当前位置:文档之家› 高中生物 第三章第四节 遗传信息的表达——RNA和蛋白质的合成学案 浙科版必修2

高中生物 第三章第四节 遗传信息的表达——RNA和蛋白质的合成学案 浙科版必修2

高中生物 第三章第四节 遗传信息的表达——RNA和蛋白质的合成学案 浙科版必修2
高中生物 第三章第四节 遗传信息的表达——RNA和蛋白质的合成学案 浙科版必修2

第四节遗传信息的表达——RNA和蛋白质的合成

[学习目标] 1.列举DNA的功能。2.比较DNA和RNA的异同。3.概述遗传信息的转录和翻译过程。4.用遗传密码解释蛋白质的多样性。5.说明中心法则,概述基因的概念。

一、DNA的功能、转录

1.DNA的功能

(1)携带遗传信息:即以自身为模板,半保留地进行复制,保持遗传信息的稳定性。

(2)表达遗传信息:即根据DNA所贮存的遗传信息决定蛋白质的结构。

2.转录

(1)含义:指遗传信息由DNA

传递到RNA

上的过程。

(2)结果:形成RNA,通常为单链,其核苷酸中的五碳糖为核糖,含有四种碱基为腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、尿嘧啶(U)。

(3)转录的过程

①RNA聚合酶与DNA分子的某一启动部位结合。

②包括一个或者几个基因的DNA片段的双螺旋解开。

③以DNA一条链为模板,按碱基互补配对原则,游离的核糖核苷酸通过磷酸二酯键聚合成与该片段DNA相对应的RNA分子。

(4)产物:mRNA、tRNA、rRNA。

3.DNA与RNA的比较

种类DNA RNA

基本单位脱氧核糖核苷酸(4种) 核糖核苷酸(4种)

戊糖脱氧核糖核糖

特有碱基T U

共有碱基A、G、C

空间结构规则的双螺旋结构多呈单链结构

真核生物

中的分布

主要在细胞核中,少量在

线粒体、叶绿体中

主要在细胞溶胶、线粒体、叶绿

体、核糖体中,少量在细胞核中

他部位不解旋。

(2)DNA分子的两条链中,被转录的那条链叫模板链,另一条链无转录功能,叫非模板链(又

称编码链)。

(3)转录时mRNA与DNA模板链碱基互补,配对关系:G—C、C—G、T—A、A—U,结果mRNA 与DNA编码链上碱基序列基本相同,只是用U代替T。

(4)在真核细胞内,转录出来的RNA需经过加工才能成为具有生物活性的成熟的mRNA。

例1(新编)如图所示为遗传信息的转录过程。请据图回答下列问题:

(1)在图中右侧空白处填上合适内容。

(2)遗传信息的传递方向:DNA→__________。

答案(1)碱基碱基互补配对一条链核糖核苷酸RNA聚合酶RNA DNA链双螺旋(2)RNA

例2已知病毒的核酸有双链DNA、单链DNA、双链RNA和单链RNA四种类型。现发现了一种新病毒,要确定其核酸属于上述哪一种类型,应该( )

A.分析碱基类型,确定碱基比率

B.分析碱基类型,分析五碳糖类型

C.分析蛋白质的氨基酸组成,分析碱基类型

D.分析蛋白质的氨基酸组成,分析五碳糖类型

答案 A

解析确定DNA或RNA,可分析碱基和五碳糖(有U或核糖为RNA;有T或脱氧核糖为DNA);确定单链或双链可分析其中各种碱基所占的比率:若A与T或U相等,C与G相等,则为双链(当然也有可能是单链);若不相等则为单链。如果分析氨基酸组成,则不能区分核酸类型。

方法点拨DNA与RNA的判定

二、翻译

1.遗传信息的翻译

(1)场所:核糖体。

(2)翻译的过程

①核糖体沿mRNA运行。

②核糖体认读mRNA上决定氨基酸种类的遗传密码。

③tRNA转运相应的氨基酸加到延伸中的肽链上。

④核糖体遇到mRNA的终止密码子,多肽合成结束。

⑤核糖体脱离mRNA并进入下一个循环。

2.遗传密码

(1)含义:mRNA上决定1种氨基酸的3个相邻的核苷酸排列而成的三联体。

(2)种类:64种,其中决定氨基酸的密码子61种,终止密码子3种;除少数氨基酸只有一种遗传密码外,大多数氨基酸有两个以上的遗传密码;3种终止密码子不决定氨基酸。

(3)特点

①一个遗传密码对应一种氨基酸。

②一种氨基酸可以对应一个或多个遗传密码。

③所有生物共用一套遗传密码。

3.特点

多肽链合成时,若干个核糖体串联在一个mRNA上同时进行工作,大大增加了翻译效率。

归纳总结

1.遗传信息、密码子、反密码子的对应关系

项目遗传信息密码子反密码子

概念

基因中脱氧核苷酸的

排列顺序

mRNA中决定一个氨基

酸的三个相邻碱基

tRNA中与mRNA密码子互

补配对的三个碱基作用控制生物的遗传性状

直接决定蛋白质中的

氨基酸序列

识别密码子,转运氨基酸种类

基因中脱氧核苷酸种

类、数目和排列顺序

的不同,决定了遗传

信息的多样性

64种。61种:能翻译

出氨基酸;3种:终

止密码子,不能翻译

氨基酸

61种或tRNA也为61种联系

①基因中脱氧核苷酸的序列决定mRNA中核糖核苷酸的序列

②mRNA中碱基序列与基因模板链中碱基序列互补

③密码子与相应反密码子的序列互补配对

2.

(1)从核糖体上脱离下来的只是多肽链,再经折叠、加工才能成为具有复杂空间结构的有活性的蛋白质。

(2)一般认为DNA(基因)中的碱基数是mRNA碱基数的2倍,但事实上,DNA(基因)中的碱基数比mRNA碱基数多很多。

(3)一般认为mRNA碱基数是蛋白质分子中氨基酸数的3倍,但事实上,mRNA碱基数至少是蛋白质分子中氨基酸数的3倍;DNA(基因)中碱基数至少是蛋白质分子中氨基酸数的6倍。

例3如图是人体内蛋白质合成的部分过程,Ⅰ、Ⅱ、Ⅲ是与蛋白质合成相关的三种重要结构。下列说法正确的是( )

A.该图能表示基因控制蛋白质合成的完整过程

B.结构Ⅰ、Ⅲ中含有RNA,结构Ⅱ中只含蛋白质

C.结构Ⅰ所携带的氨基酸,其密码子是GAA

D.通过该过程形成的多肽链需要进一步加工才具有特定功能

答案 D

解析基因控制蛋白质合成的完整过程包括转录和翻译,而该图只表示翻译过程;结构Ⅱ是核糖体,由rRNA和蛋白质构成;结构Ⅰ所携带的氨基酸的密码子是CUU。

例4(2016·浙江4月选考)遗传信息的传递过程如图所示,其中①~④表示四种不同的物质。下列叙述错误的是(

)

A.①复制时,两条链均可作为模板链

B.形成②时,需沿整条DNA长链进行

C.密码子CUU编码③所携带的氨基酸

D.②上可同时结合多个核糖体形成多条④

答案 B

解析①是DNA分子,DNA复制时两条链均可作为模板链,A项正确;②是mRNA分子,形成mRNA分子的转录时,并不是沿着整条DNA长链进行的,转录是以DNA分子上的基因区段为模板进行的,B项错误;③是tRNA,其上的反密码子是GAA,与mRNA上的密码子CUU配对,故密码子CUU是编码③所携带的氨基酸,C项正确;②mRNA上可结合多个核糖体形成多聚核糖体,每个核糖体上均可形成1条相同的肽链(④),D项正确。

三、中心法则、基因的概念

1.中心法则的提出及发展

提出者克里克

要点

(1)遗传信息由DNA传递到RNA

(2)RNA决定蛋白质的特异性

(3)蛋白质是生物体性状的体现者

发展在逆转录酶作用下,以RNA为模板反向合成单链DNA 2.图解

3.基因的本质

(1)基因是遗传的一个基本功能单位,在适当的环境条件下控制生物的性状。

(2)从本质上讲,基因就是一段包含一个完整的遗传信息单位的有功能的核酸分子片断,在大多数生物中是一段DNA,在RNA病毒中则是一段RNA。

(3)基因以一定的次序排列在染色体上。染色体是基因的主要载体。

(4)基因的基本单位是核苷酸,基因中碱基的排列顺序代表遗传信息。

例5如图所示的中心法则揭示了生物遗传信息由DNA向蛋白质传递与表达的过程,下列相关叙述正确的是( )

A.健康的人体细胞中,不会发生e过程,a、b、c、d均可发生

B.在真核细胞中,a和b两个过程发生的主要场所是细胞核和细胞质

C.能特异性识别信使RNA上密码子的分子是tRNA,后者所携带的分子是氨基酸

D.a过程只发生在真核细胞分裂的间期

答案 C

解析人体细胞中,正常情况下不会发生e、d过程,且a过程只发生在具有分裂能力的细胞中,A错误;在真核细胞中,a和b过程都主要发生在细胞核中,此外这两个过程在线粒体和叶绿体中也能进行,B错误;翻译过程是以mRNA为模板,以tRNA为运载氨基酸的工具进行的,tRNA一端的反密码子与mRNA的密码子进行碱基互补配对,另一端携带氨基酸分子,C 正确;a过程发生在真核细胞分裂的间期,也可发生在原核细胞的二分裂过程中,D错误。易错易混不同生物的中心法则的内容不相同

(1)细胞生物及噬菌体等DNA病毒的中心法则:

(2)烟草花叶病毒等大部分RNA病毒的中心法则:

(3)HIV等逆转录病毒的中心法则:

例6(2017·浙江4月选考)下列关于DNA、RNA 和基因的叙述,错误的是( )

A.基因是具有遗传效应的核酸分子片段

B.遗传信息通过转录由DNA传递到RNA

C.亲代DNA通过复制在子代中表达遗传信息

D.细胞周期的间期和分裂期均有RNA的合成

答案 C

解析基因就是一段包含一个完整的遗传信息单位的有功能的核酸分子片段,A正确;遗传信息通过转录由DNA传递到RNA,B正确;亲代DNA通过复制在子代中传递遗传信息,遗传信息的表达是指转录和翻译,C错误;细胞周期的间期和分裂期均有RNA的合成,D正确。

1.下列关于转录的叙述,不正确的是( )

A.多数发生在细胞核中

B.以核糖核苷酸为原料

C.DNA的两条链都可作模板

D.边解旋边转录

答案 C

解析DNA的两条链中只有其中一条链可作为模板。

2.与DNA分子相比,RNA分子特有的碱基是( )

A.鸟嘌呤(G)

B.胞嘧啶(C)

C.尿嘧啶(U)

D.腺嘌呤(A)

答案 C

3.下列关于遗传信息表达的叙述,正确的是( )

A.转录成的RNA能与编码链形成RNA—DNA杂交区域

B.DNA聚合酶与DNA的启动部位相结合即开始转录

C.核糖体认读到mRNA上的终止密码时翻译即终止

D.翻译过程所需的原料是四种核糖核苷酸分子

答案 C

解析转录成的RNA能与模板链形成RNA—DNA杂交区域,A错误;RNA聚合酶与DNA的启动部位相结合即开始转录,B错误;核糖体认读到mRNA上的终止密码时翻译即终止,C正确;

翻译过程所需的原料是游离的氨基酸,D错误。

4.(2016·浙江10月选考)遗传信息表达的过程中,mRNA的三个碱基是UAC,则DNA模板链上对应的三个碱基是( )

A.ATG

B.TAC

C.TUC

D.AUG

答案 A

解析根据转录过程中的碱基互补配对方式可知,如果产生的mRNA上的碱基是UAC,则DNA 模板链上对应的三个碱基是ATG。

5.下图表示以DNA为模板转录形成RNA的过程。请据图分析回答下列问题:

(1)在玉米的叶肉细胞中,能够进行该生理过程的细胞结构有________________________。

(2)转录过程中在[ ]______________的催化作用下,以其中的__________链作为模板链,以[ ]________________为原料,由________提供能量,按照______________原则,合成出[ ]______。

(3)通过转录,DNA分子中的遗传信息被准确地转移到____________中。

(4)在真核细胞的细胞核中,转录的产物通过__________进入细胞质中,与________结合在一起直接指导蛋白质的合成过程。

答案(1)细胞核、线粒体、叶绿体(2)4 RNA聚合酶

甲 3 四种游离的核糖核苷酸ATP 碱基互补配对

2 RNA (3)信使RNA(或mRNA) (4)核孔核糖体

解析玉米叶肉细胞的细胞核、线粒体、叶绿体中都有DNA,可进行DNA的转录;转录时以DNA的一条链为模板,需要ATP供能和RNA聚合酶的催化,以四种游离的核糖核苷酸为原料,按照碱基互补配对原则合成RNA,转录的结果是DNA上的遗传信息转移到mRNA上,mRNA从核孔出来进入细胞质中与核糖体结合,直接指导蛋白质的合成。

[对点训练]

题组一DNA与RNA

1.下列名称与功能匹配的是( )

A.rRNA——含有遗传密码

B.DNA——携带氨基酸到核糖体

C.tRNA——结合蛋白质组成核糖体

D.mRNA——携带来自细胞核的遗传信息到核糖体

答案 D

解析rRNA——核糖体的组成成分;DNA——主要在细胞核中,遗传信息的携带者;tRNA——运载氨基酸到核糖体上。

2.下列关于RNA和DNA的叙述,错误的是( )

A.RNA和DNA都是由多个核苷酸聚合成的大分子

B.RNA是核糖核苷酸的简称,DNA是脱氧核苷酸的简称

C.RNA包括mRNA、tRNA、rRNA等种类

D.染色体主要由DNA和蛋白质组成

答案 B

解析RNA是核糖核酸的简称,DNA是脱氧核糖核酸的简称。

3.(2017·杭州学考)下列对转运RNA的描述,正确的是( )

A.每种转运RNA能识别并转运多种氨基酸

B.每种氨基酸只有一种转运RNA能转运它

C.转运RNA能识别信使RNA上的密码子

D.转运RNA转运氨基酸到细胞核内

答案 C

解析每种转运RNA能识别并转运一种氨基酸,A错误;每种氨基酸可能有一种或多种转运RNA能转运它,B错误;转运RNA能识别信使RNA上的密码子,并转运该密码子编码的氨基酸,C正确;转运RNA转运氨基酸到核糖体上,D错误。

4.下列有关DNA和RNA的叙述中,正确的是( )

A.DNA和RNA是同一物质在不同时期的两种形态

B.DNA和RNA的基本组成单位是一样的

C.—AGCTGA—既可能是DNA的碱基序列,也可能是RNA的碱基序列

D.mRNA的碱基序列,取决于DNA的碱基序列,同时又决定蛋白质中氨基酸的序列

答案 D

解析DNA和RNA是两类不同的核酸,A错误;DNA的基本组成单位是脱氧核苷酸,RNA的基本组成单位是核糖核苷酸,B错误;T为DNA的特有碱基,所以含有T的核苷酸序列只能是DNA,不可能是RNA,C错误;DNA上的遗传信息通过转录转移到mRNA上,mRNA通过翻译指导蛋白质的合成,D正确。

题组二转录与翻译

5.(2018·杭州检测)下图为RNA的形成过程示意图,有关叙述错误的是( )

A.c是游离的核糖核苷酸

B.a是编码链,b是模板链

C.图中RNA聚合酶的移动方向是从左向右

D.转录完成后解开的双螺旋不再重新形成

答案 D

解析由图中信息可知,c是转录的原料核糖核苷酸;转录是以b链为模板进行的,b是模板链,a是编码链;图中转录的方向从左向右,故RNA聚合酶的移动方向也是从左向右;转录完成后解开的双螺旋需重新形成,若需转录时可再解旋。

6.(2018·嘉兴测试)真核生物翻译的模板和原料分别是( )

A.转运RNA、核苷酸

B.转运RNA、氨基酸

C.信使RNA、氨基酸

D.信使RNA、核苷酸

答案 C

解析翻译的模板为mRNA,原料为氨基酸,产物为蛋白质。

7.以下是某种分泌蛋白的合成过程示意图,下列相关叙述正确的是( )

A.此过程有水生成,主要发生在细胞核中

B.①上面所有的碱基都可以和③上相应的碱基配对

C.①上通常可以相继结合多个②

D.④形成后就进入高尔基体进行加工,然后分泌出细胞

答案 C

解析图示为翻译过程,发生在真核细胞的细胞质中;mRNA上的终止密码子没有反密码子对应;一个mRNA上可以相继结合多个核糖体,能明显提高翻译速率;多肽链第一加工场所是内质网,然后进入高尔基体再加工。

8.(2018·浙江余、慈期中联考)多聚核糖体是指合成蛋白质时,多个核糖体串联附着在一条mRNA分子上,形成的似念珠状结构。多聚核糖体可以增加肽链的合成效率,如图所示,对此过程的理解不正确的是( )

A.此过程在真核细胞的细胞质中进行

B.核糖体移动方向为从左向右

C.每条多肽链的合成时间缩短

D.合成出的蛋白质有相同结构

答案 C

解析题图为翻译过程,在细胞质中的核糖体上进行,A正确;根据图中两条肽链的长度可知,核糖体移动方向为从左向右,B正确;一条mRNA上同时结合多个核糖体进行翻译,可提高合成蛋白质的效率,但不会缩短每条肽链合成的时间,C错误;控制合成这些蛋白质的模板相同,因此合成出的蛋白质有相同结构,D正确。

题组三中心法则与基因的概念

9.下图为中心法则的示意图。下列叙述错误的是( )

A.①表示DNA复制,需要DNA聚合酶参与

B.②表示转录,需要RNA聚合酶参与

C.③表示翻译,需要蛋白酶参与

D.④表示逆转录,需要逆转录酶参与

答案 C

解析③表示翻译,需蛋白质合成酶参与。

10.(2018·温州十校联考)结合中心法则图解分析,下列描述正确的是( )

A.生物的遗传信息只储存在DNA的核苷酸序列中

B.核苷酸序列不同的基因表达出的蛋白质一定不同

C.遗传信息传递到蛋白质是表现型实现的基础

D.编码蛋白质的基因含遗传信息相同的两条单链

答案 C

解析生物的遗传物质是DNA或RNA,因此生物的遗传信息储存在DNA或RNA的核苷酸序列中,A错误;由于密码子具有简并性,因此核苷酸序列不同的基因可能表达出相同的蛋白质,B错误;蛋白质是生命活动的主要承担者,因此遗传信息传递到蛋白质是表现型实现的基础,C正确;编码蛋白质的基因含两条单链,但其碱基序列互补,因而遗传信息不同,D错误。

11.下列关于基因的叙述,错误的是( )

A.基因是遗传的基本功能单位

B.基因是一段有功能的核酸分子片断

C.基因由葡萄糖脱水缩合形成

D.基因具有携带和表达遗传信息的功能

答案 C

解析基因是遗传的基本功能单位,是一段有功能的核酸分子片断,具有携带和表达遗传信息的功能,它可以由脱氧核苷酸或者核糖核苷酸形成,C错误。

12.有关基因、染色体、蛋白质、性状的叙述,不正确的是( )

A.基因控制性状是通过控制蛋白质的合成来实现的

B.任意一段DNA片段都可以是基因

C.基因以一定次序排列在染色体上

D.基因与性状之间不是简单的一对一关系

答案 B

解析基因不是任意一段DNA片断,而是有一定功能的核酸分子片段,在大多数生物中是一段DNA,在RNA病毒中是一段RNA。

[综合强化]

13.如图表示真核生物体内DNA传递遗传信息的某过程,请据图回答下列问题:

(1)图示两种物质的组成元素有________________________________________________。

(2)该图所示的是遗传信息传递的________过程,该过程发生的主要场所是________。

(3)物质③是以DNA的哪一条链为模板形成的?____。试写出③的碱基序列

________________________________________________________________________。

(4)组成物质③的基本单位是________,它有______种。

(5)如果③中A占26%,U占28%,那么,相应的DNA片段中,T占________,C占________。答案(1)C、H、O、N、P (2)转录细胞核

(3)①CAUGCA (4)核糖核苷酸 4 (5)27% 23%

解析在真核生物体内以DNA分子的一条链为模板控制合成mRNA的过程称为转录,主要在细胞核内进行。③是以①为模板转录来的,若③中A=26%,U=28%,A+U=54%,则相应的DNA 分子片段中A+T=54%,G+C=46%,故A=T=27%,G=C=23%。

14.如图表示某DNA片段遗传信息的传递过程,①~⑤表示物质或结构,a、b、c表示生理过程。请据图回答下列问题:(可能用到的密码子:AUG-甲硫氨酸、GCU-丙氨酸、AAG-赖氨酸、UUC-苯丙氨酸、UCU-丝氨酸、UAC-酪氨酸)

(1)完成遗传信息表达的是________(填字母)过程,a过程所需的酶有

__________________________________________________________。

(2)图中含有核糖的是________(填数字);由②指导合成的多肽链中氨基酸序列是

________________________________________________________________________。

(3)若在AUG后插入三个核苷酸,合成的多肽链中除在甲硫氨酸后多一个氨基酸外,其余氨基酸序列没有变化。由此证明____________________________________________________。

答案(1)b、c 解旋酶和DNA聚合酶

(2)②③⑤甲硫氨酸—丙氨酸—丝氨酸—苯丙氨酸

(3)一个密码子由三个相邻的碱基(核糖核苷酸)组成

解析分析图示过程可知:a为DNA的复制、b为转录、c为翻译。

(1)完成遗传信息表达的是转录和翻译,为b和c,DNA的复制需要在解旋酶的作用下解开双链,然后在DNA聚合酶的作用下合成DNA子链。

(2)RNA中含有核糖,图中含有核糖的结构包括mRNA、tRNA、rRNA。根据②mRNA上的碱基顺序组成的密码子,推出指导合成的多肽链中氨基酸序列是甲硫氨酸—丙氨酸—丝氨酸—苯丙氨酸。

(3)三个核苷酸对应一个氨基酸,由此证明一个密码子由三个相邻的碱基(核糖核苷酸)组成。

15.(2017·浙江舟山期末)如图为某动物体内基因表达过程中的一些生理过程,据图回答下列问题:

(1)图一中,物质丁为______,图示中戊沿着丁向________移动(填“左”或“右”)。

(2)图一中由乙合成甲的反应称为________________。现欲合成具有51个基本单位构成的甲,则相关的基因中与控制这些基本单位直接有关的碱基数目为________个。

(3)图二的生理过程是__________,在人体肝细胞中可进行该生理过程的结构是

____________。物质③的名称是________________,其可与基因的________部位结合,从而开始图二的过程。①与②从物质组成上进行比较,区别是

________________________________________________________________________。

答案(1)mRNA 右(2)脱水缩合306 (3)转录细胞核、线粒体RNA聚合酶启动

①中为脱氧核糖,②中为核糖;①中特有碱基为胸腺嘧啶,②中特有碱基为尿嘧啶

解析(1)图一中,与核糖体结合的物质丁为mRNA,根据图示判断,核糖体沿着丁mRNA向右移动。(2)图一中由乙氨基酸合成甲肽链的反应称为脱水缩合。由于mRNA是单链结构,且一个氨基酸的密码子含3个碱基,所以欲合成具有51个基本单位构成的肽链,则相关的基因中与控制这些基本单位直接有关的碱基数目为51×3×2=306个。(3)图二的生理过程是以DNA 为模板,合成RNA的过程,所以是转录,在人体肝细胞中可进行该生理过程的结构是细胞核、线粒体。物质③的名称是RNA聚合酶,其可与基因的启动部位结合,从而开始图二的转录过程。①与②从物质组成上进行比较,区别有①中为脱氧核糖,②中为核糖;①中特有碱基为胸腺嘧啶,②中特有碱基为尿嘧啶。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

生物信息学期末考试重点

第一讲 生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。 生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。 生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。 生物技术与生物信息学的区别及联系 生物信息学的发展历史 ?人类基因组计划(HGP) ?人类基因组计划由美国科学家于1985年提出,1990年启动。根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。(百度百科) 随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。换句话说,人类基因组计划为生物信息学提供了兴盛的契机。上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。 :

】 第二讲回顾细胞结构 细胞是所有生命形式结构和功能的基本单位 细胞组成 细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构 细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器 细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等 细胞核最大的细胞器 DNA的结构 碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G) 。 核苷酸 核苷酸是构成DNA分子的重要模块。每个核苷酸分子由一分子称作脱氧核糖的戊 糖(五碳糖)、一分子磷酸和一分子碱基构成。每种核苷酸都有一个碱基对,也就 是A、T、C、G 基因是什么 基因是遗传物质的基本单位 基因就是核苷酸序列。 大部分的基因大约是1000-4000个核苷酸那么长。 基因通过控制蛋白质的合成,从微观和宏观上影响细胞、组织和器官的产生。 基因在染色体上。

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

生物信息学考试试卷修订稿

生物信息学考试试卷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、名词解释(每小题4分,共20分) 1、生物信息学 广义:生命科学中的信息科学。生物体系和过程中信息的存贮、传递和表达;细胞、组织、器官的生理、病理、药理过程的中各种生物信息。 狭义:生物分子信息的获取、存贮、分析和利用。 2、人类基因组计划 人类基因组计划准备用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp)的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立及转录图谱的绘制)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。作图和测序是基本的任务,在此基础上解读和破译生物体生老病死以及和疾病相关的遗传信息。 3、蛋白质的一级结构 蛋白质的一级结构是指多肽链中氨基酸的序列 4、基因 基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。 5、中心法则 是指遗传信息从传递给,再从RNA传递给,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。 6 、DNA序列比较 序列比较的根本任务是:(1)发现序列之间的相似性;(2)辨别序列之间的差异 目的: 相似序列相似的结构,相似的功能 判别序列之间的同源性 推测序列之间的进化关系 7、一级数据库 数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释 8、基因识别 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。 9、系统发生学 系统发生学(phylogenetics)——研究物种之间的进化关系。 10、基因芯片 基因芯片(gene chip),又称DNA微阵列(microarray),是由大量cDNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过杂交检测信息。

生物信息学复习资料全

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

最新生物信息学考试复习

——古A.名词解释 1. 生物信息学:广义是指从事对基因组研究相关的生物信息的获取,加工,储存,分配,分析和解释。狭义是指综合应用信息科学,数学理论,方法和技术,管理、分析和利用生物分子数据的科学。 2. 基因芯片:将大量已知或未知序列的DNA片段点在固相载体上,通过物理吸附达到固定化(cDNA芯片),也可以在固相表面直接化学合成,得到寡聚核苷酸芯片。再将待研究的样品与芯片杂交,经过计算机扫描和数据处理,进行定性定量的分析。可以反映大量基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。 3. NCBI:National Center for Biotechnology Information.是隶属于美国国立医学图书馆(NLM)的综合性数据库,提供生物信息学方面的研究和服务。 4. EMBL:European Molecular Biology Laboratory.EBI为其一部分,是综合性数据库,提供生物信息学方面的研究和服务。 5. 简并引物:PCR引物的某一碱基位置有多种可能的多种引物的混合体。 6. 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

7. BLAST:Basic Local Alignment Search Tool.是通过比对(alignment)在数据库中寻找和查询序列(query)相似度很高的序列的工具。 8. ORF:Open Reading Frame.由起始密码子开始,到终止密码子结束可以翻译成蛋白质的核酸序列,一个未知的基因,理论上具有6个ORF。 9. 启动子:是RNA聚合酶识别、结合并开始转录所必须的一段DNA序列。原核生物启动子由上游调控元件和核心启动子组成,核心启动子包括-35区(Sextama box)TTGACA,-10区(Pribnow Box)TATAAT,以及+1区。真核生物启动子包括远上游序列和启动子基本元件构成,启动子基本元件包括启动子上游元件(GC岛,CAAT盒),核心启动子(TATA Box,+1区帽子位点)组成。 10. motif:模体,基序,是序列中局部的保守区域,或者是一组序列中共有的一小段序列模式。 11. 分子进化树:通过比较生物大分子序列的差异的数值重建的进化树。 12. 相似性:序列比对过程中用来描述检测序列和目标序列之间相似DNA碱基或氨基酸残基序列所占的比例。 13. 同源性:两个基因或蛋白质序列具有共同祖先的结论。

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

生物信息学中的机器学习方法

生物信息学中的机器学习方法 摘要:生物信息学是一门交叉学科,包含了生物信息的获取、管理、分析、解释和应用等方面,兴起于人类基因组计划。随着人类基因组计划的完成与深入,生物信息的研究工作由原来的计算生物学时代进入后基因组时代,后基因组时代中一个最重要的分支就是系统生物学。本文从信息科学的视角出发,详细论述了机器学习方法在计算生物学和系统生物学中的若干应用。 关键词:生物信息学;机器学习;序列比对;人类基因组;生物芯片 1.相关知识 1.1 生物信息学 生物信息学时生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。 生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。 生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA及蛋白质序列的数据管理和分析。自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。 目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。生物信息学的研究领域也迅速扩大。生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。事实上,我们今天正需要具备各种背景知识、才能和研究思路的研究人员,集思广益

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

生物信息学期末考试重点

1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解 释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计 算机科学相结合形成的一门新学科。它通过综合利用生物学,计算机科学和信息技 术而揭示大量而复杂的生物数据所赋有的生物学奥秘。 2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于 距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后, 数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方 式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数 据存储的大型数据库系统都在各个方面得到了广泛的应用。 3、表达序列标签从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短 的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。EST 来源于一定环境下一个组织总 mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。 4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。 ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的 DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个 真正的单一的基因产物。ORF的识别是证明一个新的DNA序列为特定的蛋白质编 码基因的部分或全部的先决条件。 5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进 一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基 本结构。蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理 功能的必要基础。 6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别 DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因, 也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。基因识别是基 因组研究的基础。

生物信息学名词解释

1.计算生物信息学(Computational Bioinformatics)是生命科学与计算机科学、数理科学、化学等领域相互交叉而形成的一门新兴学科,以生物数据作为研究对象,研究理论模型和计算方法,开发分析工具,进而达到揭示这些数据蕴含的生物学意义的目的。 2.油包水PCR (Emulsion PCR) : 1) DNA片段和捕获磁珠混合; 2) 矿物油和水相的剧烈震荡产生油包水环境; 3) DNA片段在油包水环境中扩增;4) 破油并富集有效扩增磁珠。 3.双碱基编码技术:在测序过程中对每个碱基判读两遍,从而减少原始数据错误,提供内在的校对功能。代表测序方法:solid 测序。 4.焦磷酸测序法:焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应,适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术不需要凝胶电泳,也不需要对DNA样品进行任何特殊形式的标记和染色,具备同时对大量样品进行测序分析的能力。在单核苷酸多态性、病原微生物快速鉴定、病因学和法医鉴定研究等方面有着越来越广泛的应用。例如:454测序仪 :用蛋白质序列查找核苷酸序列。 :STS是序列标记位点(sequence-tagged site)的缩写,是指染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,一般长200bp -500bp。它可用PCR方法加以验证。将不同的STS依照它们在染色体上的位置依次排列构建的图为STS图。在基因组作图和测序研究时,当各个实验室发表其DNA测序数据或构建成的物理图时,可用STS来加以鉴定和验证,并确定这些测序的DNA片段在染色体上的位置;还有利于汇集分析各实验室发表的数据和资料,保证作图和测序的准确性。 :表达序列标签技术(EST,Expressed Sequence Tags)EST技术直接起源于人类基因组计划。 :生物信息学数据库。UniGene试图通过计算机程序对GeneBank中的序列数据进行适当处理,剔除冗余部分,将同一基因的序列,包括EST序列片段搜集到一起,以便研究基因的转录图谱。UniGene除了包括人的基因外,也包括小鼠、大鼠等其它模式生物的基因。 :开放阅读框(ORF,open reading frame )是基因序列的一部分,包含一段可以编码蛋白的碱基序列,不能被终止子打断。编码一个蛋白质的外显子连接成为一个连续的ORF。 10.分子钟检验:只有分子钟的,没听过分子钟检验。一种关于分子进化的假说,认为两个物种的同源基因之间的差异程度与它们的共同祖先的存在时间(即两者的分歧时间)有一定的数量关系

生物信息学分析方法

核酸和蛋白质序列分析 蛋白质, 核酸, 序列 关键词:核酸序列蛋白质序列分析软 件 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.doczj.com/doc/fd18438162.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch 算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.doczj.com/doc/fd18438162.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.doczj.com/doc/fd18438162.html,/fasta33/)和BLAST (https://www.doczj.com/doc/fd18438162.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两

生物信息学重点资料

一、名词解释 分子进化中性学说1968,木村资生提出,认为多数或绝大多数突变都是中性的,即无所谓有利或不利,因此对于这些中性突变不会发生自然选择与适者生存的情况。生物的进化主要是中性突变在自然群体中进行随机的“遗传漂变”的结果,而与选择无关。 相似性不同染色体之间的相似程度 同源性两个核酸分子的核苷酸序列或两个蛋白质分子的氨基酸序列的相似程度 外显子断裂基因中的编码序列。成熟mRNA上保留下的编 码序列,蛋白质生物合成过程中表达为蛋白质。内含子断裂基因的非编码区,可被转录到前体RNA,在 mRNA加工过程中被剪切掉,成熟mRNA上无内含 子编码序列,无法表达为蛋白质。 基于距离构建系统发育树首先获得分类群间的进化距离度量,再依 据距离度量来重建一颗系统发育树,并使得该树能 最好的反应已知序列之间的距离 最大简约法根据离散型性状{包括形态学性状和分子序列(DNA,蛋白质等)}的变异程度,构建生物的系统发育树,并分析生物物种之间的演化关系。 最大似然法(ML)是完全基于统计的方法,以一个特定的替代模型分析一组序列数据,使所得的每一个拓扑结构的似然值均为最

大,筛选出最大似然值的拓扑结构为最终树 EST expressed sequence tags,表达序列标签,指从不同组 织来源的cDNA序列。 SNP Single Nucleotide Polymorphisms,单核苷酸的多态性 二、选择 1、RNA不含的碱基 T 2、生物性息学数据库检索6个last,五个程序,何时用 3、DNA.RNA连接方式、方向性、是否重复、RNA易被水解? 磷酸二酯键都5′→3′------ RNA更易水解

2019版国科大生物信息学期末考试复习题

中科院生物信息学期末考试复习题 陈润生老师部分: 1.什么是生物信息学,如何理解其含义?为什么在大规模测序研究中,生物信息学至关重要? 答:生物信息学有三个方面的含义: 1)生物信息学是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和 解释的所有方面,是基因组研究不可分割的部分。 2)生物信息学是把基因组DNA序列信息分析作为源头,破译隐藏在DNA序列中的遗传语 言,特别是非编码区的实质;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测;其本质是识别基因信号。 3)生物信息学的研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。它 是当今自然科学和技术科学领域中“基因组、“信息结构”和“复杂性”这三个重大科学问题的有机结合。 2.如何利用数据库信息发现新基因,其算法本质是什么? 答:利用数据库资源发现新基因,根据数据源不同,可分2种不同的查找方式: 1)从大规模基因组测序得到的数据出发,经过基因识别发现新基因: (利用统计,神经网络,分维,复杂度,密码学,HMM,多序列比对等方法识别特殊序列,预测新ORF。但因为基因组中编码区少,所以关键是“数据识别”问题。)利用大规模拼接好的基因组,使用不同数据方法,进行标识查找,并将找到的可能的新基因同数据库中已有的基因对比,从而确定是否为新基因。可分为:①基于信号,如剪切位点、序列中的启动子与终止子等。②基于组分,即基因家族、特殊序列间比较,Complexity analysis,Neural Network 2)利用EST数据库发现新基因和新SNPs: (归属于同一基因的EST片断一定有overlapping,通过alignment可组装成一完整的基因,但EST片断太小,不存在数据来源,主要是拼接问题) 数据来源于大量的序列小片段,EST较短,故关键在正确拼接。方法有基因组序列比对、拼接、组装法等。经常采用SiClone策略。其主要步骤有:构建数据库;将序列纯化格式标准化;从种子库中取序列和大库序列比对;延长种子序列,至不能再延长;放入contig库①构建若干数据库:总的纯化的EST数据库,种子数据库,载体数据库,杂质、引物数据库,蛋白数据库,cDNA数据库; ②用所用种子数据库和杂质、引物数据库及载体数据库比对,去除杂质; ③用种子和纯化的EST数据库比对 ④用经过一次比对得到的长的片段和蛋白数据库、cDNA数据库比较,判断是否为已有序列,再利用该大片段与纯化的EST数据库比对,重复以上步骤,直到序列不能再延伸; ⑤判断是否为全长cDNA序列。 (利用EST数据库:原理:当测序获得一条EST序列时,它来自哪一个基因的哪个区域是未知的(随机的),所以属于同一个基因的不同EST序列之间常有交叠的区域。根据这种“交叠”现象,就能找出属于同一个基因的所有EST序列,进而将它们拼接成和完整基因相对应的全长cDNA序列。而到目前为止,公共EST数据库(dbEST)中已经收集到约800万条的人的EST序列。估计这些序列已覆盖了人类全部基因的95%以上,平均起来每个基因有10倍以上的覆盖率。)

生物信息学复习重点

生物信息学是一门交叉学科, 包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面, 它综合运用数学、计算机科学和生物学等的各种工具来阐明和理解大量数据所包含的生物学意义。 生物信息学宗旨在揭示基因组信息结构的复杂性及遗传语言的根本规律。从生物分子获得和挖掘深层次生物学知识。人类基因组计划(HGP:获得遗传图、物理图、序列图、转录图;终极目标:阐明人类基因组全部DNA序列;识别基因;建立储存这些信息的数据库;开发数据分析工具;研究HGP实施所带来的伦理、法律和社会问题。其中我国承担了人类3 号染色体短臂。 记录:一个数据库记录一般由两部分组成:原始序列数据和描述这些数据生物学信息的注释。 冗余:在一个数据库存在着多个相同的项,如两个或者更多的记录中有一个相同序列 Fasta 格式开始于一个标识符:">" ,然后是一行描述。 GenBank格式:每个基因描述可有多个描述行,包含一行以LOUCU开头描述行,基因序列以ORIGN开头,以/结尾。 EMBL入口标识符ID,序列开始标识符SQ结束是/。 数据库的特点:①数据库是可以检索的,即具有检索功能;②数据库应该是定时更新的,即不断有新版内容发布;③数据库是交叉引用的,特别是在互联网时代,数据库应该通过超链接与其他数据库相连。 EST序列:表达序列标签对cDNA文库测序得到的,是转录的DNA序列。 STS序列:序列标签位点染色体上位置已定的、核苷酸序列已知的、且在基因组中只有一份拷贝的DNA短片断,(200bp —500bp)。 STS序列标签位点是基因组上定位明确、作为界标并能通过PCR扩增被唯一操作的短的、单拷贝DNA序列,用于产生作图位点。 GSS序列:基因组概览测序基因组DNA克隆的一次性部分测序得到的序列。 HTG序列:高通量基因组序列 三大数据库: NCBI(GenBank):美国生物技术中心,建立了一系列生物信息数据和各种服务。 EMBL欧洲分子生物学实验室。 DDBJ日本遗传研究所。 同源性基因系指起源于同一祖先但序列已经发生变异的基因成员。基因同源性只有“是”和“非”的区别,是一种质的判断。 直系同源基因:分布在不同物种间的同源基因又称直系同源基因。 旁系同源基因:同一物种的同源基因则称旁系同源基因 (水平基因:, 水平基因由重复后趋异产生。 一致性:序列中同一碱基位置的相同的碱基成员, 或者蛋白质的同一氨基酸位置的相同的氨基酸成员的百分比。 相似性:序列中同一位置相同或相似序列的百分比。如同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所占的比例。可取代氨基酸系指具有相同性质如极性氨基酸或非极性氨基酸的成员,它们之间的代换不影响蛋白质(或酶)的生物学功能。 相似性和同源性关系:一般来说序列间的相似性越高的话,是同源序列的可能性就更高,所以经常可以通过序列的相似性来推测序列是否同源。 序列比对:确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。任务:通过比较生物分子序列,发现它们的相似性,找出序列之间共同的区域,同时辨别序列之间的根本差异。 相似性:可能是核酸/氨基酸序列的相似、可能是结构的相似、可能是功能的相似

相关主题
文本预览
相关文档 最新文档