1 用水量计算表说明书

第一节设计用水量计算表说明书 基本数据: 由原始资料该城市位于湖南,在设计年限内人口数12万,查《室外排水设计规范》可知该城市位于一分区,为中小城市。 城市的未预见水量和管网漏失水量按最高日用水量的20%计算;1.1.1 居民最高日生活用水量Q1 : Q1=qNf Q1―—城市最高综合生活用水,m3/d; q――城市最高综合用水量定额,L/(cap.d); N――城市设计年限内计划用水人口数; f――城市自来水普及率,采用f=100% 所以:Q1。1 =230×12×104×100%/1000 =27600 m3/d 1.1.2 铁路车站每天用水量Q1.2 = 2000 m3/d 。 得Q1= Q1。1 +Q1.2 = 29600 m3/d 。 1.2 工业区的用水量计算 由所给资料得知,工厂No.1企业总用水量为2400 m3/d, 工厂No.2的企业总用水量为3600m3/d。 总计,Q2 = 2400+3600 = 6000 m3/d。 1.3 浇洒道路用水量计算 按城市浇洒道路用水量标准q=1L/(㎡.次),每天两次, 用水量公式: Q=qNn/1000(n代表次数,N代表浇洒道路面积),3 =1*1434721.162*2/1000 =2870m3。 1.4 绿化用水量计算

按城市大面积绿化用水量定额q=1.5L/(㎡.次),每天两次,用水量公式 Q=q N n/1000(n代表次数,N代表绿化用水面积),4 =1.5*454356.5206*2/1000 =1360 m3。 1.5 未预见用水量的计算 按最高日用水量的20%算。而最高日的用水量包括居民的综合生活用水量;工业区用水量;浇洒道路和绿化用水量。相应的未预见用水总量。 1.6 最高日设计流量Q d: Q d=1.2×(Q1+Q2+Q3+Q4) =1.2×(29600+6000+2870+1360) =47796 m3/d 1.7 最高日最高时用水量Q h Q h=K h×Qd/86.4(时变化系数由原始资料知K h=1.46) =1.46 ×47796/86.4 =807.66 L/s 1.8 消防用水量: 城镇、居住区室外的消防用水量: 火灾次数:2 一次灭火用水量:45L/s 城镇消防用水量为90 L/s

鸿业暖通-系统图水管水力计算使用说明

使用说明书 ——系统图水管水力计算 一、加载 1.将KtCnPub.dll拷入系统软件目录下。 2.加载ACSSgSlJs.arx之前请先加载KtCnCad.arx:。 二、运行 1.在命令行键入(XTTSGJS),回车,将出现程序的主界面。 2.界面说明 流量单位:根据用户选择不同的流量单位,显示的流量进行单位换算。 计算控制:程序在计算中根据用户选择的控制类型选取合适的管径,采暖系统中只按照比摩阻控制。 控制数据设定:可以新建控制数据方案,可以更改已有的控制方案。 计算管段列表:显示所有计算的管段。 3.使用说明 a.从图面上提取数据 单击图面提取按钮 命令行提示: “ESC返回 / 搜索计算管道[自动搜索(A)/手动搜索(M)] :” 默认为自动搜索,如果选择自动搜索,则提示: “ESC返回 / 请选择要搜索的起始干管或立管的远端:”

选择要搜索的起始端,程序会自动搜索出供水干管和供水立管或者回水干管和回水立管。 如果选择手动搜索,则提示: “回车返回 / 选择要添加的干管或立管:” 选择添加的干管或者立管后,继续提示: “选择承担的负荷(散热器或者管道)。” 这时候选择该干管或者立管所承担负荷的管段和散热器(或者选择与其负荷相等的管段)。 b.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击打开按钮 从打开文件对话框从选取要计算的文件,确定即可。 c.对于控制数据设定按钮:单击此按钮,将会出现如下对话框:

在此对话框中,可以修改已有的方案,可以添加新的控制数据方案。注意:默认方案是不可以修改和删除的。 单击新建方案按钮,会出现新建方案对话框: 提示用户数据新的方案名称。 注意:新方案名称不能和已有的方案名称同名。

水力计算案例分析解答

案例一 年调节水库兴利调节计算 要求:根据已给资料推求兴利库容和正常蓄水位。 资料: (1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。 (2) 水库面积曲线和库容曲线如下表2。 (3) V 死 =300万m 3。 表1 水库来、用水及蒸发资料 (P=75%) 表2 水库特性曲线 解:(1)在不考虑损失时,计算各时段的蓄水量 由上表可知为二次运用,)(646031m V 万=,)(188032m V 万=,)(117933m V 万=, )(351234m V 万=,由逆时序法推出)(42133342m V V V V 万兴=-+=。采用早蓄方案,水库月末蓄水量分别为: 32748m 、34213m 、、34213m 、33409m 、32333m 、32533m 、32704m 、33512m 、31960m 、 3714m 、034213m 经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+死V ,见统计表。 (2)在考虑水量损失时,用列表法进行调节计算: 121()2V V V =+,即各时段初、末蓄水量平均值,121 ()2A A A =+,即各时段初、末水面积 平均值。查表2 水库特性曲线,由V 查出A 填写于表格,蒸发损失标准等于表一中的蒸发量。 蒸发损失水量:蒸W =蒸发标准?月平均水面面积÷1000 渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量?渗漏标准 损失水量总和=蒸发损失水量+渗漏损失水量 考虑水库水量损失后的用水量:损用W W M +=

多余水量与不足水量,当M W -来为正和为负时分别填入。 (3)求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴利库容)(44623342m V V V V 万兴=-+=,)(476230044623m V 万总=+=。 (4)求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。 (5)校核:由于表内数字较多,多次运算容易出错,应检查结果是否正确。水库经过充蓄和泄放,到6月末水库兴利库容应放空,即放到死库容330m 万。V '到最后为300,满足条件。另外还需水量平衡方程 0=---∑∑∑∑弃 损 用 来 W W W W ,进行校核 010854431257914862=---,说明计算无误。 (6)计算正常蓄水位,就是总库容所对应的高程。表2 水库特性曲线,即图1-1,1-2。得到Z ~F ,Z ~V 关系。得到水位865.10m ,即为正常蓄水位。表1-3计入损失的年调节计算表见下页。 图1-2 水库Z-V 关系曲线 图1-1 水库Z-F 关系曲线

锅炉房用水量设计计算

锅炉房用水量设计计算 1、锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 2、生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃)热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。

如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉 0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程” 运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98%

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

用水量计算说明书

B城用水量计算和分析(A城最高日用水量计算表见附件一) 1、最高日用水量计算 (1)居民综合生活用水 该城市为中小型城市,人口仅18万,城市分区为二区,查《给水工程》(第四版)第522页附表2(b),取最高日用水定额为200L/cap·d。 由任务书可知,该城城区居民人口为18万。 故最高日综合用水量为:Q=qNf=200/1000*18*10000*100%=36000(m3/d)(2)工业区职工生活用水量计算 根据《工业企业设计卫生标准》,工作人员生活用水量应根据车间性质决定,一般车间采用每人每班30L/cap·d,高温车间采用每人每班50L/cap·d。故工业区1:高温车间:0.6*10000*50/1000=300(m3/d) 一般车间:1.2*10000*30/1000=360(m3/d)工业区2:高温车间:1.0*10000*50/1000=500(m3/d) 一般车间:1.1*10000*30/1000=330(m3/d) (3)工业区职工淋浴用水量计算 查《给水工程》(第四版)第522-523页附表2,高温车间淋浴用水量取60L/cap·班,一般车间淋浴用水量取40L/cap·班。 本次设计中工厂的上班制度是三班制,所以选取每班中的一个时段作为上一班员工洗澡的时间,即0-1,8-9,16-17,则淋浴用水总量计算如下:工厂区1为: (0.6*10000*60/1000*100%+1.2*10000*40/1000*60%)/3=216(m3/d) 工厂区2为: (1.0*10000*60/1000*100%+1.1*10000*40/1000*60%)/3=288(m3/d)(4)工业区生产用水量计算 由任务书可知,工业区1的生产用水量为1.6万(m3/d),工业区2的生产用水量为1.8万(m3/d)。 (5)工业区工厂村生活用水计算 由任务书可知,工业区1的工厂村人口为1.0万,工厂区2的工厂村人口为0.6万。

【精品】溢流坝水力计算实例

溢流坝水力计算 一、基本资料: 为了解决某区农田灌溉问题.于某河建造拦河溢流坝一座,用以抬高河中水位,引水灌溉.进行水力计算的有关资料有:设计洪水流量为550m3/s;坝址处河底高程为43。50m;由灌区高程及灌溉要求确定坝顶高程为48。00m;为减小建坝后的壅水对上游的影响,根据坝址处河面宽度采用坝的溢流宽度B=60m;溢流 坝为无闸墩及闸门的单孔堰,采用上游面铅直的三弧段WES型实用堰剖面,并设有圆弧形翼墙;坝前水位与河道过水断面面积关系曲线,见图15.2;坝下水位与河道流量关系曲线,见图15。3;坝基土壤为中砾石;河道平均底坡; = i河道实测平均糙率04 .0 00127 n. = .0 二、水力计算任务: 1.确定坝前设计洪水位;

2.确定坝身剖面尺寸; 3.绘制坝前水位与流量关系曲线; 4.坝下消能计算; 5.坝基渗流计算; 6.坝上游壅水曲线计算。 三、水力计算 1、确定坝前设计洪水位 坝前设计洪水位决定于坝顶高程及设计水头d H ,已知坝顶高程为4800m ,求出d H 后,即可确定坝前设计洪水位。 溢流坝设计水头d H 可用堰流基本方程(10.4)32 02H g mB Q ?=σε计算.因式中

σε及、0H 均与d H 有关,不能直接解出d H ,故用试算法求解。 设d H =2.53m,则坝前水位=48。00+2。53=50。53m . 按坝前水位由图15。2查得河道过水断面面积A 0=535m 2 ,又知设计洪水流量,则s m Q /5503= m g av H H m g av s m A Q v d 586.2056.053.22056.08 .9203.10.12/03.1525 5502002 000=+=+==??====按设计洪水流量Q ,由图15.3查得相应坝下水位为48。17m .下游水面超过坝顶的高度 15.0066.0586 .217.017.000.4817.480<===-=H h m h s t 下游坝高 0.274.1586 .250.450.400.4300.4801<===-=H a m a 因不能完全满足实用堰自由出流条件:故及,0.215.00 10≥≤H a H h s 为实用堰淹没出流。 根据0 10H a H h t 及值由图10.17查得实用堰淹没系数999.0=σ。因溢流坝为单孔堰,溢流孔数n =1;溢流宽度60==b B m 。按圆弧形翼墙由表10。4查得边墩系数7.0=k ζ.则侧收缩系数 nb H n k 00])1[(2.01??ε+--=994.060 1586.27.02.01=???-= 对于WES 型实用堰,当水头为设计水头时,流量系数502.0==d m m .于是可得溢流坝流量

计算说明书 2017042385813

n d Q 4.42 1184.0h =计算说明书 水厂的设计水量Q 设计 水厂自用水量的大小取决于给水处理方法、构筑物型式以及原水水质等因素,一般采用最高日用水量的5%~10%,这里取5%。根据城市用水量状况,为10万吨/日的供水量,所以 Q 供水=1000003 m /d=4166.73 m /h=1157.4L/S 而水厂的处理水量则要加上自用水量 Q 设计=Q 供水*(1+0.05) =1050003m /d =43753m /h =1215.3L/S =1.2153m /S 混合工艺设计计算 考虑设絮凝池2座,混合采用管式混合。设水厂进水管投药口至絮凝池的距离为50米。进水管采用两条, 设计流量为Q=96300/24/2=0.5573/m s 。 进水管采用钢管,直径为DN800,查设计手册1册,设计流速为1.11m/s ,1000i=1.8m ,混合管段的水头损失50 1.8 0.091000 h iL m ?== ≈。小于管式混合水头损失要求为0.3-0.4m 。这说明仅靠进水管内流速不能达到充分混合的要求。故需在进水管内装设管道混合器,本设计推荐采用管式静态混合器,管式静态混合器示意图见图4.3。 1. 设计参数: 采用玻璃钢管式静态混合器(如图4.3),近期采用2个。 每组混合器处理水量为0.608m 3/s ,水厂进水管投药口至絮凝池的距离为10m ,,进水管采用两条DN800钢管。 2. 设计计算: 管式静态混合器的水头损失一般小于0.5米,根据水头损失计算公式

式中,h ——水头损失(m ) Q ——处理水量(m 3/s ) d ——管道直径(m ) n ——混合单元(个) 本次设计中,采用两条铸铁输水管道由水源地向给水厂输水,其中原水流速不小于0.6m/s ,在技术上最高流速限定在2.5~3.0m/s 的范围内。此外还需要根据当地的经济条件,考虑管网造价和经营管理费用等因素,来选出合适的经济流速。本次设计中经济流速取1.25[1]m/s ,每条输水管的输水流量为0.608m3/s 。 则输水管径 d= 14 .325.1608 .04v 4??= πQ =0.787m 。 n d Q 4.421184.0h =<0.5m ,故2 4 .41184.05.0n Q d ?< 设计中取d=0.8m ,Q=0.608m 3/s 。 2 4 .41184.05.0n Q d ?<=4.28 水力条件符合。 选DN800内装4个混合单元的静态混合器。加药点设于靠近水流方向的第一个混合单元,投药管插入管径的1/4处,且投药管上多处开孔,使药液均匀分布。 (3)混合器选择: 查设备手册选用管式静态混合器,规格DN800。静态混合器采用4节,静态混合器总长4100mm ,管外径为820mm ,质量1249kg ,投药口直径65mm 。 原水 管道 药剂 混合单元体 静态混合器 管道

拦河溢流坝水力计算实例

拦河溢流坝水力计算实例 一、一、资料和任务 为了解决某区农田灌溉问题。于某河建造拦河溢流坝一座,用以抬高河中水位,引水灌溉。进行水力计算的有关资料有: 1.1.设计洪水流量为550米3/秒; 2.2.坝址处河底高程为43.50米; 3.3.由灌区高程及灌溉要求确定坝顶高程为48.00米; 4.4.为减小建坝后的壅水对上游的影响,根据坝址处河面宽度采用坝的溢流宽度B=60米; 5.5.溢流坝为无闸墩及闸门的单孔堰,采用上游面铅直的三圆弧段WES型实用堰剖面,并设有圆弧形 翼墙; 6.6.坝前水位与河道过水断面面积关系曲线,见图1; 7.7.坝下水位与河道流量关系曲线,见图2; 8.8.坝基土壤为中砾石; 9.9.河道平均底坡i=0.00127; 图1 图2 10.河道实测平均糙率n=0.04。 水力计算任务: 1.1.确定坝前设计洪水位; 2.2.确定坝身剖面尺寸; 3.3.绘制坝前水位与流量关系曲线; 4.4.坝下消能计算; 5.5.坝基渗流计算; 6.6.坝上游壅水曲线计算。

二、 二、 确定坝前设计洪水位 坝前设计洪水位决定于坝顶高程及设计水头d H ,已知坝顶高程为48.00米,求出d H 后,即可确定坝前设计洪水位。 溢洪坝设计水头d H 可用堰流基本方程2 /302H g mB Q σε=计算。因式中0H ,ε及σ 均与d H 有关,不能直接解出d H ,故用试算法求解。 设d H =2.53米,则坝前水位=48.00+2.53=50.53米,按坝前水位由图1查得河道过水断面面积A 0=525米2,又知设计洪水流量Q=550米3/秒,则 0v =0A Q =525550 = 1.03米/秒 g av 220=8.9203.10.12 ??=0.056米 0H =d H +g av 220 =2.53+0.056 = 2.586米 按设计洪水流量Q ,图2查得相应坝下水位为48.17米。下游水位超过坝顶的高度 s h =48.17-48.00=0.17米 o s H h =586.217 .0=0.066<0.15 下游坝高 1P =48.00—43.50=4.50米 o H P 1=586.250 .4=1.74<2.0 因不能完全满足实用堰自由出流条件: o s H h ≤0.15及o H P 1 ≥2.0,故为实用堰淹没出流。 根据o s H h 及o H P 1 值由《水力计算手册》曲线型实用堰的淹没系数图查得σ=0.999。因溢 流坝为单孔堰,溢流孔数n=1;溢流宽度B=b=60米。按圆弧形翼墙由边墩系数表查得边墩系数ζk =0.7,则侧收缩系数 nb H n k 00] )1[(2.01ζζε+--= =1-0.2×0.7×601586 .2?=0.994 对于WES 型实用堰,当水头为设计水头时,流量系数m =d m =0.502,于是可得溢流坝流量 2 /302H g mB Q σε= =0.999×0.994×0.502×602 /3586.28.92?? =550.6米3 /秒 计算结果与设计洪水流量基本相符,说明假设的d H 值是正确的,故取设计水头d H =2.53

用水量计算说明书

最高日用水量计算 ()居民综合生活用水 该城市为中小型城市,人口仅万,城市分区为二区,查《给水工程》(第四版)第页附表(),取最高日用水定额为·.文档收集自网络,仅用于个人学习 由任务书可知,该城城区居民人口为万. 故最高日综合用水量为:***()文档收集自网络,仅用于个人学习 ()工业区职工生活用水量计算 根据《工业企业设计卫生标准》,工作人员生活用水量应根据车间性质决定,一般车间采用每人每班·,高温车间采用每人每班·. 故工业区:高温车间:**()文档收集自网络,仅用于个人学习 一般车间:**() 工业区:高温车间:**() 一般车间:**() ()工业区职工淋浴用水量计算 查《给水工程》(第四版)第页附表,高温车间淋浴用水量取·班,一般车间淋浴用水量取·班.文档收集自网络,仅用于个人学习 本次设计中工厂地上班制度是三班制,所以选取每班中地一个时段作为上一班员工洗澡地时间,即,,,则淋浴用水总量计算如下:文档收集自网络,仅用于个人学习 工厂区为: (******)()文档收集自网络,仅用于个人学习 工厂区为: (******)()文档收集自网络,仅用于个人学习 ()工业区生产用水量计算 由任务书可知,工业区地生产用水量为万(),工业区地生产用水量为万().文档收集自网络,仅用于个人学习 ()工业区工厂村生活用水计算 由任务书可知,工业区地工厂村人口为万,工厂区地工厂村人口为万. 故工厂区地工厂村生活用水为:**() 工厂区地工厂村生活用水为:**() ()浇洒道路用水量计算 查《给水工程》(第四版)第页,浇洒道路用水量一般为每平方米路面每次,取. 故该城浇洒道路用水量为:****() ()绿化用水量计算 查《给水工程》(第四版)第页,大面积绿化用水可采用(·),由于该市地绿化面积较大,故选用.文档收集自网络,仅用于个人学习 故该城绿化用水用水量为**() 管网漏水量计算 管网漏失水量为居民区综合生活用水、工业区生产用水、工业区车间生活 用水、工业区职工淋浴用水、工业区工厂村生活用水、道路浇洒用水、绿 化用水总和地—,取进行计算.故 该城地管网漏失水量为()*文档收集自网络,仅用于个人学习 ()未预见水量计算 查《给水工程》(第四版)第页,城市未预见水量可按最高日用水量地合并计算.此处按最高日用水量地计算.文档收集自网络,仅用于个人学习

鸿业暖通-水管水力计算使用说明

使用说明书 ——水管水力计算 一、加载 1.将KtCnPub.dll拷入系统软件目录下。 2.加载ACSSgSlJs.arx之前请先加载KtCnCad.arx:。 二、运行 1.在命令行键入SgJs,回车,将出现程序的主界面。 2.界面说明 搜索分支:当用户需要从图面上提取数据时,点取搜索分支按钮,根据程序提示选取计算水管。当成功搜索出图面管道系统后,最长环路按钮可用,单击可以得到最长的管段组。 冷凝水量:当计算水管系统是冷凝水管系统时,该项可用,冷凝水管的水量是根据水管承担的负荷和用户设定的冷凝水量两者数据计算出来。 设备缺省水阻:风机盘管或者空调器的设备水阻,程序计算时会将此阻力计入到小计中去。 末端局阻系数:风机盘管或者空调器接管出一般还有阀门、过滤网等局阻系数,在此输入此局阻系数。相对于设备的水阻,此数值较小。 流量单位:根据用户选择不同的流量单位,显示的流量进行单位换算。

计算控制:程序在计算中根据用户选择的控制类型选取合适的管径。 控制数据设定:可以新建控制数据方案,可以更改已有的控制方案。 计算结果:显示包含搜索分支里面选取的管段的一条回路的各个管段数据。 3.使用说明 a.从图面上提取数据 单击搜索分支按钮 命令行提示: 命令: sgjs ESC返回 / 请选择要计算水管的远端: 选取要计算的水管的远端以后,程序返回到主界面。主界面如下: b.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击打开按钮 从打开文件对话框从选取要计算的文件,确定即可。

c.对于控制数据设定按钮:单击此按钮,将会出现如下对话框: 在此对话框中,可以修改已有的方案,可以添加新的控制数据方案。 注意:默认方案是不可以修改和删除的。 单击新建方案按钮,会出现新建方案对话框: 提示用户数据新的方案名称。 注意:新方案名称不能和已有的方案名称同名。

实用堰水力计算

实用堰水力计算 实用堰流的水力计算 [日期:06/21/200620:09:00]来源:作者:[字 体:[url=javascript:ContentSize(16)]大 [/url][url=javascript:ContentSize(14)]中 [/url][url=javascript:ContentSize(12)]小[/url]] (一)实用堰的剖面形状 实用堰是工程中既可挡水又可泄水的水工建筑物,根据修筑的材料,实用 堰可分为两大类型:一是用当地材料修筑的中、低溢流堰,堰顶剖面常做成折线型,称为折线形实用堰。一是用混凝土修筑的中、高溢流堰,堰顶制成适合水 流情况的曲线形,称为曲线形实用堰。 曲线型实用堰又可分为真空和非真空两种剖面型式。水流溢过堰面时,堰 顶表面不出现真空现象的剖面,称为非真空剖面堰;反之,称为真空剖面堰。真空剖面堰在溢流时,溢流水舌部分脱离堰面,脱离部分的空气不断地被水流带走,压强降低,从而造成真空。由于真空现象的存在,堰面出现负压,势能减少,过堰水流的动能和流速增大,流量也相应增大,所以真空堰具有过水能力 较大的优点。但另一方面,堰面发生真空,使堰面可能受到正负压力的交替作用,造成水流不稳定。当真空达到一定程度时,堰面还可能发生气蚀而遭到破坏。所以,真空剖面堰一般较少使用。 一般曲线型实用堰的剖面系由以下几个部分组成:上游直线段,堰顶曲线段,下游直线段及反弧段,如图所示。 上游段常作成垂直的;下游直线段的坡度由堰的稳定和强度要求而定,一般取1:0.65~1:0.75;圆弧半径可根据下游堰高和设计水头由表查得。当10m时, 可采用=0.5;当9m时,近似用下式计算,式中为设计水头。在工程设计中,一 般选用=(0.75-0.95)(为相应于最高洪水位的堰顶水头),这样可以保证在等于 或小于的大部分水头时堰面不会出现真空。当然水头大于时,堰面仍可能出现

溢流坝水力计算说明书

溢流坝水力计算说明书 项目水力计算培训报告教师:鄂作者:赵 水利工程27级溢流坝水力计算手册 基本信息见“任务说明” 1,根据明渠均匀流,根据“数据”计算绘制下游河道(1)的“水位流量”关系曲线。坝址处的河道断面为矩形断面(2)计算公式(按明渠均匀流计算,即谢才公式):v = criq = acric = R1/6a = bn x = b+2hr = 1 na x(3)计算(50年q和100年q对应的水深采用迭代法计算,即矩形断面迭代公式为:h?(nQi)3/5(b?2h)b a,迭代计算50年一次Q=1250m3/s的水h ,将已知数据代入公式(Q=1250m3/s,i=0.001,n=0.04,b=52m)得到h?(0.04?12500.001)3/5(52。?2h)3/5 52首先设定水深h01=0,并代入上述公式得到h02=7.759,然后将h02代入上述公式得到h03=8.613。用同样的方法,H04 = 8.699,H05 = 8.708,H06 = 8.709,H07 = 8.709,总而言之,最终h = 8.709 m.b .迭代方法用于计算相对于 h h = 9.395m . 的100年Q=1400m3/s,如a所示。同样的方法可用于计算和绘制“水位-流量”关系曲线

第1页 199工程水利计算培训报告指导教师:鄂作者:赵 水利工程27级河流下游水位流量关系计算表 水利工程 水力顺序谢才是流速、水深、h区、湿周长、x半径数、c v r 1 1.000 52.000 54.000 0.963 24.843 0.771 2 3 4 5 6 7 8 9流量Q 40 406.000备注50年回归100年回归谷底深度,2.000 10 4.000 56.000 1.857 27.717 1.194 124.223 407.000 3.000 156.000 58.000 2.690 29.482 1.529 238.522 408.000 4.000 22 230 2.468 898.283 412.000 8.000 416.000 68.000 6.118 33.809 2.644 1,100.077 413.000 8.709 452.868 69.418 6.524 34.174 2.760 1,250.004 413.709 10 9.9 800,000,000 . 000 . 000 . 000 . 000 . 000 000流量单位(m3/s)水位单位(m)水位▽ (图2) 页2 工程水力学计算实训报告教师:作者:赵(问??MB2g)2/3 计算:1。初步估计H0可以假定ho ≈ h。由于横向收缩系数与上游作用水头有关,所以可以先假定横向收缩系数ε,然后可以得到h,然后可以检查横向收缩系数的值由于堰顶高程和水头H0未知,应根据自由流出量σ=1.0进行计算,然后再次检查。Q=1250m3/s,ε=0.90,则: 1250H0?()2/3=6.25(m)

给水管网设计计算说明书教材

目录 1 设计原始资料…………………………………………………… 2 设计用水量……………………………………………………… 2.1 最高日用水量……………………………………………… 2.2 最高日最高时用水量……………………………………… 2.3 消防时用水量……………………………………………… 2.4 事故时用水量……………………………………………… 3 管网定线………………………………………………………… 3.1 管网定线原则……………………………………………… 3.2 管线布置及最不利点的选择……………………………… 4 流量分配………………………………………………………… 4.1 流量分配原则……………………………………………… 4.2 流量分配结果……………………………………………… 5 管径及水头损失计算…………………………………………… 5.1 管径的确定………………………………………………… 5.2 水头损失计算公式选择…………………………………… 6 管网平差计算…………………………………………………… 6.1 最高用水时………………………………………………… 6.2 消防时……………………………………………………… 6.3 事故时……………………………………………………… 7 确定水泵扬程、选泵及计算各节点水压……………………… 7.1 最高用水时………………………………………………… 7.2 水防时……………………………………………………… 7.3 事故时……………………………………………………… 8 材料统计表 附录………………………………………………………………… 附录1…………………………………………………………… 附录2…………………………………………………………… 参考文献……………………………………………………………

管网水力计算说明

7.5.2配水管道水力计算 7.5.2.1 配水管网平面布置 干、支管沿现有路、沟、渠布置,并考虑永丰乡村镇规划的要求。本项目供水区范围比较小,南北长度约10km ,东西长度8km ,以水厂为圆点,最远距离约8.0km ,局部主干管破坏后维修恢复速度快,不会造成大的损失,因此,本项目主管网按树枝状布置。具体管网布置见永丰乡管网平面布置图。 受地形条件限制,本项目管网输水距离较远,用户水龙头的最大静水头控制在40m 不能全部满足要求,因此采取安装减压阀进行降压的措施,在静水压力超过40m 的各自然村、管网末梢等处设置减压阀2处。 7.5.2.2 管网水力计算成果 由于供水区范围小,采用树枝状管网,管网配水流量按最高日最高时用水量和秒流量法两种方法所得大值作为管段流量进行设计。 A )最高日最高时用水量计算 1、设计流量: Q 配=(W -W 1)×K 时/24 式中: W ——村镇的最高日用水量,m 3/d ; W 1——大用户的用水量之和,m 3/d ; K 时——时变化系数,取2.0。 2、人均用水当量: q =Q 配/P 3、管网水力计算 ①按最不利点复核进行平差计算,水头损失计算公式按海澄-威廉公式进行如下: ()()5.0075.0/44.0gDi C R C e ?=υ νυ/D R e = 计算水温采用13℃,ν=0.000001; ②计算节点出流量:Q 节 =q×节点设计人口+大用户用水量;

B )秒流量法计算公式如下: 1、最大用水时卫生器具给水当量出流概率: (%)3600 2.000***=T N mK q U R h 式中:Uo ——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%); q 0——最高日的用水定额; m ——每户用水人数,取3.5人; K h ——小时变化系数,取2.0; N g ——每户设置的卫生器具当量数; T ——用水小时数。 2、管段的卫生器具给水当量的同时出流概率: () (%)1149.0g g c N N U -+=α 式中:U ——计算管段的卫生器具给水当量同时出流概率(%); αc ——对应于不同U 0时的系数; N g ——计算管段的的卫生器具当量总数。 3、计算管段的设计秒流量: )/(2.0s L N U q g g **= 式中:q g ——计算管段的设计秒流量(L/s )。 C )管网水头损失计算 控制流速:υ 为经济流速,为0.6~1.2m/s 。 管径:πυQ D 4= 单位管长水头损失:774.4774 .1000915.0d Q i = 管道水头损失:h = 沿程损失+局部水头损失=(1+0.1)×i×L ,其中L 为管段长度,局部损失率为10%。

设计计算说明书范例

设计计算说明书范例

建筑给水排水工程课程设计任务书 注:以下分项内容请每组根据自己的工程内容修改。 一、设计题目 南华大学新校区学生公寓2#楼 二、设计原始资料 (一)工程概况 本建筑共x层,底层为架空层,1~6层为标准层,总建筑面积为xm2,每层16间学生宿舍,每间按6位学生计,每间宿舍内设两个洗涤池4个水龙头。公共卫生间内设蹲便器、小便器、淋浴器、拖布池。 (二)给水水源 在x路有DN400mm的市政给水干管,高峰用水时可保证最低水压为0.2Mpa。根据校区给排水总体规划,F组团学生公寓生活用水采用分区供水,低区由市政管网直接供水,高区统一加压供水,F组团学生公寓火灾前期10分钟用水量设于D区1#楼屋顶专用消防水箱内,校区统一设消防水池和消防泵。 (三)污水排放 根据南华大学总体规划,污水集中到污水处理厂处理达标后排放。2#楼学生公寓的污水可排入其东面的校区污水干管,接管点高程为-4.5m(相对室内地面标高),根据当地环保部门的要求,生活污水排入下水道之前需经化粪池预处理后排放,公寓北面绿化带有有足够空地设化粪池。 (四)建筑图纸 1.各层平面图 2.屋顶平面图 三、设计内容 本设计只作建筑给水、排水设计,建筑雨水由建筑学专业负责。 四、成果 (一)绘制设计图纸 各楼层及屋顶给排水平面图, 给水系统、排水系统图, 卫生间大样(1﹕50) (二)计算说明书 说明书要简明扼要的说明设计任务、设计依据、采用方案的理由,计算书要求步骤清楚,内容完整。 五、设计时间 1.5周

建筑给水排水课程设计指导书 一、设计准备 1、明确设计目的、内容和要求。 2、熟悉设计原始资料。原始资料是设计工作的基础和依据,一般由建设单位和有关单位提供,本设计所需资料在任务书中已列出,设计中可依此进行。 3、熟悉有关设计规范。设计规范是工程设计的指导性准则,工程设计必须依据相关规范进行设计,因此,在设计前应先熟悉有关规范。 二、确定设计方案 1、生活给水系统 根据有关设计原始资料、建筑物的性质、用途、高度及设计要求,结合室外城市给水管网能提供的水压,供水的可靠性,确定给水系统的组成,并初步进行给水系统平面布置。 2、消防给水系统 根据建筑物的性质、用途、高度对消防给水的要求。按照“建筑设计防火规范”规定进行消防给水系统设计。根据规范要求,本建筑仅需设消火栓给水系统。 设计应确定消防给水同时作用股数,充实水柱长度,消火栓直径,水枪喷嘴口径,水龙带直径及长度,确定消火栓设置位置,并初步进行消防给水管网平面布置。 3、排水设计方案 根据排水排放条件,建筑物卫生设备情况,建筑高度及有关要求,确定室内排水系统体制,排水系统的组成,排水通气系统的设置,并初步进行排水系统平面布置。 4、选定各系统管材及接口方式。 三、管网布置 1、根据确定的设计方案,结合室内卫生洁具和设备布置情况,按照管道布置敷设原则,进行各楼层给水、排水、消防管网的平面布置。 2、根据平面布置图,分别绘制给水、排水、消防系统草图。 3、进行室外管网总体布置。 四、设计计算 (一)生活给水系统计算 1、用水量计算 确定用水定额及时变化系数,确定最高日用水量,最大小时用水量。 2、给水管网计算 根据给水系统计算草图,选择最不利配水点确定计算管路,列表进行管网

给水管网课程设计计算说明书

《给水管网课程设计》 计算说明书 2012年 12月31日 目录

一、布置给水管网 (3) 二、设计用水量及流量计算 (5) 1、计算设计用水量 (5) 2、计算实际管长和有效管长 (5) 3、计算比流量、沿线流量、节点流量 (7) 三、管网平差计算 (9) 1、初步分配管段流量和设定水流方向 (9) 2、选择管径 (9) 3、初步分配各管段最高时流量以及管长、管径的选取 (9) 4、哈代-克罗斯法校核环状管网 (12) 5、确定水泵扬程H p并求出各节点水压和自由水头 (15) 四、管网核算 (17) 1、消防时的管网校核 (17) 2、确定消防校核后水泵扬程H p及各节点水压和自由水头··20 3、最不利管段发生故障时的管网校核 (21) 4、确定事故校核后水泵扬程H p及各节点水压和自由水头··24 五、成果图绘制 (26) 1、绘制给水管网平面布置图及节点详图和消火栓布置 (26) 2、绘制最高时给水管网平面布置图 (26) 3、绘制消防时给水管网平面布置图 (26) 4、绘制事故时管网平面布置图 (26) 六、总结 (27) 七、参考文献 (28) 一、布置给水管网

1、水源与取水点的选择 所选水源为D县南面的潇水河,取水点选在水质良好的河段即河流的上游,并且靠近用水区。 2、取水泵站和水厂厂址的选择: 取水泵站选在取水点附近,用以抽取原水。 水厂选在不受洪水威胁,卫生条件好的河段上游。由于取水点距离用水区较近,可以考虑水厂与取水泵站合建。 3、给水管网布置 (1)原则: 符合城市规划,考虑远期发展 保证供水安全、可靠 管网遍布整个供水区域 力求管线短捷 (2)布置形式: 该设计区域为D县中心城区,不允许间断供水,适宜布置成环状网,可靠性高,水锤危害小。 (3)选取控制点: 根据D县规划平面图,选择最高最远点最为控制点。 (4)定线: 干管:先布干管,延伸方向应和二级泵站输水到水池、水塔、大用户的水流方向一致,线路最短,遍布供水区域,干管平行间距为500—800m左右,沿规划道路,靠近大用户。 连接管:干管与干管之间用连接管连接形成环状网,连接管平行间距为800—1000m左右。 4、在规划平面图上布置给水管网(见下页,详图见图纸)

相关主题
文本预览
相关文档 最新文档