当前位置:文档之家› 地铁牵引供电系统设计

地铁牵引供电系统设计

地铁牵引供电系统设计
地铁牵引供电系统设计

The Design of Subway Power Supply System

地铁牵引供电系统设计

摘要

牵引供电系统是城市轨道交通系统中最为重要的基础能源设施,其功能是为轨道交通系统中的电力车辆供电,确保轨道交通列车车辆的正常运行。通过对供电方案的比较,**地铁供电系统采用集中供电方式,系统包含电业局地区变电所与轨道交通主变电所之间的输电线路、轨道交通供电系统内部牵引降压输配电网络、直流牵引供电网和车站低压配电网;牵引供电系统由主变电所、高压/中压供电网络、牵引供电系统、电力监控系统、接触网系统、杂散电流防护和接地系统、供电车间等组成。轨道交通供电系统的主要功能如下:

接受、分配电能:主变电所的主变压器将110KV高压电变换成20KV中压电、20KV 供电网络将电能分配到每一个车站和车辆段内的牵引变电所和降压变电所。

关键字:集中供电方式牵引变电所DC1500V接触轨20kV中压

Abstract

Traction power supply system of urban rail transit system is the most important basic energy facilities, its function is providing power for rail transit system, ensure the normal operation of rail transit vehicle. Through the comparison of the power supply scheme, shijiazhuang metro power system uses centralized power supply mode, system contains the transmission lines between area substation and rail traffic main substation, Traction step-down power transmission and distribution network of rail transport power supply system, DC traction supply network and station low voltage distribution network; tractive power supply system is composed of main substation, high-pressure/medium voltage power supply network, tractive power supply system, electric power monitoring and management system, overhead contact system, stray current protection and grounding system, Power supply workshop and so on. The main function of rail transport power supply system is in the below:

Accept, distribution of the main substation power: main transformer will convert to a 20KV 110 kv high-voltage power supply network in 20KV piezoelectric, energy allocated to each station and maximize the traction substation and step-down in substation.

Key words: entralized power supply system traction substation DC1500V contact rail 20kV medium voltage

目录

第1章绪论 (4)

1.1 供电系统的功能 (4)

1.2 供电系统的构成 (5)

1.3 供电系统电磁兼容 (6)

第2章电源与主变电所 (7)

2.1 电源 (7)

2.2 主变电所 (9)

2.3 中压供电网路 (10)

第3章牵引供电系统 (11)

3.1 牵引供电运行方式 (11)

3.2 牵引供电系统保护 (14)

3.3 牵引变电所 (18)

3.4 牵引网 (21)

第4章杂散电流 (22)

4.1 概述 (23)

4.2 杂散电流的产生 (23)

4.3 杂散电流的防护 (23)

第5章牵引供电计算 (24)

5.1 概述 (24)

5.2 平均运量法 (25)

5.3 用平均运量法对罗家庄牵引变电所的计算 (26)

第6章直流短路计算 (29)

6.1 概述 (29)

6.2 电路图法 (30)

6.3 对罗家庄站两边的供电区间进行短路计算 (32)

第7章结论 (34)

参考文献 (35)

谢辞................................................................................. 错误!未定义书签。附录.. (36)

第1章绪论

1.1 供电系统的功能

1.1.1 全方位的服务功能

地铁供电系统是为地铁安全运营服务的,保证地铁的所有电气用户安全、可靠的用电是他的职责。在地铁这个庞大的用电群体中,用电设备有不同的电压等级、不同的电压制式,既有固定的,也有时刻在变化着的,供电系统就是要满足这些不同用途的用电设备对电源的不同需求,使地铁的每种用电设备都能发挥自己的功能和作用,

保证地铁安全可靠的运营。

1.1.2 故障自救功能

在系统中,发生任何一种故障,系统本身都应有备用措施,以保证地铁的正常运行不受影响。双电源是构成地铁供电系统的主要原则,主变电所、牵引变电所和降压变电所为双电源、双机组对动力照明的一、二级负荷采用双电源、双回路供电,牵引网同一馈电区间采用双边供电方式,当一座牵引变电所故障解列时,靠两相邻变电所的过负荷能力对牵引网进行大双边供电,保证列车可以正常运行不受影响。

1.1.3 系统的自我保护功能

对牵引供电系统而言,为保证旅客的安全,保护的速动性是第一位的,起保护的原则是“宁可误动作,不可不动作”,误动作可以用自动重合闸校正,而保护不动作则很危险,因为直流电弧在不切断电源时可以长时间维持,从而威胁旅客安全。地铁供电系统中压交流侧保护,应和城市电网的保护相配合和协调,因此其保护的选择

性也受到制约。

1.1.4 防止误操作功能

系统中任何一个环节的操作都应有相应的联锁条件,不允许因为误操作而导致发生故障。尤其是各种隔离开关,或手车式开关的隔离触头,都不允许带负荷操作。防止误操作,是使系统安全、可靠的运行不可缺少的环节。

1.1.5 方便灵活的调度功能

系统应能在控制中心进行集中控制、监视和测量,并能根据运行需要,方便灵活的进行调度,变更运行方式,分配符合潮流,是系统的运行更加经济合理。系统发生故障时,电力调度可以对供电分区进行调度和调整,以达到安全可靠、经济运行的目的。

1.1.6 完善的控制,显示和计量功能

系统应能进行就地和远动控制,并可以方便地进行操作转换,系统各环节的运行状态应有明显的显示。各种信号显示应准确,事故信号、预告信号分别显示。牵引用电和动力照明用电应分别计算,以利于对用电指标进行考核与经济分析。

1.1.7 电磁兼容功能

地铁是强电、弱电多个系统共存的电磁环境,为了使各种设备或系统在这个环境中能正常工作,且不对该环境中其它设备、装置或系统构成不能承受的电磁骚扰各种电器和电子设备的系统内部以及和其他系统之间的电磁兼容显得尤为重要。供电系统及其设备在地铁这个电磁环境中,首先是作为电磁骚扰源存在的,同时也是敏感设备。在地铁的电磁环境中,供电系统与其它设备、装置或系统应是电磁兼容的。在技术上应采取措施,抑制骚扰源、消除或减弱电磁耦合、提高敏感设备的抗干扰能力,以达到各系统的电磁兼容,是地铁安全可靠地运行。

1.2 供电系统的构成

地铁供电电源通常取自城市电网,通过城市电网一次电力系统和地铁供电系统实现输送或变换,然后以适当的电压等级供给地铁各类设备。根据用电性质的不同,地铁供电系统可分为两部分:由牵引变电所为主组成的牵引供电系统和以降压变电所为主组成的动力照明供配电系统。

1.2.1 牵引供电系统

牵引供电系统主要由主变电所、牵引变电所、接触网、电力监控、供电缆网等组成。提供地铁车辆的牵引动力电源,专为电动车辆服务。

1.2.2 供配电系统

动力照明供配电系统主要由降压变电所、低压母线排、配电设备、线缆、用电设备等组成。提供地铁机电设备动力电源和照明电源,如车站和区间的动力、照明及

其他为地铁服务的自动化用电设施。

1.3 供电系统电磁兼容

在地铁这个电磁环境中,应首先研究构成电磁兼容的三要素—骚扰源、耦合途径、敏感设备。采取必要的措施,以抑制骚扰源、消除或减弱电磁耦合、提高敏感设备的抗干扰能力。

1.3.1 抑制骚扰源

供电系统不仅是地铁的能源设施,同时也是作为电磁干扰源而存在。牵引供电系统产生的谐波和杂散电流就属于地铁这个电磁环境中的骚扰源。

(1)谐波抑制谐波是牵引供电系统由交流变为脉动直流时必然要产生的高次交流成分,交流成分的脉波数和大小与整流的脉波数有关。它所产生的谐波通过传导耦合对系统中的其它用电设备存在有害的影响。因此,把这种危害降到能容忍的程度,是牵引供电系统必须要解决的问题。增加整流的脉波数是非常有效的办法。目前国内地铁普遍采用等效24脉波整流来尽量减小对系统中其他用电设备的电磁骚扰。

(2)杂散电流抑制直流牵引网采用接触网正极送电,走行轨负极回流,随着列车的运行,绝大部分回流电流沿着走行轨流回牵引变电所,同时也不可避免的要从走行轨向地下泄漏电流。杂散电流的大小主要取决于走行轨的对地电位和走行轨对地过渡电阻的大小。相应的抑制杂散电流的措施主要有以下几项:

①牵引供电系统采用双边供电方式;②上下行走行轨并联,减小走行轨电阻;③走行轨绝缘安装;④道床的排水沟设在列车运行方向的右侧;⑤敷设杂散电流收集网。

1.3.2 消除或减弱电磁耦合

(1)屏蔽屏蔽并接地是消除或减弱感应骚扰和辐射骚扰的唯一途径。

①供电系统的所有设备外壳均应采用封闭式金属铠装柜体,并可靠接地。这样既可以防止外来的电磁干扰,又可以使设备本身产生的电磁骚扰不向外辐射;②设备内部的电子器件及其连线和接头都应做好密闭和屏蔽;③控制用电缆采用屏蔽电缆,其屏蔽层一点接地;④电力电缆采用钢带铠装绝缘外护套电缆,钢带在变电所一点接地。

(2) 电缆敷设

①尽可能加大不同电压等级电缆的间距,减小辐射耦合和感应耦合;②强、弱电电缆分侧敷设;③高压、低压、控制电缆分层敷设;④金属电缆托架应可靠接地。

1.3.3 提高敏感设备的抗干扰能力

(1)防雷对于雷电现象,供电系统属于敏感设备,在技术上应严加防范。

①空旷地面高架桥设避雷线,保护高架桥、接触轨、区间电缆。②地面变电所的中压母线、低压母线、直流正负母线均设避雷器。

(2)接地

①变电所设综合接地装置,需要接地的设备或系统分别用接地线引到接地母线上;②变电所接地电阻为0.5Ω以下;③电力变压器中性点直接接地,低压系统采用TN-S系统;④需要屏蔽的设备外壳及电缆屏蔽均需接地。

第2章电源与主变电所

2.1 电源

电源由城市电网引入,地铁供电系统对于城市电网是用户,对地铁的各类负荷又是电源。城市电网对地铁的供电方式主要有三种形式,究竟采用哪种供电方式,主要取决于城市电网的构成、分布及电源的容量。

2.1.1 集中供电方式

集中供电方式是指城市电网(通常是110kV或63kV电压等级)向地铁的专用主变电所供电,主变电所再向地铁的牵引变电所和降压变电所供电,地铁自身组成完整的供电网络系统。主变电所应有两路独立的电源。目前国内采用集中供电方供电的城市多为图2-1所示。

图2-1集中供电方式举例

2.1.2 分散式供电

分散供电方式是指沿地铁线路的城市电网(通常是10kV电压等级)分别向各沿线的地铁牵引变电所和降压变电所供电。其前提条件是城市电网在地铁沿线有足够的变电站和备用容量,并能满足地铁牵引供电的可靠性要求。如早期的北京地铁采取的就是这种供电方式。分散式供电要保证每座牵引变电所和降压变电所皆能获得双路电源。分散式供电系统如图2-2所示。

图2-2分散供电方式举例

2.1.3 混合式供电

分散与集中相结合的供电方式是上述两种供电方式的结合,可充分利用城市电网的资源,节约投资,但供电可靠性不如集中供电方式,管理亦不够方便。混合式供电系统如图2-3所示。

图2-3混合供电方式举例

2.1.4 **地铁一号线供电方式选择与分析

**地铁一号线选择集中供电方式。集中供电方式的优点主要有:供电可靠性高,可提高地铁供电的灵活性,受外界因素影响较小。二号线是**市南北向交通的主动脉,

途径运河桥,北国商城,火车站等人流密集区对于供电可靠性的要求很高。

主变电所采用110/20kV有载自动调压变压器,并有专用供电回路,供电质量好,牵引整流负荷对城市电网的影响小。

地铁供电可独立进行调度和运营管理,检修维护工作相对独立方便。

只涉及城市电网几个220kV变电站的增容改造,工程量较小,相对易于实现。二号线有相当路段途经市郊,电力资源缺乏,变电站较少,采用集中供电方式避免修建过多地区变电站,投资较少。

2.2 主变电所

主变电所的位置、容量的确定,应根据牵引供电系统计算和供配电系统计算结果确定,最终应征得供电、规划部门的确认。遵循靠近线路、负荷平衡、资源共享的原则,达到节能的效果。

主变电所位置的选择,应按下述原则确定:

①应尽量靠近铁路沿线、接近负荷中心。

②各主变电所的负荷平衡,并使其两侧的供电距离基本相等。

③靠近地铁站,以缩短电缆通道的距离,减少和城市地下管网的交叉和干扰,具体位置应与城市供电部门和规划部门共同商讨。

④应考虑路网规划和其他地铁线路资源共享,并预留电缆通道和容量。

主变电所高压侧宜为內桥式接线,设桥路开关,如考虑经济因素,也可以采用线路变压器组接线。中压侧单母线分段,设分段开关,失电压自投,故障闭锁。桥路开关和分段开关正常处于断开状态。

为减少占地面积,主变电所应设计成室内式,设两台主变压器和两台自用变压器。主变压器应按地铁远期最大运量设计。

地铁用电已采取功率因数补偿措施,主变电所无需设电容补偿装置,根据需要可设置电能有源恢复系统,以补偿50次以下谐波及补偿基波的容性或感性无功电流。

主变电所按三级控制设计,即就地、距离和远动,二次回路应与地铁牵引变电所相协调,采用综合自动化系统。近期为有人值守,条件成熟时也可以考虑无人值守。

主变电所宜选用六氟化硫绝缘全封闭组合电器(GIS),以减少占地面积。主变电所的平面布置应紧凑,便于设备运输、安装和运行维护。

从主变电所至地铁车站应设电缆通道,电缆通道断面尺寸不小于2m×2m。

主变电所宜采用油浸风冷、有载自动调压变压器。根据需要可为三绕组或双绕组结构。

图2-4中,两路高压电源,两台主变压器可以是线路变压器组接线,也可以内桥

接线,中压侧设接地变压器,以限制接地短路电流。

图2-4

主变电所主接线 主变电所属于一级负荷,全线设2座以上主变电所时,地铁有4路以上供电电源,1座主变电所解列时,相当于双路电源故障,应引入应急电源,其供电区是可以重新调度和划分的。

2.3 中压供电网路

2.3.1 中压供电网络的概念

通过中压电缆,纵向把上级主变电所和下级牵引变电所、降压变电所连接起来,横向把全线的各个牵引变电所、降压变电所连接起来,便形成了中压网络。根据网络功能的不同,把为牵引变电所供电的中压网络,称为牵引网络;同样,把为降压变电所供电的中压网络称为动力照明网络。中压网络有两大属性:一是电压等级,二是构成形式。

中压网络不是供电系统中独立的子系统,但是它却是供电系统设计的核心内容。它的设计牵扯到外部电源方案、主变电所的位置及数量、牵引变电所及降压变电所的位置与数量、牵引变电所与降压变电所的主接线等。

2.3.2 中压供电网络的构成原则

①安全可靠,经济合理,满足供用电的要求。

②接线简单,负荷平衡,保护完善。

③环网供电,调度方便,误操作机会为零。

④各种变电所结为双电源,主接线尽可能一致。

2.3.3 中压供电网络的电压等级

国内既有城市轨道交通的中亚供电网络采用的电压等级为10kV和35kV,20kV 电压等级的中压供电网络也在酝酿之中。不同电压等级的中压网络的特点

(1)35kV中压网络,国家标准电压级。输电容量较大、距离较长;设备来源国内;设备体积较大,占用变电所面积较大,不利于减小车站体量;设备价格适中;国内没有环网开关,因而不能用(相对于断路器柜)价格较便宜的环网开关,构成接线与保护简单、操作灵活的环网系统;广州地铁、上海地铁已经采用。

(2)20kV中压网络,国际标准电压级。输电容量及距离适中,比10kV系统大。设备完全实现国产化;引进MG、ALSTHOM等技术的开关设备,体积较小,占用变电所面积远小于国产35kV设备,有利减小车站体量,节省土建投资;价格适中;有环网单元,能构成接线与保护简单、操作灵活的环网系统;国内地铁尚没有采用,但国外地铁多有采用。

(3)10kV中压网络,国家标准电压级。输电容量较小、距离较短;设备来源国内;设备体积适中;设备价格较低;环网开关技术成熟、运营经验丰厚,可用其构成保护简单、操作灵活的环网系统;国内外地铁广为采用。

2.3.4 **地铁一号线中压供电网络的电压等级选择

**地铁一号线选择20kV中压网络,因为它的优点在于输送容量较大、设备体积较小、有环网开关、可构成环网供电方式、设备可以国产化且价格适中。而35kV中压网络设备需要进口,且占地面积大;10kV中压网络输电容量较小、距离较短增加了变电所数量。

第3章牵引供电系统

3.1 牵引供电运行方式

牵引供电系统由牵引变电所和牵引网两部分组成,两者在运行中应相互协调、统一调度。牵引供电系统根据需要可以有以下几种运行方式:

①牵引变电所正常为双机组并列运行,以构成等效24脉波整流。

②一台机组退出运行时也可以有条件地单机组运行。

③系统中允许几座牵引变电所解列退出运行,条件是解列的变电所必须是只少相隔两座牵引变电所。

④牵引网正常实行双边供电,当一座牵引变电所故障解列退出运行时,应实行大双边供电。

⑤只有在末端牵引变电所故障解列时才采用单边供电,如列车在牵引网末端起动时电压降超过允许值,可通过横向电动隔离开关将上下行接触网并联,以减小回路电阻,降低电压损失。 3.1.1 牵引供电系统按双边供电设计

双边供电是指任何一个馈电区同时从两侧牵引变电所取得两路电源。地铁的牵引供电系统,在正线的设计和运营中,均应采用双边供电方式,因为双边供电具有明显的有点。双边供电是设计必须满足的条件,也是正常运营的首选方式,单边供电不是设计的限制条件。即使在一座牵引变电所故障解列时,也应采取技术措施实行大双边供电,同时应自动完成双边联跳条件的转换,这样可以减少牵引变电所数量,既节省一欢建设投资,叉减少运营费用,同时减小列车起动时的电压损失,降低功率损耗,有利于列车运行,并且不影响运送旅客的能力,这对运营

是非常有利的。双边供电示意图3-1所示,走行轨对地电位分布如图3-2所示。

图3-1 双边供电示意图

图3-2 双边供电走行轨对地电位分布示意图

双边供电比单边供电曲优点如下:①牵引网的平均电压损失,双边供电是单边供电的1/3 ~1/4。平均电压损失是指列车在区间运行时的平均电压损失,它对辅助电机的运转有意义。平均电压损失有两个分量组成,即由指定列车本身所取电流在其受流器上引起的电压损失和同行其他列车电流在其受流器上造成的电压损失之和。②列车带电运行时受流器上的电压损失,双边供电是单边供电的1/3~1/4,也有两个分量组成,即由指定列车本身所取电流在其受流器上引起的电压损失和同行其他列车电流在其受流器上造成的电压损失之和。③列车最大平均电压损失,双边供电是单边供电的1/4。④列车起动时最大电压损失,双边供电是单边供电的1/4,满足列车起动耐的最大电压损失要求,是决定牵引变电所间距的必须满足的条件。单边供电列车起动时最大电压损失发生在供电区的终点,双边供电列车起动时最大电压损失发生在供电区的中点。⑤牵引网的功率损失,双边供电是单边供电的1/3 ~1/4。牵引网中的功率损失等于牵引网中诸列车各自的电流与电压损失的乘积之和。⑥双边供电时,列车的再生能量可以被同行列车吸收,当车流密度高时再生能量更易被同行列车利用;而单边供电时,再生能量被其他同行列车吸收的可能性极小。⑦杂散电流值双边供电是单边供电的1/3—1/4。直流牵引网采用接触网正极送电,走行轨负极回流,随着列车的运行,绝大部分回流电流沿着走行轨流回牵引变电所,同时也不可避免地要从走行轨道中向地下(道床、结构钢筋)泄漏电流(杂散电流)。杂散电流的大小主要由下列两个主要因素起作用:

①走行轨对地电位的高低。

②走行轨对地过渡电阻的大小。

当然,走行轨对地电位越低、走行轨对地的过渡电阻越高则杂散电流就越小。牵引供电系统在向列车供电的同时,也在随列车的移动从走行轨向地下泄漏电流。采用双边供电方式是减小杂散电流最有效的措施。牵引网无论是正常运行方式还是事故状态(一座牵引变电所解列)时都应采用双边供电。走行轨对地电位双边供电是单边供电时的1/3—1/4,在线路条件相同的情况下,双边供电比单边供电时杂散电流要小3—4倍是显而易见的。

3.1.2 大双边供电的两种方式

鉴于双边供电比单边供电有很多优点,系统中任何一座牵引变电所故障解列时,也应采取技术措施,实行大双边供电。实现大双边供电有以下两种方式:

(1)利用解列的牵引变电所的直流母线构成大双边供电,利用牵引变电所直流母线构成大双边供电的条件是:

①牵引变电所只有两套整流机组退出运行。

②直流母线、上下行4路馈线开关及其二次回路完好无损且能正常运行。

(2)利用纵向电动隔离开关构成大双边供电,当牵引变电所故障解列时,利用电分段处的纵向电动隔离开关构成大双边供电,使整座牵引变电所(含隧道开关柜)退出运行,牵引网运行不受故障牵引变电所的影响。

纵向电动隔离开关的用途有两个:

①作为牵引变电所4路馈线开关的备用开关。

②作为牵引变电所的备用开关。

3.1.3 牵引变电所的运行

因治理谐波的需要,牵引变电所多采用双机组构成等效24脉波整流,在一天的运行中,除高峰小时以外的其他时间,牵引变电所可以单机组运行,但必须满足下列两个条件:

①牵引负荷不能大于单机组允许的过负荷能力。

②单机组的12脉波整流所产生的谐波能与供电系统中的其他用户电磁兼容,并满足谐波治理的规定。

3.1.4 允许系统中任何一座牵引变电所故障解列

当系统中任何相隔两座的牵引变电所故障解列时,靠其相邻牵引变电所的过负荷能力,应仍能保证列车的正常运行,不影响运送旅客的能力。故障或退出运行的牵引变电所必须是相隔两座的牵引变电所。

3.2 牵引供电系统保护

3.2.1 概述

地铁供电系统可分为两个部分:交流中压系统和直流牵引系统。这里主要对直流牵引系统的保护作介绍,直流牵引供电系统的保护又可分为牵引整流机组保护和直流馈出保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源,既当牵引网发生短路时,并非仅双边供电两侧的牵引变电所向短路点供电,而实际上是全线的牵引变电所皆通过牵引网向短路点供电,

只是距短路点近的牵引变电所供出的短路电流大、距短路点远的变电所供出的短路电流小而已。所谓多死区,是因牵引供电系统本身的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时,首先要“切断电源”,

切断电源对直流系统至关重要,因为直流一旦形成电弧,如不断电则可以长时间维持。而“消除死区”是任何保护必须要做到的。针对这两点,牵引供电系统除交流系统常用的保护外,还采用了牵引变电所内部联跳、牵引网双边联跳、di/dt ΔI 等特殊保护措施,这就可以完全满足牵引供电系统发生故障时及时切断电源、消除死区的要求。 牵引供电系统之所以形成保护上的死区,主要有两个原因:

①地铁列车为多辆电动车组编组,其起动电流大于牵引网最小短路电流,只靠直流快速开关的大电流整定很难满足保护要求。

②电动列车是随时在运动的,其位置在不断地移动、变化,作为电动列车的远后备保护,牵引变电所的保护应延伸至电动列车主回路末端。

对直流牵引供电系统,速动性可以看成和可靠性是同等重要的,所以直流侧保护皆采用ms 级的电器设备,目的就是在直流短路电流上升过程中将其遮断,不允许短路电流到达稳态值。至于选择性,在直流牵引系统中则处于次要位置,其保护的设置原则应当是“宁可误动作,不可不动作”

。 3.2.2 牵引变电联跳

当牵引变电所两台整流机组的直流(或交流)进线开关故障跳闸时,同时联跳四路直流馈出开关,称之为变电所联跳。

牵引变电所联跳保护适用于以下两种情况:

①牵引变电所的两套整流机组开关同时因故障跳闸。

②牵引变电所任何一路直流馈出开关失灵拒动

牵引变电所联跳是解决牵引供电系统无远后备保护的唯一可靠的方法。设置牵引变电所联跳的根本原因就是因为牵引变电所的直流断路器失灵拒动时,没有远后备保护,因为地铁牵引供电系统短路的特点就是多电源、多回路、多参数。牵引变电所6台直流开关中任一台失灵拒动,只跳其上级断路器是不能切断电源的,还有五路开关向短路点供电,因此,解决牵引变电所直流断路器的远后备保护,只有实现牵引变电所联跳。

3.2.3 牵引变压器保护

牵引变压器保护的设置和整定,其原则是应当是根据牵引负荷的特点,保证牵引整流机组的过负荷能力的充分利用,以提高牵引变电所的效率,其中压交流侧设置的保护有:电流速断、过电流保护、过负荷信号、温度信号。

3.2.4 硅整流器保护

硅整流器除其本身对硅元件的保护外,在直流侧,

应设直流快速断路器,从保护和实现自动化上都是非常有利的。断路器大电流瞬动整定值应躲开硅整流器过载能力300%In 按式Izd > 3In 整定。

图3-3 牵引变电所联跳示意图

3.2.5 直流正极接地保护

当变电所发生直流接地时,通过接地继电器动作而使开关跳闸。因为直流正极接地时,其接地电流大小差别很大,在地下车站的牵引变电所,当直流正极接地时,接地电流不受接地电阻大小的制约,和短路电流一样,可以使直流快速开关跳闸,因此,在地下牵引变电所,直流正极接地保护是无用的;而在地面的牵引变电所,则接地电流的大小受接地电阻大小的制约,短路电流不足以使直流快速开关跳闸。接地继电器的整定值为Izd ≥30A 。

3.2.6 直流馈出保护

直流馈出保护,在牵引供电系统中是最重要的保护。因供电方式不同而形成保护上的不同的“死区”;因供电的对象是随时变化并移动的负荷,还需要在保护上进行配合,这就形成了保护上特殊要求。直流馈出保护首先是以保障列车的正常运行、保护旅客的人身安全为第一要素。

(1)死区的形成死区的大小和供电方式、供电距离、保护措施有密切的关系,

采取适当的供电方式和保护装置,死区是完全可以消除的。

①单边供电死区发生在末端。保护死区的大小,取决于开关整定值的大小和供电

距离的长短。单边供电时,开关整定值越大,死区越大;供电距离越长,死区也越大。

②大双边供电死区发生在线路中点附近。如果只靠开关的大电流速断保护,死区

会出现在两端变电所的附近,这里所说大双边供电死区发生在中点是指馈出保护设置

了双边联跳装置以后形成的死区。正常双边供电是不会形成死区的,因为区间任何一

点发生短路,都可以使一端开关跳闸,并使另一端开关联跳。而采用大双边供电时,

在供电区的中点附近会出现死区。

③列车主保护不能断弧形成的死区。这一死区发生在车上,范围在整个供电区间

都可能发生,直接威胁旅客的生命安全,非常可怕。

变电所保护和地铁车辆的主保护相互配合的基本原则是:

①地铁车辆主保护应当“自己保护自己”,既地铁车辆在运行中无论在任何地点,

当车辆发生短路故障时,其主保护应动作可靠,不允许有拉弧现象,“要动作就可靠

切断电源,不动作就拒动”。绝不允许出现开关即跳闸叉继续燃弧现象发生。这对旅

客是非常危险的。

②牵引变电所馈出开关保护应当延伸至车上主回路,作为车辆保护的后备。即电

流增量保护整定躲过列车起动电流的上升率,当列车主回路发生短路故障时保护应动

作。

(2)直流馈出保护

①大电流短路(瞬动)保护。这是直流快速开关自身的大电流整定,主要是作为

直流短路保护。它的整定值应躲开一列车的最大起动电流与区间的列车运行平均电流

之和。

②双边联跳保护。双边联跳是解决死区保护的重要措施之一,在正常双边供电情

况下,由于设置了双边联跳保护,可以消除死区。但当大双边供电距离较长时,在线

路中点附近可能会出现死区,所以进行大双边供电时,牵引变电所的双边联跳装置应

自动进行转换。

③电流增量保护。依据以下两个条件鉴别短路电流和列车起动电流的区别:短路

电流初始上升率di/dt 大于列车起动电流上升率di/dt ;短路电流增量I ?大于列车起动电流增量I ?。

④自动重合闸装置。在直流馈出的保护中,设置自动重合闸装置,其目的就是矫正馈线快速开关的误动作或消除瞬时短路故障,保证安全可靠地供电。

⑤开关失灵拒动保护。利用/di dt I ?保护的短时限动作于跳闸,长时限动作使牵引变电所内部联跳,是切断故障点电源、实现断路器失灵拒动保护的简易、可行的办法。

⑥线路检测装置。在馈线开关合闸以前,检测馈电线路是否有短路故障,如检测结果有短路故障,则馈线开关不能合闸,只有检测馈出线路无短路故障时才允许馈线开关合闸。

⑦轨道电位限制器。为保证旅客在站台登车时的人身安全,为防止走行轨出现不明原因的电位升高而安装轨道电位限制器。可整定为65V

所谓联跳,就是一个开关事故跳闸后,去强迫与其相关的所有开关跳闸。双边联跳是切断双边供电电源,变电所联跳是切断流向短路点的所有电源,联跳是解决牵引供电系统直流开关没有远后备保护的唯一可靠的办法。

牵引供电系统联跳保护有以下5种:牵引网正常双边联跳、一路开关退出运行时仍实行双边联跳、大双边联跳、上下行牵引网并联时单边联跳、牵引变电所联跳,而后者就是从根本上解决牵引供电系统的直流开关没有远后备保护的问题。

3.2.8 隔离开关的操作联锁

回路中必须是直流快速断路器处于分闸位置时隔离开关才能进行操作;而整流器负极隔离开关则应和正极快速断路器相互联锁,硅整流器正极断路器和负极隔离开关在操作程序上应有两个联锁条件:只有负极隔离开关合闸后,正极开关才能进行合闸操作;只有正极开关处于分闸位置,负极开关才能进行操作。

3.3 牵引变电所

牵引变电所是牵引供电系统的核心,它担负为电动列车供应直流电能,它的站位设置、容量大小,需根据所采用的车辆型式、车流密度、列车编组经过牵引供电计算,经多方案比选确定。牵引变电所有两种形式:户内式变电所和户外式箱式变电所,前者适宜地下线路,后者适宜地面线路。

地铁牵引供电系统

地铁牵引供电系统保护 来源:中国论文下载中心 [ 08-12-11 10:20:00 ] 作者:黄德胜编辑:studa0714 【摘要】作者根据自己的实践经验,提出牵引变电所两种不可或缺的保护:牵引变电所内部联跳、因馈线开关没有远后备保护,故应设开关失灵拒动保护。迅速切断电源是一切继电保护的最终目的,直流电路尤其如此。为迅速切断电源,在短路电流上升过程中将其遮断,是直流保护应当遵循的基本原则。文中分析了三种保护上“死区”形成的原因,为使馈线开关保护更加完善,直流馈线应设开关失灵拒动保护,以使列车运行更加安全。 【关键词】牵引变电所内部联跳馈线开关开关失灵拒动短路电流死区。 一、概述 地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源, 既当牵引网发生短路时, 并非仅双边供电两侧的牵引变电所向短路点供电, 而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区, 是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时, 首先要迅速“切断电源”、“消除死区”, 针对这两点, 牵引供电系统除交流系统常用的保护外, 还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt △I 等特殊保护措施, 这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。对任何供电系统的继电保护而言, 可靠性总是第一位的, 而对直流牵引供电系统, 速动性可以看成和可靠性是同等重要的, 所以直流侧保护皆采用毫秒级的电器保护设备, 如直流快速断路器、di/dt △I 保护等, 目的就是在直流短路电流上升过程中将其遮断, 不允许短路电流到达稳态值。至于选择性, 在直流牵引供电系统中则处于次要位置, 其保护的设置应是“宁可误动作, 不可不动作”。误动作可以用自动重合闸进行矫正; 不动作则很可怕, 因为牵引供电系统短路时产生的直流电弧, 如不迅速切断电源,电弧可以长时间维持燃烧而不熄灭; 而交流电弧则不同, 其电压可以过零而自动熄灭。 关于地铁牵引供电系统的常用保护,已为业内人士所熟知,这里不再多作介绍。下面谈一下容易被人忽视的两种保护。 二、引变电所内部联跳保护 牵引变电所内部联跳的定义:当发生短路故障引起两台整流机组直流引入断路器或交流断路器同时跳闸时,应迅速跳掉全部直流馈线断路器,以及时切断电源。见图(01)

地铁1号线供电系统设计

(此文档为word格式,下载后您可任意编辑修改!) 工作总结 地铁牵引供电系统设计 分校(站、点):国顺 年级、专业:08秋机电一体化 教育层次:大专 学生姓名:朱臻 指导教师:李杰 完成日期: aufwiedesan

目录 一、牵引站一次系统 (3) 二、牵引供电系统各主要设备介绍 (5) (一)交流系统 (5) (二)整流器 (6) (三)直流高速断路器 (9) (四)中央信号屏…………………………………………………………………… 11 参考文献…………………………………………………………………………… 14 致谢……………………………………………………………………………… 15

地铁牵引供电系统设计 随着城市的发展,轨道交通越来越离不开人们的日常生活,上海地铁的客流也与日聚增,而供电系统在整个地铁运营中则起着举足轻重的作用。地铁供电系统主要可分为:主变电系统,牵引供电系统和车站及附属设备供电系统(降压站)三大部分,主变电系统就是将电网的110KV高压电转换为33KV 和10KV供牵引和降压站。牵引供电系统(以下简称牵引站)要求:供电安全系数高,能适应地铁列车大密度、高频率启动和制动,相邻供电区域间必须没有无电区域。因此,上海地铁采用了33KV的交流高压电通过整流器转为1500V的直流电并送到触网为列车供电技术。下面就以92年建成的地铁一号线衡山路牵引站为例作一下系统的介绍。 一、牵引站一次系统 地铁供电系统不同于一般的工业和民用电,属于一级负荷,对安全性和可靠性有着较高的要求,所以牵引站也是按照上述要求来设计的。衡山路牵引站33kv有两条回路供电,分别是上衡牵和广衡牵33KV进线开关,平时上衡牵运行,广衡牵作备用:采用西门子公司制造的GIS(六氟化硫全封闭高压开关柜)组合式开关柜,比传统高压柜占地面积小,可靠性高,维护工作也大大减少。 本牵引站由两台4.4MVA整流变压器将33KV降到1220V并送往整流器,采用干式双绕组变压器,一次侧为Dd0接法,有利于简少谐波干扰;二次侧为DY5接法利用三角形和星形互差30度的特点组成交流6相整流电路通过整流以后得到12脉波直流电,比一般三相6脉波整流电路大大减少了脉动系

地铁直流牵引供电系统馈线保护方法研究.

现代电子技术年第期总第期!通信与信息技术" 地铁直流牵引供电系统馈线保护方法研究 丁丽娜!韩红彬 西南交通大学电气工程学院" 摘 四川成都 #$%%&$’ 要(针对目前国内地铁直流馈线保护方法不是很成熟!本文介绍了地铁直流牵引供电系统中采用的几种直流馈线 保护方法!详细分析了大电流脱扣保护)*电流上升率及电流增量保护.过流保护.双边联跳保护.接触网热过负荷保,+*-护!自动重合闸保护的基本保护原理!并举例说明了如何通过对电流上升率!电流增量/和电流上升持续时间-的测量来区分故障情况和正常运行情况)为地铁馈线保护的配置提供了理论基础) 关键词(馈线0直流0保护0地铁 3 中图分类号(12&$45 文献标识码(6文章编号($%%&8&2%%:’%%5%&9" ;<=<>?@ABCD?BE<@EFBCGPQRS?>@EFBC LMTTUPLP=E

地铁直流牵引供电系统保护 王振朴

地铁直流牵引供电系统保护王振朴 发表时间:2019-04-11T11:20:09.453Z 来源:《基层建设》2019年第3期作者:王振朴 [导读] 摘要:近年来,随着我国经济的发展和综合国力的不断增强,我国的科学技术水平不断的提升,这促使了地铁开始广泛的在我国的各个城市开始使用,使得地铁越来越成为城市交通不可或缺的工具。 石家庄市轨道交通有限责任公司河北石家庄 050000 摘要:近年来,随着我国经济的发展和综合国力的不断增强,我国的科学技术水平不断的提升,这促使了地铁开始广泛的在我国的各个城市开始使用,使得地铁越来越成为城市交通不可或缺的工具。在地铁的使用过程中,直流牵引供电是地铁正常运行的关键,在很大程度上决定着地铁运行中供电的安全性和可靠性。因此,加强对于地铁直流牵引供电系统的重视程度至关重要。本研究便是从这个角度出发,对地铁直流牵引供电系统保护进行简要的概述,并将重点阐述牵引变电所内的直流主保护、死区的形成以及地铁直流牵引供电系统保护的方式。 关键词:地铁;直流牵引供电;系统保护 前言: 随着地铁在各个城市的广泛普及,如何更好的保证地铁行驶过程中供电的安全性和可靠性成为相关研究人员以及广大公民非常关注的问题。目前地铁上广泛使用的供电方式为地铁直流牵引供电,因此为了对地铁供电有更好的了解,更进一步的促进我国地铁供电系统的发展,对于直流牵引供电系统的故障形式、存在的问题、死区的形成进行深度的学习至关重要,并且要对地铁牵引变电所内的直流主保护和地铁直流牵引供电系统保护的方式有深入的了解。 1.地铁直流牵引供电系统保护概述 1.1 牵引变电所内的直流系统的故障形式 牵引变电所内的直流系统发生的故障的形式主要包括短路故障、过压故障以及过负荷故障等,其中短路故障是最基本的一种故障形式,对于地铁直流牵引供电系统的运行产生着非常大的影响。一般来说,在地铁运行的过程中,为了保障地铁运行的安全性和可靠性,要尽可能的消除故障,这就要求在短路故障发生时,要采取合理及时的措施将短路区域的死区尽可能的消除,并且要关闭短路地区的电源。由于牵引变电所内的直流系统是多电源多死区的,这就给地铁运行过程中的短路故障的消除增加了难度,因此,如何快速准确的消除短路故障成为地铁直流牵引供电系统保护故障消除的关键问题。 1.2 地铁直流牵引供电系统保护存在的问题 目前我国的地铁直流牵引供电系统保护已经发展的非常的成熟,在很大程度上促进了我国地铁的发展,但是其仍然存在着一些问题需要解决。比如,当多辆地铁在相隔较短的时间内启动时,地铁直流牵引供电系统保护可能会出现跳闸现象,其主要原因是因为当一辆地铁启动时,地铁直流牵引供电系统保护中的电流会上升,这时地铁直流牵引供电系统保护会进行限流保护,如果在限流保护的时间段内另一辆地铁开始启动,则可能因为电流过大而造成地铁直流牵引供电系统保护跳闸。目前这个问题得到了相关研究人员的广泛关注,但是还没有找到合适的解决方案。 2.牵引变电所内的直流主保护 2.1 电流上升率保护 在地铁牵引变电所内的直流主保护中,电流上升率保护是非常关键的一项。所谓电流上升率保护,是一种广泛的应用在中端短路主保护和远端短路主保护中的保护方式,其能够准确的辨别出地铁运行过程中的中端电流、远端电流和正常电流,因此广泛的应用在中端短路故障和远端短路故障的消除过程中,为地铁的正常运行发挥着重要的作用。一般来说,随着地铁运行时间的增加,近端短路电流、中端短路电流、远端短路电流以及受电弓过接触网分段都会增加,但是增加的速度不尽相同,这也是牵引变电所内的直流主保护判断是否发生跳闸的主要依据。 2.2 大电流脱扣保护 除了电流上升率保护外,在地铁牵引变电所内的直流主保护中还有非常关键的一项就是大电流脱扣保护。一般来说,大电流脱扣保护主要应用在近端短路故障中,其工作的主要原理是在断路器内设置相应的短路故障保护系统,即设置一种脱扣方式来对短路故障进行判断和保护,当流经的电流超过相应的设定值时,脱扣器会判定出电流故障,然后进行跳闸来保护供电系统。在脱扣器工作的过程中,设置的跳闸设定值一般是根据实验和计算分析得到的比较合理的数值,这样才能够保证脱扣器跳闸的合理性。 3.死区的形成 3.1 大双边供电死区发生在中点附近 在地铁的直流牵引供电系统保护中,由于供电的方式、供电的保护方式等的不同,地铁直流牵引供电系统保护的死区的形成也是不相同的,其中主要的一种形成的死区就是发生在中点附近的大双边供电死区。实际上,由于双边供电的本身特性,大双边供电一般是不会发生死区的,因为当其中的一边发生故障时,另一边就会自动进行保护跳闸,从而防止了大双边供电死区的发生。但是,如果采用大电流双边供电,跳闸保护装置的反应时间不足就容易导致大双边供电死区的发生,并且这个供电死区一般发生在中点附近。 3.2 单边供电死区发生在末端 在地铁的直流牵引供电系统保护中,另外一种常见的死区就是发生在末端的单边供电死区。一般来说,单边供电死区的范围与地铁直流牵引供电的供电距离以及开关的整定值有关,并且是正相关的关系,即当地铁直流牵引供电的供电距离较小时,单边供电死区的范围就较小,当地铁直流牵引供电的供电距离较大时,单边供电死区的范围就较大;当地铁直流牵引供电的开关的整定值较小时,单边供电死区的范围就较小,当地铁直流牵引供电的开关的整定值较大时,单边供电死区的范围就较大。因此,在地铁的直流牵引供电系统保护中,要注意对于地铁直流牵引供电的供电距离以及开关的整定值的设置 3.3 地铁主保护不能断弧形成的死区 除了以上两点外,在地铁的直流牵引供电系统保护中还有一个非常常见的死区形式就是地铁主保护不能断弧形成的死区。地铁主保护不能断弧形成的死区的范围为整个地铁空间,所以这种死区的形成对于乘客的生命安全会造成很大的威胁,因此在地铁运行的过程中,要尽可能的采取措施来避免这种死区的产生,这就要求地铁直流牵引供电系统保护中各个单元的相互协调和配合。一般来说,地铁直流牵引

地铁牵引供电系统运行仿真的研究

地铁牵引供电系统运行仿真的研究 发表时间:2017-10-23T14:11:00.087Z 来源:《电力设备》2017年第17期作者:何涛李培强[导读] 摘要:介绍了地铁牵引供电系统的构成,并阐述了24脉波整流器的工作原理,并基于Matlab/Simulink仿真软件,对系统进行电气建模。所建模型包括牵引变压器、接触网、制动斩波、逆变电路等单元,控制方法采用恒压频比的V/F方法,通过列车在不同的运行状态下,列车牵引电机的转速和牵引变电站的取流的变化规律验证模型的准确性和有效性。 (福建工程学院信息科学与工程学院福建福州 350118) 摘要:介绍了地铁牵引供电系统的构成,并阐述了24脉波整流器的工作原理,并基于Matlab/Simulink仿真软件,对系统进行电气建模。所建模型包括牵引变压器、接触网、制动斩波、逆变电路等单元,控制方法采用恒压频比的V/F方法,通过列车在不同的运行状态下,列车牵引电机的转速和牵引变电站的取流的变化规律验证模型的准确性和有效性。关键词:牵引供电系统;24脉波整流;V/F控制 引言 由于地铁牵引供电系统的特殊性,输电线路以及机车运行方式多样,采取大规模的试验研究方法不仅会消耗大量的财力和物力,而且往往会受各方面因素的制约而难以实施。计算机仿真软件不仅可以降低研发的危险性和开支,还可以模拟试验无法进行的列车运行状态,为研究整个系统提供了有力的支持。 地铁牵引供电系统主要包括:牵引变电所、牵引网和电动车组,其中牵引网由馈电线、接触网、走行轨及回流线等构成。牵引变电所是地铁牵引供电系统的核心,将35KV或者10KV三相高压交流电变成1500V或者750V低压直流电。馈电线将牵引变电所的直流电送到接触网上,电动车辆通过其受电弓与接触网的直接接触而获得电能,走行轨构成牵引供电回路的一部分,回流线将轨道回流引向牵引变电所。 1.地铁牵引供电系统建模 1.1牵引变电所建模 牵引变电站的交直流变换过程是地铁牵引供电系统中的关键环节。它一般采用两台牵引变压器和四台整流器构成整流机组将外部电源接入的中压35KV或者10KV交流电转换成1500V或者750V直流电。本文以地铁牵引供电系统中的10KV等级牵引变压器为例,其连接方式是Dy11d0:将一次侧绕组接成三角形分别移相+7.5°和-7.5°,二次侧绕组分别接成星型和三角形。 目前为了提高直流电的供电质量,尽可能的减少谐波对电网的影响,地铁大多数采用等效12脉波或者24脉波整流器。每台整流变压器由两个6脉波桥式整流器以并联方式来构成12脉波桥式整流器。而24脉波整流器则由两个12脉波整流器并联组成。通过在Matlab/Simulink 环境下建立牵引变压器模型和整流器模型,采用两台整流机组并联运行构成二十四脉波整器,通过牵引变压器空载输出电压可计算整流机组输出的空载直流电压为: Ud-整流机组空载输出电压;p-整流器脉波数;U2-牵引变压器空载输出电压。空载电压波形在一个交流周期内脉动24次,每个波动的间隔为15°。整流机组输出的空载直流电压为825V,与计算所得的输出电压基本相符。 1.2接触网建模 在Matlab/Simulink仿真模型中,一般利用Pi Section Line模块来构建作为直流输电线路的接触网。本文通过改变列车受电弓与牵引变电所之间接触网的阻值来模拟列车的运行动态。 1.3地铁机车及传动系统建模 地铁机车负荷主要包括机车牵引负荷(三相交流牵引电机)、机车辅助负荷、车厢负荷三部分构成。由于机车牵引负荷占总负荷的约80%,因此本文的列车模型以牵引电机为主体,它还包括逆变电路单元、滤波单元、以及制动单元模块。 1.4基于稳态模型的恒压频比的控制策略 基于文章篇幅的限制,本文采用交流电机变频调速最基本的控制方式----恒压频比控制。为了在调速中有效利用电机,在整个调速范围内的电机的气隙磁场都应保持适当的强度。磁场过弱或者过于饱和都不能充分利用电机。三相异步电机定子绕组每相感应感应电动势的有效值为 式中Ψg为气隙磁链。由式(3)可知气隙磁链与Eg/ f1成正比,也就是说只要协调好控制电压和频率便达到控制气隙磁场的目的。本文只考虑基频以下的调速,此刻定子阻抗压降较小时可认定电压幅值Us≈Eg,因此Us/f1=常值时便可近似的认为气隙磁链不变。 2.地铁牵引供电系统仿真模型 地铁牵引变电站的站间距离一般为0.8km-3km左右,机车通过该距离所需要的时间在1min-5min。在此区间内,机车首先启动加速行驶,在达到一定速度时采用惰行方式滑行,最后采用制动方式停车进站。地铁机车在稳态运行时采用双边供电回路,因此基于之前介绍的各个模块单元,通过Matlab/Simulink搭建成电路单元并进行封装,最后组成能够模拟列车稳态运行的直流牵引供电系统。 3.仿真结果及分析 3.1 仿真结果 由于实际情况和研究重点的限制,本文在仿真中做了如下假设:

地铁直流牵引供电系统

地铁直流牵引供电系统 地铁直流牵引供电系统GB 10411--89 1 主题内容与适用范围 1.1 主题内容 本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电 在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压 指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式 指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所 供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组 整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级 根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流 在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。 3.10 接触网最大短路电流 在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 未端电压 接触网中离馈入点最远端的电压。 3.12 馈线 从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电 一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。

浅谈地铁直流牵引供电系统保护

浅谈地铁直流牵引供电系统保护 ◆岳宏波 南京地下铁道运营分公司 【摘 要】随着地铁系统的快速发展,直流牵引供电系统得到了越来越广泛的应用,研制高性能和可靠的直流保护是十分紧迫的。本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法。 【关键词】直流 保护 地铁 随着我国国民经济的持续发展,城市交通日趋紧张。而地铁成为解决大中城市交通拥挤问题的最佳方案。在地铁牵引供电系统中有以下几种主要的直流馈线保护:大电流脱扣保护、di/dt电流上升率及电流增量保护、过流保护、双边联跳保互、接触网热过负荷保护、自动重合闸保护。针对目前国内地铁直流馈线保护方法不是很成熟,本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法,详细分析了大电流脱扣保护。di/dt电流上升率及电流增量保护、过流保护、双边联跳保护、接触网热过负荷保护,自动重合闸保护的基本保护原理,并举例说明了如何通过对电流上升率,电流增量I和电流上升持续时间t的测量来区分故障情况和正常运行情况。地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源,既当牵引网发生短路时,并非仅双边供电两侧的牵引变电所向短路点供电,而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区,是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时,首先要迅速“切断电源”、“消除死区”,针对这两点,牵引供电系统除交流系统常用的保护外,还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt△I等特殊保护措施,这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。 一、大电流脱扣保护 牵引供电系统可能发生各种故障和不正常运行状态,最常见的、同时也是最危险的故障就是发生各种形式的短路。当被保护线路上发生短路故障时,其主要特征就是电流增加和电压降低。利用这两个特征,可以构成电流电压保护。本文重点介绍馈线保护的主保护及后备保护。该保护属于开关自带,用于切断大的短路电流。大的短路电流对线路会造成巨大的损坏,故大的短路电流一出现应立即切断,其切断时刻应在其达到电流峰值之前。 二、电流上升率保护(di/dt)和电流增量保护(A I) 该保护作为地铁馈线保护的主保护,他既能切除近端短路电流,也能切除大电流脱扣保护不能切除的故障电流较小的远端短路故障。该保护克服了单独di/dt保护受干扰而误动,以及保护存在拒动现象的缺点。保护动作特性分为两部分,瞬时跳闸和延时跳闸,其中谁较早激活就由谁决定跳开高速直流断路器。延时跳闸元件主要起识别远端短路电流并跳闸的作用。保护原理是在运行当中,保护装置不断检测电流上升率。当电流上升率在给定的时间T1内高于保护设定的电流上升率F时,di/dt保护启动,进入延时阶段。若在整个延时阶段,电流的上升率都高于保护的整定值,则保护动作;若在延时的阶段,电流上升率回落到保护整定值之下,则保护返回。在di/dt保护启动的同时△I保护也启动进入保护延时阶段,从△I保护启动的时刻开始继电器以启动时刻的电流作为基准点计算相对电流增量。若电流上升率一直维持在di/dt保护整定值之上,在达到△I延时值后,电流增量达到△I保护整定值,则保护动作。在计算电流增量的过程中允许电流上升率在相对较短的时间内回落到di/dt保护整定值之下。只要这段时间不超过di/ dt返回延时整定值,则保护不返回;反之保护返回。是保护的动作特性。为△I延时整定值。当检测到的电流增量小于K时,可以肯定不是故障情况;若大于K则有可能是故障情况,需检测其他参数(如t或)来进一步判断。对于远端故障电流由于其上升的速率比近端的慢,峰值也小很多,通常与列车启动或通过接触网分段时的电流瞬时峰值相近,甚至小于该电流。所以远端故障电流与列车启动电流的区分是变电所直流保护的难点。 三、过流保护 可作为上述两种保护的后备保护。在保护控制单元预先整定电流值和时间值。当通过直流馈线短路的电流值在预先设定的时间内超过预订值时,过流保护装置动作使直流馈线断路器跳闸来清除故障。 四、双边联跳保护 双边联跳保护是为了更加安全的向接触网供电,在故障情况下确保相邻变电所可靠跳闸而增设的后备跳闸装置。在无故障的情况下,两变电所同时向接触网供电,如果有短路情况发生,则距离短路点较近变电所A的馈线保护的出/dt瞬时保护或速断保护先动作,同时向本站联跳装置发一个跳闸信号,并通过站间联络向另一变电所联跳装置发送跳闸信号,较远变电所B经过一段延时,通过di/df延时保护或过流保护也动作,但是比联跳装置的跳闸信号先动作。这种情况联跳作为后备保护。在故障情况下,变电所B退出运行并通过隔离开关由相邻变电所C越区供电时,同样还是上述情况,变电所A的保护先动作,由于短路点距变电所C较远,该变电所相应保护可能不动作(视短路情况),而联跳装置则比较可靠,只要变电所A保护跳闸,变电所C经变电所B接收跳闸信号,使开关跳闸,此时双边联跳保护就比较重要。 五、接触网热过负荷保护 该保护作为电流上升率保护的辅助保护,当直流线路处于过负荷状态时,即使没有任何短路故障发生,接触线或进线电缆的温度也会上升,当热过负荷电流流过时,该电流虽不至引起巨大的破坏,但此电流持续时间长了,其产生的热量会超过某些薄弱设备所允许的发热量,引起这些设备不同程度的损坏。动作原理是接触网热过负荷保护主要是根据接触网的电阻率、电阻率修正系数、长度、横截面积、电流,计算出接触网的发热量,再根据接触网和空气的比热等热负荷特性及通风量等环境条件,由经验公式给出接触网的电缆温度。当测量的电缆温度超出规定值便发出报警,跳闸命令,从而达到保护接触网的目的。该保护的对象是接触网。接触线有其自身固有的热特性,是一条以电流为变量的反时限曲线。这就要求保护装置整定的曲线与接触线的固有曲线进行配合。同时,保护装置的整定曲线还应与馈线的电流保护进行配合。 六、自动重合闸 使用自动重合闸的目的是为了在瞬时性故障消除后使线路重新投入运行,从而在最短的时间内恢复整个系统的正常运行状态。对于直流牵引系统,经常会发生短路而使过流脱扣器经常动作。但由于大部分短路故障是短暂的,所以使用自动重合闸系统可提高系统的可靠性。断路器每隔一段时间(时间长短可调节)重合闸一次。如果重合闸的次数超过预定的次数,合闸仍不成功,则认为是永久性故障,闭锁重合闸回路。 综上所述,地铁直流馈线保护还可能有框架泄漏保护、定时限过流DMT保护,反时限过流保护、低电压保护、过电压保护、AU保护等。对于一个具体的直流牵引供电系统,应根据系统的实际情况考虑各种因素来设计直流馈线保护方案。 参考文献: [1]张秀峰.王毅非.地铁馈线电流增量保护[J]西南(上转337页)

地铁直流牵引供电系统(GB10411--89)

地铁直流牵引供电系统 GB 10411--89 1 主题内容与适用范围 1.1 主题内容本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为 馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。3.10 接触网最大短路电流在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 末端电压接触网中离馈入点最远端的电压。 3.12 馈线从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。 3.14 单边馈电一个馈电区间由相邻两牵引变电所各经一路馈线同时馈电。 3.15受电器 电动客车上用以从接触网上取得电流的装置。 3.16接触网 经过受电器向电动客车供给电能的导电网。 3.17架空接触网 置于车辆限界的上限平面以上(或位于改平面),通过受电弓向电动客车输送电能的接 触网。 3.18接触轨 用金属轨条制成的向电动客车供给电能的刚性导电体,其标高通常与走行轨的标高相接 近。 3.19回流电路 用以供牵引电流返回变电所的电路。 3.20均流线 连接上、下行回流轨,使其均匀回流的跨越导线。

地铁直流牵引供电系统常用保护技术研究

地铁直流牵引供电系统常用保护技术研究 随着近年地铁市场业务在各大城市的快速推广,地铁的安全可靠运行也变得尤为重要。由于国内直流供电起步较晚,直流保护技术发展相对较慢。因此,研究和开发本地化的高可靠性、高智能化的保护技术,具有广泛的应用前景。为此,本文围绕地铁供电系统,对常用的电流、电压保护技术进行了分析和研究。 标签:地铁牵引供电;保护;短路 引言:通过检测地铁供电系统中电流、电压等主要参量,根据保护策略来判断地铁供电系统中是否发生故障,如果发现有短路等故障存在,则要在规定的时间周期内,采用系统的控制方法使断路器跳闸,从而达到保护供电系统和自动排除故障的目的。跳闸以后,按照控制要求,系统要能对供电系统进行测试,判定故障是否依然存在,如果故障消失则自动重合闸[1]。 1 地铁直流牵引网短路电流特点及直流保护系统设计要点 1.1 地铁直流牵引供电系统短路电流特点分析 相比地铁列车起动时的电流变化率持续时间,中远端短路电流变化率的持续时间较长,其列车起动电流及瞬时故障短路电流都可以模拟为指数函数。由于地铁列车起动的瞬时跳跃量,末端短路电流的瞬时跳跃量较高,而线路较长时情况可能相反。相比较负荷电流变化率,通常短路电流的变化率要高,而远端短路电流变化率同地铁起动的最高电流变化率相一致,当直流馈线不断延长时,末端故障电流变化率可能要低于负荷电流变化率。若车流密度及直流馈线距离达到一定值时,最高负荷电流可能会高于或等于末端短路电流。 1.2 地铁直流保护系统设计要点 直流牵引供电系统的保护,主要采用直流开关设备实施保护。在系统中,依据功能状况划分为馈线回路与整流器回路。直流馈线回路主要是对馈线侧的牵引供电控制和保护,主要是对变电所接触网及直流电缆出现的故障及时切除;整流器回路主要用于对整流器侧的直流输出进行控制和保护,主要是将整流器出现的直流输出故障及时断开。直流保护系统的设计要点有:其一,分析部分特殊故障形势下的保护,如屏蔽门与接触网的短路故障、隧道电缆支架与接触网的短路、架空接地线与接触网的短路等。其二,直流保护系统应避免误跳闸问题以降低对地铁运行的影响,如:地铁列车在经过接触网分段时的冲击电流影响、地铁起动电流和电压的影响等。其三,各类保护之间的配合,确保直流系统出现短路故障时故障能够有效切除[2]。 2 地铁直流牵引供电系统的馈线保护技术 2.1 大电流脱扣保护

地铁和电气化铁路的牵引供电系统对比分析

地铁和电气化铁路的牵引供电系统有很大区别下面就通过对电气化铁道与城轨交通供电方式比较分析来进一步说明两者供电方式的异同。以帮助人们进一步了解。 1铁路牵引供电系统的供电方式 1.1 直接供电方式 电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。如图所示; 直接供电方式 1.2 吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。如图所示 吸流变压器(BT)供电方式

城市轨道交通直流牵引供电系统构成及运行方式优缺点分析

城市轨道交通直流牵引供电系统构成及运行方式优缺点分析 发表时间:2019-03-27T16:46:03.990Z 来源:《电力设备》2018年第30期作者:田荣兴 [导读] 摘要:随着经济和各行各业的快速发展,我国交通行业发展也十分快速。 (身份证号码:45212319870112xxxx 南宁轨道交集团有限责任公司广西壮族自治区南宁市) 摘要:随着经济和各行各业的快速发展,我国交通行业发展也十分快速。会对轨道交通的正常运行造成干扰。地铁牵引供电系统可以为地铁提供牵引用电,而直流馈线保护系统可以保护供电系统的正常运行,是地铁牵引供电系统的关键部位,在城市地铁运行领域对直流馈线保护系统的研究和完善,对地铁牵引供电系统的运行有重要作用,有助于城市轨道交通减少故障,运行顺畅。本文将对城市轨道交通直流牵引供电系统和相关技术进行重点研究分析,以供参考。 关键词:城市轨道交通;直流牵引供电系统;关键技术 引言 轨道交通系统的稳定运行离不开一个可靠的电源供电系统,供电系统已经成为城市轨道交通运行的基本保障。轨道交通的电源分为两部分,一部分是城市电网,城市电网向轨道交通系统提供的电源电压等级较高,并不能直接提供给车辆。另一部分是轨道交通的内部电源,内部电源负责将城市电网中高电压转换为适合轨道交通车辆自身运行的电源电压。在城市电网中,轨道交通的供电往往不会直接单独建设电厂,而是从城市电网中获取电能,可以把城市轨道交通看作城市电网的一个用户。 1地铁牵引供电系统 1.1地铁的供电系统 地铁的供电系统可以分为外部供电系统和内部供电系统。外部供电系统即地铁的一次高压电源系统,通过主变电所连接城市电网,可采用集中式、分散式和混合式三种方式供电。地铁的内部供电系统则包含牵引供电系统和动力照明系统。其中,牵引供电系统是地铁供电系统的核心,由牵引变电所和接触网组成,用于牵引地铁机车;动力照明系统负责给区间、车站内的各类照明设施和动力设备、通信设备及自动化设备提供电能。当前,国内城市地铁大多采用110/35kV的两级电压集中供电方式。这种供电方式主要由外部电源、主变电所、中压环网、牵引变电所和降压变电所构成。每个主变电所从城市电网引入2路110kV电源互为备用,降压至地铁所需的35kV中压系统,然后通过中压环网向牵引变电所和降压变电所供电。中压环网采用分区供电,几个相邻的牵引变电所通过串接的方式构成一个供电分区。主变电所向每个供电分区的一个变电所供电,分区的其他变电所则通过串接的方式获得电源。各个牵引变电所之间通过交流电缆连接,这样就构成了地铁的集中供电系统。 1.2直流馈线保护技术的配置原则以及主要影响因素 牵引供电系统内的直流系统故障形式主要有短路故障、过负荷故障、过压故障等,最常见、危害最大的是短路故障,短路故障的发生与其短路点的位置和短路的性质有紧密的关系。直流短路系统保护装置要保证在系统发生短路故障时可以快速并且有选择地切断故障线路,尽可能地保证在可靠安全供电的前提下,配置力求简洁,避免配置过多,增加保护难度,也增加工程投资费用。 1.3供电方式 不同于高铁,城市轨道交通的供电大部分采用直流供电,内外电源之间高低电压的转换离不开变电所设施,通常轨道交通系统从城市电网获取电力之后,会经过变电所一系列的降压,将电网配电电压由220kV等级降至35kV以匹配直流牵引变电所。轨道交通一般在城市内部或城市与城郊之间建设,因此,城市电网供电电源的设计需要结合轨道交通的投资预算、施工条件、工程方案以及运行方式进行综合考虑。根据用电性质的不同,轨道交通供电系统可分为牵引车辆运行的牵引供电系统以及动力照明供电系统。牵引供电系统主要由牵引变电所组成,变电所将三相高压交流电转换成低压直流电,馈电想将直流电输送至接触网上。接触网分为柔式接触网和刚式接触网两种,车辆通过受流器与接触网的直接接触获得电能。牵引变电所一般配置有两套整流机组,设计时要考虑到后期运营时列车的运量,避免引起过负荷问题。 2城市轨道交通直流牵引供电系统有关技术 2.1地铁供电系统谐波和无功的综合治理 鉴于地铁供电系统的谐波更具危害性,综合治理应遵循以抑制谐波为主,无功补偿为辅的原则。目前我国地铁供电系统的谐波无功治理主要采用在车站降压变电所0.4kV侧设置固定式无功补偿装置,即无源滤波器。无源滤波器通过对电感、电阻和电容的组合设计构成LC 滤波电路,可以滤除系统中特定的高次谐波,同时它在与无功负载并联使用的过程中还起到无功补偿的作用。对于地铁供电系统,白天和夜晚的用电负荷差别较大。系统的无功功率变化时,无源滤波器无法实现动态补偿,并且一种参数只能补偿特定次数的谐波,当电力系统阻抗发生变化时甚至有可能引发谐振,对于控制供电系统的总功率因数效果也不大。在实际运行中,仅用无源滤波器无法满足国家规范的要求。有源滤波器可以并联在变电所0.4kV侧母线处,实现谐波与无功的综合治理作用。 2.2光伏电站接入方式 地铁牵引供电系统主要有两种负载:地铁列车负荷的大直流负载与车站内的交流负载,故有三个位置可作为光伏发电系统的接入点,进而实现光伏电站输出的直流电经并网逆变器到符合要求交流电的转换。其中,交流侧存在两个接入点:AC35kV(接入点1)与AC400V (接入点2)。不论接入点如何选择,对于采用集中供电式的地铁牵引供电系统,光伏电站产生的电能均未直接接入城市电网,避免了光伏电站电能与电网之间的相互影响。在交流并网方式下,光伏电站工作,其能量管理策略较为简单,若有电能产生,且满足并网条件就可向环网输出,并且可直接应用相关领域已有的一些研究成果。光伏接入交流侧用于车站照明、列车内部用电等方案。光伏电站输出的电能是直流电,理论上通过DC/DC变换器升压后可直接接入地铁直流接触网DC1500V(接入点3),直流牵引供电系统中不存在无功、负序等电能质量问题,因此直接接入直流牵引供电网,谐波污染影响小,且电能质量较高,运行中无需额外占用牵引变电站整流装置的容量。文献[25]通过对上海轨道交通一条典型输电线路的研究,验证了将光伏发电系统应用于直流模式下城市轨道交通的可能性,并比较了光伏接入直流和交流侧两种模式在控制策略上的区别。 2.3定时过电流保护 定时过电流保护主要起到确保供电线路中小电流故障可以被及时清除的作用,清除故障时有一定的延时,因此制定整定值时有正负区分。定时过电流保护是电流增量保护和电流上升率保护的后备措施,动作时间要控制在几十秒之内,在切除故障时具有一定的延时性。定

地铁直流牵引供电系统

地铁直流牵引供电系统 来源:发布时间: 2004-6-22 8:10:44 地铁直流牵引供电系统GB 10411--89 1 主题内容与适用范围 1.1 主题内容 本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置电压保护设计规范 3 术语 3.1 供电、馈电 在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现的最高电压。不包括系统的暂时状态和异常电压。 3.3 系统最低电压 指系统正常运行时,在任何时间内,系统中任何一点上出现的最低电压。不包括系统的暂时状态和异常电压。 3.4 设备最高电压 指系统正常运行时,设备所承受的最高运行电压。 3.5 供电制式 指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所 供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组 整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级 根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流

在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。 3.10 接触网最大短路电流 在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 未端电压 接触网中离馈入点最远端的电压。 3.12 馈线 从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电 一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。 3.14 单边馈电 一个馈电区间由相邻两牵引变电所各经一路馈线同时馈电。 3.15 受电器 电动客车上用以从接触网上取得电流的装置。 3.16 接触网 经过受电器向电动客车供给电能的导电网。 3.17 架空接触网 置于车辆限界的上限平面以上(或位于改平面),通过受电弓向电动客车输送电能的接触网。 3.18 接触轨 用金属轨条制成的向电动客车供给电能的刚性导电体,其标高通常与走行轨的标高相接近。 3.19 回流电路 用以供牵引电流返回变电所的电路。 3.20 均流线 连接上、下行回流轨,使其均匀回流的跨越导线。 3.21 杂散电流 不经回流电路而另取其他途径(如流经大地或管道)的回流电流。 3.22 轨道回流电路 利用走行轨作为牵引电流回流的电路。 3.23 联跳保护装置 在一个双边馈电区段那发生短路时,可使本区段两端馈电断路器联动跳闸的装置。 3.24 电流增量保护装置 根据短时间内电流增量的不同自动区分工作电流与故障电流,实行选择分断的保护装置。 4 供电制式

相关主题
文本预览
相关文档 最新文档