当前位置:文档之家› 天线第十讲-对数周期天线与螺旋天线20150512

天线第十讲-对数周期天线与螺旋天线20150512

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

一种小型平面螺旋天线概要

一种小型平面螺旋天线 龙小专1 袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1 Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 2 电阻加载 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r=r0+aφ (1)

大功率对数周期天线电气参数变化原因分析

大功率对数周期天线电气参数变化原因分析 摘要:对数周期天线是一种定向的板状天线,通常用于室内分布以及电梯信号的覆盖,是宽频带天线的一种。文章对对数周期天线的具体工作模式以及原理进行了详细 的介绍,并认真分析了对数周期天线在大功率广播实际使用时,由于出现因阻抗不匹配而造成电气具体参数发生变化的问题。通过对对数周期天线进行相关的测试,并对参数数据作出具体的处理和分析,找出发生参数变化的原因,并提出针对性的改造策略。 关键词:大功率;对数周期天线;电气参数;变化原因;解决措施 大功率的对数周期天线是国家新闻出版广电总局八七 一台100千瓦短波发射机器使用的一种天线,在具体使用中可以清楚地发现发射机器的反射功率相对较大。为了能够使发射机器和对数周期天线更好地进行匹配和运行,提高传输效率,增强其在具体运行中的稳定性,以确保广播在具体作业中能够安全播出,笔者对对数周期天线进行了相关测试,并将其与天线出厂时的相关数据信息进行比对,得出天线电气参数的变化原因,并根据其变化原因拟定针对性的天线改造措施。

1 对数周期天线的工作原理 对数周期天线的结构较为简单,其具备频带较宽的特点,因此在实际应用中得到广泛的使用,天线的特性根据频率的变化对对数周期产生一定的影响。然而,在谐振频率运行期间,天线的特性是根据其变化进行波动的。当天线被特定情况激励时,会在集合线上产生TEM型号的传输波,从天线微端向天线顶端方向发出辐射,这部分的波长接近于/的偶极子与其连接的集合县被称之为作用区域,对对数周期天线的辐射起到决定性的作用。在作用区域之前是一些短于/的偶极子,从集合上的耦合能量较小,对于天线的辐射作用不大,但是其作为集合线中的电容负荷对于天线的输入阻抗以及明确 天线的耦合作用区具有重要的现实作用。其所连接的集合线与这些偶极子称之为传输区,传输波在经过作用区域后,其能量将会减少到15dB以上,因此,在经过作用区后相对于/较长的偶极子将不会对天线辐射造成一定的影响,这些较长偶极子所在的区域则被称之为非作用区域,在工作的频率较高时,整体结构形式以及电尺寸则会仍然保持不变。对数周期天线的工作原理如图1所示。 2 大功率对数周期天线电气变化的原因 2.1 存在的原因以及对问题的分析 在具体使用过程中,笔者清楚地发现,天线可以在4.5~22MHz内的任意频点进行满功率工作,但是在一些实际运行

Ansoft HFSS在设计对数周期天线时的仿真方法

ANSYS 2011中国用户大会优秀论文 Ansoft HFSS在设计对数周期天线时的仿真方法 孙凤林黄克猛 中国西南电子技术研究所,成都,610036 [ 摘要 ] 本文通过ANSOFT HFSS设计了一个对数周期天线,在仿真分析时,发现随着求解频率的不同,天线的求解结果差别较大,求解误差较大。通过在HFSS中尝试不同的求解设置方法, 最终通过将天线模型剖分网格最大长度限定在1/50λ的方法,使的求解结果在不同频率求解 时的一致性较好,提高了仿真的准确性。为设计者在仿真类似问题时,提供了一种提高求解准 确性的方法。 [ 关键词]HFSS;网格设置;对数周期天线 The Simulation Method on designing of a Log-Periodic Dipole Antenna on Ansoft HFSS Sun Feng-lin,Huang Ke-meng Southwest China Institute of Electronic Technology, Chengdu, 610036, China [ Abstract ] A method of simulating Log-Periodic Dipole Antenna on Ansoft HFSS is introduced in this paper. When simulating the Log-periodic antenna model, it was found that the simulation results are difference with different Solution Frequency on HFSS, The solution error is high. The accuracy of the solution depends on the size of each of the individual elements, to generate a precise simulation result, applying mesh operations ,assigning Maximum length of Elements mesh to 1/50λ, the results shows that the difference is reduced obviously, the simulation accuracy is improved. [ Keyword ] HFSS; mesh operations; log-periodic dipole antenna 1前言 对数周期偶极子天线(log-periodic dipole antenna),由于其工作频带宽、增益高、前后比好、结构简单、成本低等众多优点,在短波、超短波、微波等波段的通信、侧向、侦察、电子对抗等方面得到了广泛的应用。本文利用Ansoft HFSS软件对这种传统的对数周期天线进行了设计,在软件中直接建立了天线的仿真模型,并进行了相应的端口和边界设置,然而在仿真求解时却发现,随着求解频率的不同,得到的求解结果差别较大,为了获得一个较可信的分析结果,提高仿真的准确性,对HFSS一些参数设置进行了分析和验证。

科普:最全面的天线知识

科普:最全面的天线知识 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。 天线总输入功率的比值,称该天线的最大增益系数。它是比天线方向性系数更全面的反映天线对总的射频功率的有效利用程度。并用分贝数表示。可以用数学推证,天线最大增益系数等于天线方向性系数和天线效率的乘积。 天线的发明 天线是由俄国科学家波波夫发明的。 1888年,29岁的波波夫得知德国著名物理学家赫兹发现电磁波的消息后,这位曾经立志推广电灯的年轻科学家对朋友们说:“我用毕生的精力去安装电灯,对于广阔的俄罗斯来说,只不过照亮了很小的一角:假如我能指挥磁波,那就可以飞越整个世界!” 于是,他埋头研究,向新的目标发起了冲击。 1894年,波波夫制成了一台无线电接收机。这台接收机的核心部分用的是改进了的金属屑检波器,波波夫采用电铃作终端显示,电铃的小锤可以把检波器里的金属屑震松。电铃用一个电磁继电器带动,当金属屑检波器检测到电磁波时,继电器接通电源,电铃就响起来。 有一次,波波夫在实验中发现,接收机检测电波的距离突然比往常增大了许多。 “这是怎么回事呢?”波波夫查来查去,一直找不出原因。 一天,波波夫无意之中发现一根导线搭在金属屑检波器上。他把导线拿开,电铃便不响了;他把实验距离缩小到原来那么近,电铃又响了起来。 波波夫喜出望外,连忙把导线接到金属屑检波器的一头,并把检波器的另一头接上。经过再次试验,结果表明使用天线后,信号传递距离剧增。 无线电天线由此而问世。 1、按工作性质可分为发射天线和接收天线; 2、按用途可分为通信天线、广播天线、电视天线、雷达天线等; 3、按方向性可分为全向天线和定向天线等; 4、按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等; 5、按结构形式和工作原理可分为线天线和面天线等。描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频宽; 6、按维数来分可以分成两种类型:一维天线和二维天线。

一种低剖面平面螺旋天线的设计

一种低剖面平面螺旋天线的设计 [ 录入者:天线微波 | 时间:2008-12-19 12:31:09 | 作者:景小东张福顺 | 来源:Error! Hyperlink reference not valid. | 浏览:498次 ] 摘要文章提出了一种低剖面平面螺旋天线的设计方法,用金属反射板代替传统的A /4反射腔来实现螺旋天线的单向辐射,并在螺旋末端接以阻性负载,以改善天线的电性能。实验结果表明,对于工作频带为1.3GHz~2.1GHz的四臂平面阿基米德螺旋天线,在保证天线特性的前提下,整个天馈结构的厚度减小至17ram。 0 引言 平面螺旋天线由于其结构的自相似性,能在很宽的频带内辐射圆极化波,因而获得了广泛的应用¨J。平面螺旋天线的辐射是双向的,但在实际应用中,往往要求天线具有单向辐射特性。通常的做法是,在螺旋天线的一侧加装反射腔,并根据实际情况在腔内填充微波吸收材料。这种做法能使天线达到相当宽的频带(2GHz~18GHz) 』,但其最大的缺点是,由于微波吸收材料的存在,近一半的辐射能量将被吸收掉 J,这使得天线的效率大大降低;即使不填充吸收材料,反射腔A/4的高度又使得天线的厚度过大,这在某些应用中又令人难以接受。 文章根据四臂平面螺旋天线的原理,设计了相应的馈电网络,将其地板作为天线的平面反射器,代替A/4反射腔,并在螺旋终端接阻性负载,以减小由镜像电流引起的互耦对天线电性能的影响。 通过调整天线辐射器与馈电电路板的间距,在保证天线电性能的前提下,使天线厚度减薄至17ram,满足低剖面要求。 1 天线设计 1.1 平面阿基米德螺旋天线 平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线,在结构上又有单臂、双臂、四臂之分。文章采用四臂平面阿基米德螺旋天线,其结构如图1所示。其中螺旋臂1的两条边缘线满足的曲线方程分别为:

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

对数周期天线

对数周期天线 与频率无关天线设计原则: 1. 角形结构,与r 坐标无关,传播TEM 波 2. 自补结构,Babinet 原理4/2η=slot dipole Z Z 3. 自相似结构,频率变化时,有效辐射区域沿着天线移动 4. 天线辐射臂(金属)结构粗(直径)、大(面积) 与频率无关天线分类 螺旋天线(spiral ) 对数周期天线(log-periodic ) 其它天线(biconical 、V-conical) 螺旋天线(spiral ) 等角螺旋天线(Equiangular speral ) 阿基米德螺旋天线(Archimedean speral) 平面螺旋天线 背腔螺旋天线(cavity-backed ) 圆锥螺旋天线(conical ) 双臂螺旋天线(two-arms ) 四臂螺旋天线(two-arm-pair)、收发分离,极化分离等 其他螺旋天线:sinous antenna 、others

追求的目标 结构简化,成本降低,易于生产等等 天线性能指标好:波束、阻抗、增益、带宽、等等 或者二者兼而有之,不但结构简化,而且天线性能指标好。 平面对数周期天线 原始的对数周期天线是在Bowtie 天线的边缘加上对数周期齿形成的。齿的作用使中断的电流沿着齿继续流动。 从等角螺旋天线知道,导体边缘的径向坐标为 )2(0π?n a n e r r += (1) 其中n 是圈数。第n+1圈和第n 圈的径向坐标之比为一个常数 επ π?π?===++++a n a n a n n e e r e r r r 2)2(0))1(2(01 (2) 这个可称之为平面螺旋天线的周期。相应的,我们也令对数周期天线的导体边缘之比为常数,

433MHz小型微带天线的研究

宁波理工学院 毕业论文(设计)开题报告 题 目 433MHz 小型微带天线的研究 姓 名 学 号 专业班级 指导教师 学 院 开题日期

第1章文献综述 433MHz小型微带天线的研究 1.1 引言 随着无线通信技术的不断进步,无线通信设备开始朝着小型化、宽频段方向发展,具有轻、薄、短、小等特性的宽带无线产品将成为今后的主流。天线作为无线通信系统的门户,将对无线通信系统的性能产生最直接的影响。传统的偶极子天线尽管具有较好的传输特性,但其尺寸规格已无法适应小型化的发展趋势。微带天线体积小、质量轻、成本低、容易制造并且可以直接和射频微波电路集成,具有很大的实际应用价值,己成为天线研究中的热门主题之一。 1.2 国内外研究现状 1887 年著名物理学家赫兹设计并制造出第一对天线,从那以后在缩小天线的几何尺寸上,人们有着持续而浓厚的兴趣。在第二次世界大战期间,由于战争的需要,降低高度和约束尺寸的天线得到了发展。自那时以来,对缩小天线的尺寸提出了越来越高的要求。上世纪60 年代,在工程应用中,对天线提出的要求有: 1) 飞机天线——较低的空气阻力; 2) 车辆天线——隐蔽性和机动性; 3) 雷达天线——减小平台的反射; 以上的要求都与缩小天线的尺寸有关,于是各式各样的专用小辐射器应运而生。上世纪70 年代,由于集成半导体技术的迅速发展,各种电子设备趋于小型化,此时天线便成为了无线通信系统中最笨重的部件。于是,匹配技术和自谐振技术得到了发展,这两种技术不但缩小了天线的尺寸,而且不影响天线的带宽和效率。值得一提的是,缩小了天线的尺寸,会引起天线的某种或某些性能的下降。所以在设计过程中,要充分结合天线具体的工作情况,不能一味地追求小型化,而忽略了天线其他重要的性能。上世纪80 年代,将天线合成到无线通信设备内

CDMA2000网络优化练习题 - 答案

网络优化练习题 姓名:班级: 学号:得分: 一、填空题 1. 在系统接入状态,移动台在接入信道上向基站发送消息以及在寻呼信道上从基站接收消息。 2. 我们常说手机的发射功率是23dBm,也就是__ 0.2 _W(瓦)。 3. 前向功率控制受控对象是基站的发射功率,移动台起辅助作用。 4. 语音业务网络评估需要进行DT、 OMC 和客投(CQT)三方面的测试或数据提取。 5. Tx_adj正常情况应小于0 dB,如大于该值视为不正常。 6. 800M中心频率的计算公式,基站收(上行):_825.00+0.03N_,基站发(下行):870.00+0.03N 。 7. CDMA手机的平均发射功率是__2mw_,最大发射功率是__200mw___。 8. 天线的下倾方式分为_机械下倾_、_固定电子下倾_和_可调电子下倾_。 9.天线一般分两种:全向型天线与定向天线。 10.Ec/Io定义:( CDMA导频功率与总功率之比值)。 二、单选题 1、经典传播模型中实用于150-1500 MHz 宏蜂窝预测,适用于800-2000MHz 城区、密集市区环境预测;适用于1500-2000 MHz 宏蜂窝预测。( A ) A、Okumura-Hata、Walfish-Ikegami、Cost231-Hata; B、Cost231-Hata、Walfish-Ikegami、Okumura-Hata; C、Walfish-Ikegam、Okumura-Hata、Cost231-Hata。 2、天线增益为10dBd,以dBi为单位表示时,应为( D )dBi。 A、11 B、11.15 C、12 D、12.15

一种小型平面螺旋天线

一种小型平面螺旋天线 龙小专1袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。 随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于 2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 2 电阻加载 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r r aφ =+(1) 式(1)中, r是起始半径,a为螺旋增长率,φ是以弧度表示的幅角。双臂平面阿基米德螺旋天线如图1(a)所示。 平面阿基米德天线一般在螺旋面的中心起始端两点采用平衡馈电,而主要辐射区域是集中在平均周长为一个波长的那些环带上,也称有效辐射区。当频率改变时,有效辐射区随之改变,但辐射方向图基本不变。而当有效辐射区为天线的最外圈区域 ·553·

螺旋天线的仿真设计

一、设计题目:螺旋天线的仿真设计 二、设计目的: (1)熟悉Ansoft HFSS软件的使用。 (2)学会螺旋天线的仿真设计方法。 (3)完成螺旋天线的仿真设计,并查看S参数以及场分布。 三、设计要求: 螺旋天线是一种常用的典型的圆极化天线,本设计就是基于螺旋天线的基础理论及熟练掌握HFSS10软件的基础上的,设计一个右手圆极化螺旋天线,要求工作频率为4G,分析其远区场辐射特性以及S曲线。 螺旋天线通常用同轴线馈电,天线的一端与同轴线的内导体相连,另一端则处于自由状态。 螺旋天线示意图如图1所示: 图1、螺旋天线

四、设计参数: 中心频率f=4GHz λ=75mm 螺旋导体的半径d=0.15λ=11.25mm 螺旋线导线半径a=0.5mm 螺距s-0.2λ=15mm 圈数N=7 轴向长度l=Ns 五、设计步骤 在HFSS建立的模型中,关键是画出螺旋线模型。画螺旋线,现说明螺旋线模型的创建。 求解类型设置与上两个设计一样,材料为copper,模型单位为mm,螺旋线的创建如下。 点击Draw>Circle,输入圆的中心坐标。X:11.25 Y:0 Z:0 ,按回车键结束。输入圆的半径dX:0.5 dY:0 dZ:0 按回车键结束输入。在特性窗口中将Axis改为Y。点击确认。选中该circle。点击Draw>Helix,输入X:0 Y:0 Z:-7.5,按回车键结束输入,输入dX:0 dY:0 dZ;100 按回车键,在弹出的窗口中,Turn Directions:Right Hand Pitch:15(mm) Tuns:7 Radius change per Turn:0点击OK。在特性窗口中选择Attribute标签,将名字改为Helix。建立螺旋天线与同轴线相连的连接杆ring。 点击Draw>Cylider,创建圆柱模型。输入坐标为X:11.25 Y:0

螺旋天线的制作参数

螺旋天线的制作参数 2009-08-01 20:01 我在论坛上混了一段时间了,到目前仍然没有作为,惭愧呀,由于兴趣所在,我找了天线原理书籍,其中介绍的螺旋天线有明确的参数和方法,这里我就把书中的内容简单转述一下吧。(高手就绕过吧) 首先了解一些基础部分: 1、我们的WLAN所使用的2.4GHz电磁波是行波,即电磁波的电场和磁场两者都与电波的传播方向相垂直。 2、我们的天线主要是利用电磁波中的电场分量来负载信息的 正题:螺旋天线的制作参数 我们制作螺旋天线是将铜丝绕着圆管一圈圈斜向上绕,角度绕过360度时算作是一圈,绕这一圈所使用的一匝铜线长度记为L,把上下相邻两圈的间距记作S,铜线形成的螺圈的实际半径记为R(就是PVC管的半径+铜线的横切面半径),用这个半径R算出来的圆周长记为O.(有些符合不知如何输入,我只好用文字,锻炼大家的理解和想象能力了) L: 螺线旋转一圈的长度,; S:上下相邻两个螺圈的距离 R: 螺圈的半径(PVC管的半径+铜线的横切面半径) O:螺圈的周长(用R算出来的那个), 对于波长和L长度的关系:(下面指的是比值) L/波长<0.5 ------------------------L小于0.5个波长,天线将工作于法向辐射模式 L/波长=(0.8到1.3)-----------------L居于0.8个波长到1.3个波长之间,轴向辐射模式(我们需要的) L/波长>1.3 -----------------------L大于1.3个波长,圆锥辐射模式 我们要的是轴向辐射模式 L对应的是工作波长,对于行波L可以取值范围是0.8~1.3个波长,我们最好就直接用一个波长,即12.6CM 算了 L 、S、O 三者的关系:L的平方=S的平方+O的平方 L>S ; L>O S和O关系不定 我们确定好L 长度之后,S 和O 是可以方便自定义的,这样我们可以去方便利用用不同口径的PVC管了 理论是这样说的,我还没有亲自去试验呢... 完整结构形象概样:1铜线绕在圆管上作为天线部分,圈数多点好; 2 反射金属板(约一个波长直径的圆,形状其实无关,主要看面积) 3 这两者不相接,相互距离尽量小些即可 接线方式: 将馈线接在铜线的一段,屏蔽层接反射板 补充说明: 1铜线绕多少圈及相应效果本书没有数据可查,我想至少要10多圈吧,可能是越多越好吧 2通过L 、S、O 三者的关系,我们可以利用上多种口径的PVC管,而不用拘泥了老外给出的数据了。这里L=12.6cm是固定的啦它就是2.45Ghz电波的波长,O约等于PVC管的周长(不是直径D呀,注意了,O=3.14*D),具体来说就是只要水管的直径D小4.01cm的原则上都是可以利用的。 3由于我没有条件去实践,所以不知到效果会是怎样,据某网页的计算软件来看,15圈左右就有25dB的增益,具体的我也不知道,还有赖于各位做一回排头兵,试一试并发布一下效果图,共同提高大家的水平! 具体操作: 制作并不复杂,其实L 、S 、O 三者构成的是直角三角形,如下图,大家只要事先将实际尺寸的图线画在一张纸上面,然后贴在PVC管上面绕线的具体位置就一目了然了。看下图就会明白的了,很简单的! 将图纸贴在PVC管上之后沿着对角线(L)绕铜丝就行了,不是很方便吗... 绕线位置图.jpg (31.97 KB)

螺旋天线的仿真设计微波课设.

太原理工大学现代科技学院 课程设计任务书

指导教师签名:日期:

专业班级 学号 姓名 成绩 一、设计题目 螺旋天线的仿真设计 二、设计目的 (1)熟悉Ansoft HFSS 软件的使用。 (2)学会螺旋天线的仿真设计方法。 (3)完成螺旋天线的仿真设计,并查看S 参数以及场分布。 三、实验原理 螺旋天线(helical antenna )是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线 组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地 的金属网(或板)相连接,该版即为接地板。螺旋天线的辐射方向与螺旋线圆周长有关。当 螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一 个波长的数量级时,最强辐射出现在螺旋旋轴方向上。 四、设计要求 设计一个右手圆极化螺旋天线,要求工作频率为4G ,分析其远区场辐射特性以及S 曲线。 本设计参数为:螺旋天线的中心频率 f=4GHz , λ=75mm ; ……………………………………装………………………………………订…………………………………………线………………………………………

螺旋导体的半径 d=0.15λ=11.25mm ; 螺旋线导线的半径 a=0.5mm ; 螺距 s=0.25λ=18,75mm ; 圈数 N=3; 轴向长度 l=Ns ; 五、设计仿真步骤 在HFSS 建立的模型中,关键是画出螺旋线模型。画螺旋线,现说明螺旋线模型的创建。 1、建立新的工程 运行HFSS ,点击菜单栏中的Project>Insert Hfss Dessign ,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type 。 (2)在弹出的Solution Type 窗口中 (a )选择Driven Modal 。 (b )点击OK 按钮。 3、设置模型单位 将创建模型中的单位设置为毫米。 (1)在菜单栏中点击3D Modeler>Units 。 (2)设置模型单位: (a )在设置单位窗口中选择:mm 。 (b )点击OK 按钮。 4、设置模型的默认材料 在工具栏中设置模型的下拉菜单中点击Select ,在设置材料窗口中选择copper (铜)材料, 点击OK 按钮(确定)确认。 5、创建螺旋天线模型 (1)创建螺旋线Helix 。 在菜单中点击Draw>Circle,输入圆的中心坐标。X:11.25 Y:0 Z:0 ,按回车键结束。输入圆的 半径dX:0.5 dY:0 dZ:0 按回车键结束输入。在特性(Porperties )窗口中将Axis 改为Y 。点击确认。在历史操作树中选中该circle 。在菜单键点击Draw>Helix ,在右下角的输入栏中 …………………………………装……………………………………订………………………………………线……………………………………………

短波电台通信原理

短波电台通信原理 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三: 一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比; 二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; 三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。 1、短波通信的一般原理 1.1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。 无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: 地波(地表面波)传播 沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图1.1 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。 限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

地网对垂直偶极子天线辐射特性的影响.

第19卷第6期No.6海军工程大学学报Vol.192007年12月Dec.2007JOURNALOFNAVALUNIVERSITYOFENGINEERING 文章编号:1009-3486(2007)06-0099-04 地网对垂直偶极子天线辐射特性的影响 李润贵,郑龙根 (海军工程大学电子工程学院,武汉430033) 摘要:研究地网对垂直偶极子天线辐射特性的影响。建立了该天线的仿真模型,采用基于矩量法的仿真软件计算了铺设地网后垂直偶极子天线增益、输入阻抗、最大辐射仰角、3dB波瓣宽度等辐射特性。结果表明,地网中心偏离天线振子正下方0.75λ时能显著提高天线的增益,改变地网大小和铺设密度也能在一定程度上提高天线的增益。 关键词:偶极子天线;矩量法;地网 中图分类号:TN82文献标志码:A InfluenceofgroundscreenonLIRun2gui,ZHENG(CollegeofElectronicEngineering,43003 3,China) Abstract:Theinfluenceofgroonwasstudied.Themodelofthean2tennawasestablished,theoft heantennasuchasgain,impedance,eleva2tionangleoft,dBwidth,werecalculatedbymeansof antennasimulationsoft2warebasedofmethods(MOM).Theresultsindicatethatwhenthegrou ndscreenisput0.75wave2hsawayfromthedipole,thegainoftheantennawillincreasesignifica ntly.In2creasingthesizeandthedensityofthegroundscreencanalsoimprovethegainoftheante nnaonacertainextent. Keywords:dipoleantenna;momentofmethod;groundscreen 在短波波段,垂直对数周期天线[1]是一种增益较高、结构较简单的非频变天线,在通信、通信对抗等方面有着广泛应用。垂直对数周期天线的辐射单元有单极和偶极两种形式。对地面上的单极天线来说,振子高度较低,但地面是单极天线的一个组成部分,天线正下方必须铺设地网以减小地的损耗;而对地面上的垂直偶极天线[2,3]来说,天线高度较高,架设难度较大,但地面的影响相对单极天线要小得多,其正下方一般不需要铺设地网。文献[4]指出在垂直对数周期偶极天线前一定区域铺设地网,可以提高天线低仰角方向的增益,但未给出定量的数据结果。本文将研究地

螺旋天线的仿真设计微波课设要点

太原理工大学现代科技学院课程设计任务书

指导教师签名: 日期:

专业班级 学号 姓名 成绩 一、设计题目 螺旋天线的仿真设计 二、设计目的 (1)熟悉A nsof t HFSS 软件的使用。 (2)学会螺旋天线的仿真设计方法。 (3)完成螺旋天线的仿真设计,并查看S 参数以及场分布。 三、实验原理 螺旋天线(h eli cal an te nna )是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线 组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地 的金属网(或板)相连接,该版即为接地板。螺旋天线的辐射方向与螺旋线圆周长有关。当 螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一 个波长的数量级时,最强辐射出现在螺旋旋轴方向上。 四、设计要求 设计一个右手圆极化螺旋天线,要求工作频率为4G,分析其远区场辐射特性以及S 曲线。 本设计参数为:螺旋天线的中心频率 f=4GH z , λ=75mm ; …… …… …… ………………… …装 …… …… …… …… … …… …… …… 订… …… ……………………………… …线 …… …… …… …… … ………………

螺旋导体的半径 d=0.15λ=11.25mm ; 螺旋线导线的半径 a=0.5mm; 螺距 s=0.25λ=18,75m m; 圈数 N=3; 轴向长度 l =N s; 五、设计仿真步骤 在H FSS 建立的模型中,关键是画出螺旋线模型。画螺旋线,现说明螺旋线模型的创建。 1、建立新的工程 运行HFSS,点击菜单栏中的Project>In sert Hf ss Dess ig n,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HF SS>Solut ion T yp e。 (2)在弹出的So lut ion Type 窗口中 (a )选择Driv en Modal 。 (b)点击OK 按钮。 3、设置模型单位 将创建模型中的单位设置为毫米。 (1)在菜单栏中点击3D Model er>U nits 。 (2)设置模型单位: (a )在设置单位窗口中选择:mm 。 (b )点击OK 按钮。 4、设置模型的默认材料 在工具栏中设置模型的下拉菜单中点击Sel ect ,在设置材料窗口中选择c opp er(铜)材料, 点击OK 按钮(确定)确认。 5、创建螺旋天线模型 (1)创建螺旋线He li x。 在菜单中点击D ra w>C ircl e,输入圆的中心坐标。X :11.25 Y:0 Z:0 ,按回车键结束。输入圆的 半径dX:0.5 d Y:0 d Z:0 按回车键结束输入。在特性(Po rperties)窗口中将Axis 改为Y 。 … … …… …… …… …… …… …装……………………… ……………订……………… …… …… …… ………线… …… …… …… …… …………………

相关主题
文本预览
相关文档 最新文档