当前位置:文档之家› PSA制氢装置培训教材

PSA制氢装置培训教材

PSA制氢装置培训教材
PSA制氢装置培训教材

PSA制氢装置培训教材

目录第一节、概述

第二节、吸附分离工艺原理

第三节、工艺流程及工艺条件的选择

第四节、主要设备

第一节概述

吸附现象早就被人们发现利用,早在数千年前,人门就开始利用木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色,市出土的汉代古墓中就放有木碳,显然墓主当时是用木炭吸收潮气等作为防腐措施。因此吸附分离是一门古老的技术。

变压吸附(Pressure Swing Adsorption)气体分离与提纯技术成为大型化工工业的一种生产工艺和独立的单元操作过程(称为吸附分离工程),是在上世纪六十年代迅速发展起来的。由于最早的吸附剂吸附能力较低、选择性较差,吸附分离仅用在吸湿干燥、脱色、除臭、饮用水净化上,吸附剂往往是一次性使用,使用时能耗不高。1942年德国发表了第一篇无热吸附干燥和净化空气(脱除CO2和H2O)的专利文献,1959年Skarstrom发明了PSA气体分离技术(当时称为“等温吸附”或“无热吸附”)。上世纪60年代初,在世界能源危机情况下,美国联合碳化物公司(UCC)首次实现了变压吸附四床工艺技术的工业化,于1966年建成投产了第一套PSA法从含氢工业气体中回收高纯度氢的工业装置。

随着世界能源的短缺,各国和各行业越来越重视低品位资源的开发与利用,以及各国对环境污染的治理要求也越来越高,由于吸附分离技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应围宽,使得吸附分离技术在钢铁工业、气体工业、电子工业、石油和化工工业中日益受到重视;另一方面,吸附剂也有了重大发展,如性能优良的分子筛吸附剂的研制成功,活性炭、活性氧化铝和硅胶吸附剂性能的不断改进,以及ZSM特种吸附剂和活性炭纤维的发明,都为连续操作的大型吸附分离工艺奠定了技术基础。

我国石化行业在上世纪70年代开始引进吸附分离技术,从合成气中脱除CO2以制造高纯度氢气。中国西南化工研究于上世纪70年代初开始进行采用变压吸附技术分离气体混合物的实验研究,并于1982年在建成了两套从氨厂弛放气中回收氢的变压吸附工业装置。

由于变压吸附(PSA)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近三十年来发展非常迅速,随着吸附剂、工艺过程控制、仪表控制及工程实施等方面研究的深入,变压吸附技术在气体分离和纯化领域中的应用围日益扩大,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氩气和烃类的制取、各种气体的无热干燥等,而其中变压吸附制取纯氢技术的发展尤其令人瞩目。

第二节吸附分离工艺原理

一、基本概念

吸附是指当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。我们通常所说的气体的吸附是指气体在与多孔性固体结束时,气体中一种或几种组分被吸着在固体表面的现象。1.吸附过程的分类

根据吸附质与吸附剂分子之间的相互作用不同,吸附通常可分为四大类,即:化学吸附、活性吸附、毛细管凝缩、物理吸附。

(1)化学吸附

化学吸附是指吸附剂与吸附质两者分子之间发生有化学反应,并在吸附剂表面生成化合物的吸附过程。这种吸附过程一般进行的很慢,一般是不可逆的,解吸过程非常困难,吸附热接近于化学反应热,且吸附剂本身的性质对吸附质的选择性起着决定性。

(2)活性吸附

活性吸附是指吸附剂与吸附质两者分子之间相互作用,生成有表面络合物的吸附过程。这种络合物不是一般的络合物,吸附剂分子仍留在吸附剂的晶格上。这种吸附过程一般进行的也很慢,相间平衡持续时间较长;吸附热较大,一般接近于化学反应热;一般是不可逆过程,解吸也比较困难;吸附剂本身的性质对吸附质的选择性起着决定性作用。

(3)毛细管凝缩

毛细管凝缩是指固体吸附剂在吸附蒸气时,在吸附剂孔隙发生的凝结现象。一般需加热才能完全再生。

(4)物理吸附

物理吸附是指依靠吸附剂与吸附质分子间的分子力(即德华力和电磁力)进行的吸附过程。其特点是:吸附过程中没有化学反应,吸附热一般不大,接近于冷凝热;吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成;这种吸附是完全可逆的;除了固体表面状况之外,吸附剂本身性质对吸附质无选择作用。

PSA制氢装置中的吸附主要为物理吸附。

2.吸附力

在物理吸附中,各种吸附剂对气体分子之所以有吸附能力是由于处于气、固相分界面上的气体分子的特殊形态。一般来说,只处于气相中的气体分子所受的来自各方向的分子吸引力是相同的,气体分子处于自由运动状态;而当气体分子运动到气、固相分界面时(即撞击到吸附剂表面时),气体分子将同时受到固相和气相中分子的引力,其中来自固相分子的引力更大,当气体分子的分子动能不足以克服这种分子引力时,气体分子就会

被吸附在固体吸附剂的表面。被吸附在固体吸附剂表面的气体分子又被称为吸附相,其分子密度远大于气相,一般可接近于液态的密度。

固体吸附剂表面分子对吸附相中气体分子的吸引力可由以下公式来描述:

分子引力F=C1/r m-C2/r n (m>n)

其中:C1表示引力常数,与分子的大小、结构有关

C2表示电磁力常数,主要与分子的极性和瞬时偶极矩有关

r表示分子间距离

因而对于不同的气体组分,由于其分子的大小、结构、极性等性质各不相同,吸附剂对其吸附的能力就各不相同。

组分吸附能力

氦气☆弱

氢气☆

氧气☆☆

氩气☆☆

氮气☆☆☆

一氧化碳☆☆☆

甲烷☆☆☆☆

二氧化碳☆☆☆☆☆☆

乙烷☆☆☆☆☆☆

乙烯☆☆☆☆☆☆☆

丙烷☆☆☆☆☆☆☆

异丁烷☆☆☆☆☆☆☆☆

丙烯☆☆☆☆☆☆☆☆

戊烷☆☆☆☆☆☆☆☆

丁烯☆☆☆☆☆☆☆☆☆

硫化氢☆☆☆☆☆☆☆☆☆☆

硫醇☆☆☆☆☆☆☆☆☆☆

戊烯☆☆☆☆☆☆☆☆☆☆☆

苯☆☆☆☆☆☆☆☆☆☆☆☆

甲苯☆☆☆☆☆☆☆☆☆☆☆☆

乙基苯☆☆☆☆☆☆☆☆☆☆☆☆☆☆

苯乙烯☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆

水☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆强

图1 为不同组分在分子筛上的吸附强弱顺序示意图

二、吸附平衡

1.吸附平衡

吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程。

在实际的吸附过程中,吸附包括两个过程:吸附质分子会不断地碰撞吸

附剂表面并被吸附剂表面的分子引力束缚在吸附相中(吸附);同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相(解吸);随着吸附质在吸附剂表面数量的增加,解吸速度逐渐加快,当吸附和解吸速度相当,一定时间进入吸附相的吸附质分子数和离开吸附相的吸附质分子数相等,从宏观上看,吸附量不再增加时,吸附过程就达到了平衡。

对于物理吸附而言,动态吸附平衡很快就能完成。

2.平衡吸附量

吸附过程达到吸附平衡时,吸附剂对吸附质的吸附量称为平衡吸附量。

平衡吸附量的大小与吸附剂的物化性能——比表面积、孔结构、粒度、化学成分有关,也与吸附质的物化性能、压力(或浓度)、温度等因素有关。在吸附剂和吸附质一定时,平衡吸附量就是吸附质的分压(或浓度)和温度的函数。

3.吸附等温线(物理吸附的两个性质)

在实际中,经常用吸附等温线来描述吸附过程中平衡吸附量与吸附质分压(或浓度)的关系,吸附等温线就是在一定的温度下,测定出不同压力下,吸附质组份在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量连接而成的曲线。

(1)温度和压力对平衡吸附量的影响

当固定温度(或压力)时,平衡吸附量就是压力(或温度)的单值函数,从而得到吸附等温函数(或吸附等压函数)。对于确定的吸附剂和吸附质(吸附体系),在一定的温度和压力下,平衡吸附量是一个定值。图2给出了不同温度下的吸附等温线示意图。

图2 不同温度下的吸附等温线示意图

从上图的B→C和A→D可以看出:在压力一定时,随着温度的升高吸附剂的吸附容量逐渐减小。从上图的B→A可以看出:在温度一定时,随着吸附质分压的升高吸附剂的吸附容量逐渐增大。从微观上解释,出现这种现象的主要原因是:由于压力越高单位时间撞击到吸附剂表面的气体分子数

越多,因此压力越高平衡吸附容量也就越大;而温度越高气体分子的动能越大,能被吸附剂表面分子引力束缚的分子就越少,因此温度越高平衡吸附容量就越小。

吸附剂的这一特性也可以用Langmuir 吸附等温方程来描述: P

Xi K P Xi K A i ??+??=211 (A i :吸附质i 的平衡吸附量,K 1、K 2: 吸附常数 ,P :吸附压力,Xi :吸附质i 的摩尔组成)。

在通常的工业变压吸附过程中,由于吸附--解吸循环的周期短(一般只有数分钟),吸附热来不及散失,恰好可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,吸附过程可近似看做等温过程,其特性基本符合Langmuir 吸附等温方程。

(2)吸附剂对不同组分的吸附能力不同(即具有选择性)

对于同一种吸附剂,不同的吸附质,在相同的温度和压力下,由于吸附质各组分分子的结构、大小、极性各不相同,吸附剂对吸附质的吸附能力不同,吸附剂的平衡吸附量是不同的,即具有选择性。下面给出的是某种吸附剂对不同的气体组分在38℃下的吸附等温曲线。

图3 不同气体组分38℃下在活性炭类吸附剂上的吸附等温线

气体吸附分离工艺过程之所以得以实现是由于吸附剂在物理吸附中具有的上述两个基本性质:一是对不同组分的吸附能力不同(即具有选择性),二是吸附质在吸附剂上的吸附容量随吸附质的分压和温度而变化,分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。

氢压机培训

1.压缩机简图 1 。压yā缩s uō机jī简介 压缩机组主要由机身,中体,气缸;曲轴,连杆,十字头,活塞组件,填料和气阀。 1)机身本体采用铸铁件铸造成型,在每个主轴承上部开口,以便拆装曲轴和连杆,在靠近电机端的主轴承为曲轴轴向定位轴承,轴承端有密封装置,防止润滑油泄露,轴承是铝质的,上面覆盖一层薄薄的巴式合金,主轴瓦采用轴承合金薄壁瓦。曲轴箱盖在发生紧急停车的情况下,30分钟后才能打开,过早的打开会发生爆炸的危险。 2)中体是连接机身与气缸的关键部件,由铸铁件铸造成型,在中体两侧开有大小窗口,主要是拆装填料及调整活塞间隙,检查活塞在往复运动时活塞杆平行度,(即活塞杆的偏心率0.04毫米,最高不超过0.07毫米),在滑道后端装有刮油装置,其功能是让曲轴箱

内的空气不与气缸和填料函内的氮气相混淆,使曲轴箱内的润滑油能够回收循环使用。 中体上部与底部开有专孔,可为隔离填料函通过氮气保护和压力填料函的水冷却及氮气保护提供通道和接口。 3)气缸表面采用水冷却,其内部有水套。冷却水在循环时,把压缩过程中产生的热量部分给带走,以改善气缸体的受热状况,气缸中气体管道接口流向均为上进下出,冷却水接口的流向均为下进上出,气缸内的缸膛,其工作面均为镜面且耐磨,要用干净的无纺布擦拭缸膛。 4)曲轴是压缩机的一个重要部件,采用优质碳钢整体锻造,曲轴箱内分别设有两个主轴颈和两个曲拐颈,两个曲拐颈成180度,提高其动力平衡性,主轴颈与曲拐颈分别有斜油孔,油孔与轴颈表面相惯处均倒圆抛光以提高曲轴的疲劳强度,润滑油由主颈轴压出,通过主轴斜油孔到达曲拐颈,然后再通过连杆上的油孔压到十字头轴销,以确保运动部件的润滑和冷却。 5)连杆是十字头与曲轴的连接件,它是由杆身,连杆大头轴承和连杆小头轴承及连接螺栓等组成,杆身采用机械性能较好的优质碳钢锻造成型,连杆螺母是冕型螺母,开有槽口,用开口销定位。连杆曲柄销轴承是两片壳体式铝质轴承,可以装在曲柄销上,连杆肘销轴承是一个整体的坚固的铝质衬套,是缩进连杆的眼里的。连杆的大小头有油孔贯通,润滑油可沿油孔直通大小头轴承,对大小头轴承进行润滑和冷却。如果运行间隙变的过大且轴承发出噪声,则应将其更换。 6)十字头为铸钢剖分式结构,十字头外侧有两个铝制衬套,十字头在滑块下设有垫片,便于安装和使用中调整,十字头与活塞杆通过连杆螺母进行连接,并用内齿形固定盖防松(A03),(A08)采用柱销式螺栓防松。螺栓十字头销采用碳化钢,通过与十字体锥度连接并借助与销钉使锥面紧贴,锥面上的键是用来防止销在孔座中转动,(如果衬套至销钉之间隙变过大,而使衬套发出噪声,则应将其换掉)。十字头与中体上下滑道间的润滑,是靠十字头的油眼通到中体上下滑道来达到。 7)活塞组件由活塞杆,活塞体和活塞环组成。活塞杆采用氮化合金钢,表面经过氮化处理,以提高其耐磨性,活塞环是压缩机中一个重要且容易磨损的零件,其作用是防止气体从气缸高压侧泄露到低压侧,它的材质,加工精度以及装配的好坏,均将直接影响压缩机的工作,现场的氢压机的活塞环采用填充聚四氟乙烯+碳-石墨的材料,适用于高压无油润滑的要求。 8)填料是阻止气缸内气体自活塞杆与气缸之间泄漏的组件,活塞杆密封的好坏直接影响压缩机的性能,对填料的基本要求是密封性能良好并耐用。现场的刮油器和压力填料箱的前端的密封填料是铜制填料,而后端的密封填料和隔离填料均为填充聚四氟乙烯+碳-石墨的材质。抛油环是当刮油环经过长期磨损,使机油泄漏沿着活塞杆渗出,此时抛油环在活塞杆往复运动的惯性下,将附着在活塞杆上的润滑油抛出保护活塞杆清洁,同时,也防止润滑油窜入气缸,引起气缸爆炸。当压缩机停止不用时,要打开氮气阀,使压缩机内部充满氮气,保护活塞杆及防止压缩机内部上锈。

煤制氢装置工艺说明书

浙江X X X X X X 有限公司 培训教材 煤制氢装置工艺说明书 二。一O年九月 第一章概述 1 设计原则 1.1本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm3/h 工业氢气。 1.2本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4采用DCS集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附 VPSA脱碳和(PSA提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运T造气T气柜T水煤气脱硫T水煤气压缩T全低温变换T变换气脱硫-变压吸附脱碳-变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000NmVh ,其中0.6MPa产品氢7000 Nm3/h , 1.3 MPa 产品氢23000 Nm'/h。装置的操作弹性为30—110%年生产时数为8000小时。 2.4 物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。

PSA制氢装置培训教材

PSA制氢装置培训教材 目录 第一节、概述 第二节、吸附分离工艺原理 第三节、工艺流程及工艺条件的选择 第四节、主要设备 第一节概述 吸附现象早就被人们发现利用,早在数千年前,人门就开始利用木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色,湖南长沙市出土的汉代古墓中就放有木碳,显然墓主当时是用木炭吸收潮气等作为防腐措施。因此吸附分离是一门古老的技术。 变压吸附(PressureSwingAdsorption)气体分离与提纯技术成为大型化工工业的一种生产工艺和独立的单元操作过程(称为吸附分离工程),是在上世纪六十年代迅速发展起来的。由于最早的吸附剂吸附能力较低、选择性较差,吸附分离仅用在吸湿干燥、脱色、除臭、饮用水净化上,吸附剂往往是一次性使用,使用时能耗不高。1942年德国发表了第一篇无热吸附干燥和净化空气(脱除CO2和H2O)的专利文献,1959年Skarstrom发明了PSA气体分离技术(当时称为“等温吸附”或“无热吸附”)。上世纪60年代初,在世界能源危机情况下,美国联合碳化物公司(UCC)首次实现了变压吸附四床工艺技术的工业化,于1966年建成投产了第一套PSA法从含氢工业气体中回收高纯度氢的工业装置。 随着世界能源的短缺,各国和各行业越来越重视低品位资源的开发与利用,以及各国对环境污染的治理要求也越来越高,由于吸附分离技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,使得吸附分离技术在钢铁工业、气体工业、电子工业、石油和化工工业中日益受到重视;另一方面,吸附剂也有了重大发展,如性能优良的分子筛吸附剂的研制成功,活性炭、活性氧化铝和硅胶吸附剂性能的不断改进,以及ZSM特种吸附剂和活性炭纤维的发明,都为连续操作的大型吸附分离工艺奠定了技术基础。 以制造高纯度氢气。 我国石化行业在上世纪70年代开始引进吸附分离技术,从合成气中脱除CO 2 中国西南化工研究设计院于上世纪70年代初开始进行采用变压吸附技术分离气体混合物的实验研究,并于1982年在上海建成了两套从氨厂弛放气中回收氢的变压吸附工业装置。 由于变压吸附(PSA)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近三十年来发展非常迅速,随着吸附剂、工艺过程控制、仪表控制及工程实施等方面研究的深入,变压吸附技术在气体分离和纯化领域中的应用范围日益扩大,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氩气和烃类的制取、各种气体的无热干燥等,而其中变压吸附制取纯氢技术的发展尤其令人瞩目。 第二节吸附分离工艺原理

PSA制氢装置培训教材

PSA制氢装置培训教材

目录第一节、概述 第二节、吸附分离工艺原理 第三节、工艺流程及工艺条件的选择 第四节、主要设备

第一节概述 吸附现象早就被人们发现利用,早在数千年前,人门就开始利用木炭、酸性白土、硅藻土等物质所具有的强吸附能力进行防潮、脱臭和脱色,湖南长沙市出土的汉代古墓中就放有木碳,显然墓主当时是用木炭吸收潮气等作为防腐措施。因此吸附分离是一门古老的技术。 变压吸附(Pressure Swing Adsorption)气体分离与提纯技术成为大型化工工业的一种生产工艺和独立的单元操作过程(称为吸附分离工程),是在上世纪六十年代迅速发展起来的。由于最早的吸附剂吸附能力较低、选择性较差,吸附分离仅用在吸湿干燥、脱色、除臭、饮用水净化上,吸附剂往往是一次性使用,使用时能耗不高。1942年德国发表了第一篇无热吸附干燥和净化空气(脱除CO2和H2O)的专利文献,1959年Skarstrom发明了PSA气体分离技术(当时称为“等温吸附”或“无热吸附”)。上世纪60年代初,在世界能源危机情况下,美国联合碳化物公司(UCC)首次实现了变压吸附四床工艺技术的工业化,于1966年建成投产了第一套PSA法从含氢工业气体中回收高纯度氢的工业装置。 随着世界能源的短缺,各国和各行业越来越重视低品位资源的开发与利用,以及各国对环境污染的治理要求也越来越高,由于吸附分离技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,使得吸附分离技术在钢铁工业、气体工业、电子工业、石油和化工工业中日益受到重视;另一方面,吸附剂也有了重大发展,如性能优良的分子筛吸附剂的研制成功,活性炭、活性氧化铝和硅胶吸附剂性能的不断改进,以及ZSM特种吸附剂和活性炭纤维的发明,都为连续操作的大型吸附分离工艺奠定了技术基础。 我国石化行业在上世纪70年代开始引进吸附分离技术,从合成气中脱除CO2以制造高纯度氢气。中国西南化工研究设计院于上世纪70年代初开始进行采用变压吸附技术分离气体混合物的实验研究,并于1982年在上海建成了两套从氨厂弛放气中回收氢的变压吸附工业装置。 由于变压吸附(PSA)气体分离技术是依靠压力的变化来实现吸附与再生的,因而再生速度快、能耗低,属节能型气体分离技术。并且,该工艺过程简单、操作稳定、对于含多种杂质的混合气可将杂质一次脱除得到高纯度产品。因而近三十年来发展非常迅速,随着吸附剂、工艺过程控制、仪表控制及工程实施等方面研究的深入,变压吸附技术在气体分离和纯化领域中的应用范围日益扩大,已广泛应用于含氢气体中氢气的提纯,混合气体中一氧化碳、二氧化碳、氧气、氮气、氩气和烃类的制取、各种气体的无热干燥等,而其中变压吸附制取纯氢技术的发展尤其令人瞩目。

11制氢装置的原始开工(修改完)

第十一章制氢装置的原始开工 装置在开车前要进行开车前的准备,对装置中所需要的原材料、辅助材料、公用工程系统进行检查和接收,所有条件一切良好才具备开车的条件。 11.1准备工作 11.1.1开工检查项目 1.所有容器和设备在填充闭之前,已经过仔细地检查,内部清洁无损,内件安装完整。2.转化炉及废热烟道衬里经干燥以后进行过仔细检查,完整无损,质量良好。 3.所有的管道和设备经检验,包括阀门、孔板、测压点、放空排污阀、安全阀、疏水器等在内安装正确无误,并对设备和管道进行过仔细冲洗和吹扫。 4.所有仪表、控制阀经过检查和调试合格。电磁阀、变送器送电。调节阀气源接通。所有一次仪表,信号取压管上的及至变送器的脉冲管线上阀打开,所有安全阀前的阀门打开。5.所有放空阀、排液阀、通向地管的阀门、取样管上的阀关闭。 6.泵、压缩机、风机等动设备按专门说明书经过检查,并做过运转试验,性能良好。7.联锁系统经过检查,功能良好,并作好设定。 8.所有安全阀经过检查合格,并作好压力设定。 9.所有设备和管道已做过气密试验,以及N2置换工作。 10.所有疏水器经检验功能良好。 11.所有临时盲板拆除。 12.控制室内所有调节阀处于手动状态,所控制所阀门处于关闭状态。 13.现场所有工艺管线上的截止阀处于关闭状态。 14.所有工艺主流程上的盲板翻为通板。 15.各种原材料、辅助材料均已具备接受条件。 16.开工所需物料已关至装置界区。 11.1.2开工人员培训 为确保装置安全、平稳、高效、一次投料试车成功,必须对参加开工的所有人员进行全面系统的开工培训,让所有人员训练掌握开工方案和步骤,并进行上岗取证考试,取得上岗证的人员才能参与装置的初次开工。 11.1.3成立开工指挥小组 为明确各级开工人员在开工过程中所负责的具体工作,便于开工的统筹安排,明确指挥和操作职责,开工前要成立装置开工指挥小组,编制指挥网络图。 11.2开工步骤 制氢装置的原始开工步骤较为复杂,主要是因为有较多种类的催化剂的预处理。催化剂预下处理的好坏直接影响到装置生产的平衡和效益的高低。因此,制氢装置原始开工的各个环节都要严格把好质量关。 11.2.1系统气密 根据装置各系统的压力等级和流程,编制气密流程图,用气密介质对各系统进行气密,具体方法见上一章相关内容。

加氢工艺培训教材

加氢工艺培训教材 近年来由于国家对汽柴油等石化产品的质量要求越来越高,而原料的性质越来越差,传统的油品加工工艺越来越难以满足要求。美国DuPont公司IsoTherming加氢新工艺,使用新型加氢反应系统,投资成本和操作费用较低。该工艺通过先用氢气使混合进料和先前已被加氢处理的液体循环物流处于氢饱和状态,混合进料和循环物流和反应所需的全部氢气一起进入催化剂床层。当氢气呈液相以溶解氢形式进入反应器时,整个反应只受内在反应速率(催化剂的有效因素和实际反应速率)的控制。加氢时,发生的绝大多数反应为高放热反应。被处理过的流体循环物流不仅可向反应提供大量溶解氢,还可以作为热载体,有助于吸收反应热量,使反应器在更为等温的模式中运行,同时该技术还可大大减少催化剂的结焦现象。 1 加氢技术简介 1.1加氢的作用: 1)脱除原料油中的S、N、重金属等组分,为后续装置做好准备; 2)降低原料油中胶质,残炭值,提高后续装置加工量、产品收率; 3)对催化柴油,焦化柴油,直馏柴油等产品进行精制以提高质量; 4)使油品中的芳烃饱和,降低油品密度; 1.2加氢的种类: 1、石脑油加氢 通过加氢使得S含量<0.5ppm、N含量<0.5ppm。 石脑油加氢的约束条件: 1)反应床层温度不得高于350℃; 2)硅含量需严格控制,以防催化剂中毒; 3)控制砷的含量; 4)辛烷值损失要尽量少; 5)注意控制压力降,不能过大。 2、煤油加氢 通过加氢改善煤油烟点;降硫醇含量;降酸度、环烷烃含量。 煤油加氢的约束条件: 1)温度控制合适,温度过高会使煤油颜色加深,烟点上升; 2)采用钴钼催化剂。

3、柴油加氢 通过加氢使产品质量得以改进,生产产品低硫柴油和超低硫柴油;同时使柴油中的芳烃饱和,改善柴油色泽,稳定性;脱蜡,改善柴油凝固点。 柴油加氢的约束条件: 1)温度限制,随着催化剂活性的降低,为保证产品质量需提高进料油品的温度,但进料温度过高催化剂又易结焦; 2)反应床层温度过高会影响柴油色度; 3)压力降不能过大。 4、催化原料预处理 通过加氢对催化原料脱S,脱N,降原料油密度,降残炭,使芳烃饱和。 约束条件: 1)反应床层温度,影响反应速率; 2)重金属含量过高,会使催化剂中毒; 3)压力降过高会影响操作。 2 加氢技术的发展 加氢技术可分为三个阶段: 第一阶段为1940~1970年,以提高产率为主,渣油转化技术; 第二阶段为1980~2010年,对产品质量要求逐渐提高,以清洁环保为主。 第三阶段为2020~以后,针对能源紧缺,需将更多重油转化为产品。为能源充分利用阶段。 3 DuPont IsoTherming加氢 3.1 IsoTherming加氢工艺 IsoTherming油品加氢改质工艺分原料预处理部分,加氢反应部分,热、冷低分部分,分馏部分,新氢压缩机部分等。 原料预处理部分:混合原料(包括焦化蜡油、焦化柴油、直馏柴油、催化柴油)先进入进料过滤器过滤,然后与低硫柴油换热后进入原料缓冲罐,原料进入缓冲罐前腰控制好温度在150℃以下,以防结焦,然后由进料泵将原料抽出送往后续工段。 加氢反应部分:保护床控制总体原则要确保进入床层的液体处于

制氢站培训教材

制氢站培训教材 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

氢气的制取和发电机的冷却 第一节发电机的冷却方式 1. 发电机冷却的重要性 发电机运转时要发生能量消耗,这是有一种能(机械能)转变为另一种能(电能)时所不可避免的。这些损耗的能量,最后都变成了热量,致使发电机的转子、定子、定子绕组等各部件的温度升高。 因为发电机的部件都是有铜质和铁质材料制成的,所以把这种能量消耗叫做铜损和铁损。为了保证发电机能在绕组绝缘材料允许的温度下长期运行,必须及时地把铜损和铁损所产生的热量导出,使发电机各主要部件的温升经常保持在允许的范围内。否则,发电机的温升就会继续升高,使绕组绝缘老化,出力降低,甚至烧坏,影响发电机的正常运行。因此,必须连续不断地将发电机产生的热量导出,这就需要强制冷却。 2. 发电机常用的冷却方式 发电机的冷却是通过冷却介质将热量传导出去来实现的。常用的冷却方式有: 空气冷却。容量小的发电机(两万千瓦以下)多采用空气冷却,即使空气有发电机内部通过,将热量带出。这种冷却方式效率差,随着发电机容量的增大已逐渐被淘汰。 水冷却。把发电机转子和定子绕组线圈的铜线作成空心,运行中使高纯度的水通过铜线内部,带出热量使发电机冷却。这种冷却方式比空气冷却效果好,但必须有一套水质处理系统和良好的机械密封装置。目前,大型机组多采用这种冷却方式。 氢气冷却。氢气对热的传导率是空气的六倍以上,加以它是最轻的一种气体,对发电机转子的阻力最小,所以大型发电机多采用氢气冷却方式,即将氢气密封在发电机内部,使其循环。循环的氢气再由另设的冷却器通水冷却。氢气冷却有可分为氢气与铜线直接接触的内冷式(直接冷却)和氢气不直接与铜线接触的外冷式两种。

DB37T 2971-2017化工企业安全生产风险分级管控体系细则

ICS13.100 G 09 DB37 山东省地方标准 DB37/T 2971—2017 化工企业安全生产风险分级管控体系细则 Detailed rule for the management and control system ofchemical industry work safety risk classification 2017-06-23发布2017-07-23

目次 前言............................................................................... III 引言................................................................................ IV 1 范围 (1) 2 规范性引用文件 (1) 3 术语与定义 (1) 4 基本要求 (1) 4.1 成立组织机构 (1) 4.2 实施全员培训 (1) 4.3 编写体系文件 (1) 5 风险识别评价 (1) 5.1 风险点确定 (2) 5.1.1 风险点划分原则 (2) 5.1.2 风险点排查 (2) 5.2 危险源辨识分析 (2) 5.2.1 危险源辨识 (2) 5.2.2 危险源辨识范围 (2) 5.2.3 危险源辨识实施 (2) 5.3 风险控制措施 (3) 5.4 风险评价 (3) 5.4.1 风险评价方法 (3) 5.4.2 风险评价准则 (3) 5.5 风险分级管控 (3) 5.5.1 管控原则 (3) 5.5.2 确定风险等级 (4) 5.5.3 重大风险判定 (4) 5.5.4 风险分级管控实施 (4) 5.5.5 编制风险分级管控清单 (4) 6 成果与应用 (5) 6.1 档案记录 (5) 6.2 风险信息应用 (5) 7 分级管控的效果 (5) 8 持续改进 (5) 附录A(资料性附录)分析记录表 (6) 附录B(资料性附录)工作危害分析法(JHA) (10)

煤制氢装置工艺说明书.docx

浙江X X X X X X有限公司 培训教材 煤制氢装置工艺说明书 二○一○年九月 第一章概述 1 设计原则 1.1 本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm3/h工业氢气。 1.2 本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3 认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4 采用DCS集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附VPSA 脱碳和(PSA)提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运→造气→气柜→水煤气脱硫→水煤气压缩→全低温变换→变换气脱硫→变压吸附脱碳→变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000Nm3/h,其中0.6MPa产品氢7000 Nm3/h,1.3 MPa 产品氢23000 Nm3/h。装置的操作弹性为30—110%,年生产时数为8000小时。 2.4物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。 2.5装置特点: 本装置选用国内研制成功的新型催化剂和先进的工艺流程及设备,能有效的降低生产成本和能耗,提高了装置运转的可靠性。 2.5.1煤储运装置的特点 2.5.1.1贮煤方式: 本装置以干煤棚贮煤与露天堆场贮煤相结合,其中干煤棚可贮煤约5000吨,可供气

制氢站培训教材

氢气的制取和发电机的冷却 第一节发电机的冷却方式 1.发电机冷却的重要性 发电机运转时要发生能量消耗,这是有一种能(机械能)转变为另一种能(电能)时所不可避免的。这些损耗的能量,最后都变成了热量,致使发电机的转子、定子、定子绕组等各部件的温度升高。 因为发电机的部件都是有铜质和铁质材料制成的,所以把这种能量消耗叫做铜损和铁损。为了保证发电机能在 绕组绝缘材料允许的温度下长期运行,必须及时地把铜损和铁损所产生的热量导出,使发电机各主要部件的温升经常保持在允许的范围内。否则,发电机的温升就会继续升高,使绕组绝缘老化,出力降低,甚至烧坏,影响发电机的正常运行。因此,必须连续不断地将发电机产生的热量导出,这就需要强制冷却。 2.发电机常用的冷却方式 发电机的冷却是通过冷却介质将热量传导出去来实现的。常用的冷却方式有: 2.1空气冷却。容量小的发电机(两万千瓦以下)多采用空气冷却,即使空气有发电机内部通过,将热量带 出。这种冷却方式效率差,随着发电机容量的增大已逐渐被淘汰。 2.2水冷却。把发电机转子和定子绕组线圈的铜线作成空心,运行中使高纯度的水通过铜线内部,带出热量 使发电机冷却。这种冷却方式比空气冷却效果好,但必须有一套水质处理系统和良好的机械密封装置。目前,大型机组多采用这种冷却方式。 2.3氢气冷却。氢气对热的传导率是空气的六倍以上,加以它是最轻的一种气体,对发电机转子的阻力最小, 所以大型发电机多采用氢气冷却方式,即将氢气密封在发电机内部,使其循环。循环的氢气再由另设的冷却器通水冷却。氢气冷却有可分为氢气与铜线直接接触的内冷式(直接冷却)和氢气不直接与铜线接触的外冷式两种。 当前除了小容量(25MW及以下)汽轮发电机仍采用空气冷却外,功率超过50MW勺汽轮发电机都广泛采用了氢 气冷却,氢气、水冷却介质混用的冷却方式。在冷却系统中,冷却介质可以按照不同的方式组合,归纳起来一般有以下几种: 2.3.1定、转子绕组和定子铁芯都采用氢表面冷却,即氢外冷; 2.3.2定子绕组和定子铁芯采用氢表面冷却,转子绕组采用直接冷却(即氢内冷); 2.3.3定、转子绕组采用氢内冷,定子铁芯采用氢外冷; 2.3.4定子绕组水内冷,转子绕组氢内冷,定子铁芯采用氢外冷,即水氢氢冷却方式; 2.3.5定、转子绕组水内冷,定子铁芯空气冷却,即水水空冷却方式; 2.3.6定、转子绕组水内冷,定子铁芯氢外冷,即水水氢冷却方式。 我厂2X 600MW机组汽轮发电机采用水氢氢冷却方式,即发电机定子绕组采用水内冷,转子绕组采用氢内冷, 定子铁芯采用氢外冷。

三级安全教育培训教材本

安全教育培训教材(授课人:林桂新) 山东宝顺科技有限公司-- 安环部 二?一四年十月 、八

前言 宝舜、晨耀两个公司的大开发、大建设,使两个公司的面貌处处呈现出前所未有的新气象。但是,我们也清楚地认识到,大开发、大建设的同时,因为我们公司属易燃易爆、高温高压、有毒有害等特殊行业,安全工作尤为重要,这就为我们的员工在生产岗位上如何去科学地操作提出了严格的规范要求,首先,必须提高自己的安全防范意识,严格执行安全规章制度与操作规程。 特别是新员工,安全意识差,自我保护意识不强,缺乏必要的安全操作技能及应急处理能力,缺乏对易燃易爆、有毒有害危化品知识的学习,因此,按照国家安全生产法和公司的要求,新员工和其他员工都必须接受公司的安全教育培训。 新员工在进入一个新的工作环境和作业场所之后,免不了要和相关的工作人员、装置设备等打交道。但往往由于不熟悉新工厂生产情况和不懂新岗位安全技术,不能很好地去适应作业环境. 对对有毒有害部位的危害性和认识不足,易违章作业和习惯性违章作业,从而造成不必要的伤害事故。因此,新员工从进入公司的第一天起就要把安全生产放在最重要的位置,自觉地遵守好规章制度和劳动纪律,从思想上、理论上、技能上,为自身和家庭及公司的安全发展负起责任来。 危险化学品生产的特点 危险化学品生产过程中的原材料、中间产品和产品,大多数都具有易燃易爆的特性,有些化学物质对人体存在着不同程度的危害。生产过程具有高温高压、毒害性腐蚀性、生产连续等特点,易发生泄漏、火灾、爆炸等事故,归纳一下具有以下儿个特点: 易燃、易爆、易中毒、生产工艺复杂、条件苛刻(生产原料具有特殊性,生产过程具有危险性,生产设

煤制氢装置工艺说明书

X X X X X X有限公司培训教材煤制氢装置工艺说明书 二○一○年九月

第一章概述 1 设计原则 1.1 本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm3/h工业氢气。 1.2 本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3 认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4 采用DCS集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附VPSA脱碳和(PSA)提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运→造气→气柜→水煤气脱硫→水煤气压缩→全低温变换→变换气脱硫→变压吸附脱碳→变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000Nm3/h,其中0.6MPa产品氢7000 Nm3/h,1.3 MPa产品氢23000 Nm3/h。装置的操作弹性为30—110%,年生产时数为8000小时。 2.4物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。

相关主题
文本预览
相关文档 最新文档