当前位置:文档之家› 电动机的全压起动条件

电动机的全压起动条件

电动机的全压起动条件
电动机的全压起动条件

交流电动机的全压起动条件

笼型电动机和同步电动机应优先采用全压起动。全压起动时应满足下列条件:

1、起动时电压降不得超过允许值。一般经常起动的电动机其电压降不得超过10%;不经常起动的电动机其电压降不得超过15%;在保证生产机械所要求的起动转矩,而又不影响其它用电设备的正常运行时,起动时电压降可允许为20%或更大一些。

由单独变压器供电的电动机,起动时电压降的允许值由生产机械所要求的起动转矩决定。

2、起动容量不得超过电源容量和供电变压器的过负荷能力。笼型电动机允许全压起动的功率与电源容量之间的关系见表1,与供电变压器容量之间的关系见表2。表2中所列的数据是根据以下条件求得的:

(1)电动机与低压母线直接相连;

(2)电动机起动电流倍数K

iq =7,额定功率因数cosφ

ed

=0.85,额定效率

η

ed

=0.9;

(3)变压器的其它负荷为:S

fh =0.5S

b

,cosφ

fh

=0.7;或S

fh

=0.6S

b

,cosφ

fh

=0.8

(由这两种情况计算出的Q

fh

值相差很少,故在表2中只列出前一种情况的计算值);

(4)变压器高压侧的短路容量S

dl =50S

b

,S

b

为变压器额定容量。

电动机起动时,应对变压器过负荷进行校验。若每昼夜起动6次,每次起动持续时间不超过15s,变压器的负荷率小于90%(或每次起动持续时间不超过30s,变压器的负荷率小于70%),最大起动电流允许值为变压器额定电流的4倍。若每昼夜起动10~20次(每次起动持续时间和变压器的负荷率同前),则允许最大起动电流相应减少为变压器额定电流的2~3倍。当不符合上述条件时,应加大变压器的容量,而不应采用进一步降压起动电压的方法。这样会延长电动机的起动时间,是变压器更加过热。

3、大型电动机起动时,应保证电动机及其起动设备的动稳定和热稳定。

起动时的动稳定电流和热稳定电流应符合制造厂的规定。例如,电动机的允许起动条件(全压起动或降压起动)和连续起动次数(一般轧钢电动机连续起动次数为冷态3次,热态2次)以及起动设备的热稳定等。对于同步电动机还应考虑阻尼笼条的温度不超过制造厂的规定。

4、低压笼型电动机应优先采用全压起动。当条件不允许全压起动时,才考虑采用降压起动。

低压笼型电动机允许全压起动的最大功率和供电设备容量之间的参数值见表1和表2。当电动机功率接近于表1和表2中最大功率时,应根据实际情况(如变压器高压侧实际的短路容量,接至电动机的电缆截面和长度,母线已有负荷及其功率因数,以及电动机的技术数据等)进行核算,计算时采用有名值较为方便。

例:一台Y315M2-4笼型电动机(160kW,380V,294A,1480r/min,cosφ

ed

=0.89,

η

ed =0.93,K

iq

=7),由一台SL7-500/10(U

d

%=4)变压器供电,接至电动机的线路

为两根长150米,截面为120mm 2铜芯电缆。变压器一次侧的短路容量为25MVA 。母线已有负荷250kVA ,额定功率因数cos φfh =0.7。计算电动机起动时低压母线电压和电动机端电压。

0.193MVA 0.93

0.890.160cos P S ed ed ed

ed =?==η?

1.35MVA 0.1937S K S ed iq qd =?=?=

8.33MVA

25

0.50.040.5

S'S %U S S b d b

dl =+

=+=

Ω=?+=?+=0840.02/150.0120

5

0.07l S 8X X o l )()(

1.25MV A

0.380.00841.35

11

U 211

2

m =+=+=l qd q X S S

0.178Mvar 0.72-10.25cos 2-1S Q fh fh fh ===?

0.850.871.25

0.1788.330.178

8.33S Q S Q S U q fh dl fh dl qm *>=+++=+++=

满足母线压降允许值的要求。

80.035

.15

2.187.0**=?==qd q qm qd S S U U

式中:

S ed ——电动机的额定容量,MVA ; P ed ——电动机的额定功率,MW ; cos φed ——电动机额定功率因数; ηed ——电动机额定效率; S qd ——电动机额定起动容量,MVA ;

K

iq

——电动机额定起动电流倍数;

S

dl

——母线短路容量,MVA;

S

b

——变压器额定容量,MVA;

U

d

%——变压器阻抗电压百分比;

S'——变压器一次侧短路容量,MVA;

S

q

——电动机起动时,起动回路的额定输入容量,MVA;

U

m

——母线额定电压,kV;

S

fh

——母线其它负荷,MVA;

Q

fh

——母线其它负荷的无功功率,Mvar;

cosφ

fh

——母线其它负荷的功率因数;

U

*qm

——电动机起动时的母线电压相对值;

U

*qd

——电动机起动时的端电压相对值;

X l ——线路电抗,Ω,计电阻后,铝线取(X

o

+8/s)l,铜线取(X

o

+5/s)l;

X

o

——线路单位长度的电抗,Ω/km,高压电缆或低压电线穿管取0.08,低压电缆取0.07,架空线路取0.35;

S——导线或电缆芯的截面,mm2;

l——线路长度,km。

股票迅速启动的必要条件

股票迅速启动的必要条件 1:相对时空位置处在低位 1 股票绝对价位不高,一般在30元以下,最好在20元以下 2 股价经过较长时间充分回调后,刚刚上破55MA、90MA 或者在这两条均线之上且离这两条均线不远 3 股价处在相对低位的成交密集区或主力成本区附近 1 对于有过行情的老股票来说,是否充分回落非常重要,毕竟翻番之后再翻番的个股是凤毛麟角,我个人也是喜欢做一些中低价股,在实战操作当中,需要注意的是,最好给股票做后复权,看看目前股价的真实情况,许多大幅除权的股票看起来绝对价位很低,但一旦后复权,大家就会发现股价实际上仍然在天上。对于新股来说,有一些股票由于是在牛市上市,所以定价会很高(高于40元),这类股票要不要做就要仔细分析了,一个要看上市公司本身的质地,另一个要看流通市值,如果流通市值在4亿以下,主力控盘情况不错,也是可以考虑的。 2 我一般用60MA做为一个中期强弱的分水岭,预选股票时,在60MA以下运行的个股一般不看,这一条仁者见仁,大家

可以说说自己的看法 3 关于股价经过长时间充分回调这句话,我这样理解 (1)有没有底部形态出现 (2)底部形态的量价配合是否理想 (3)股票的盘中表现是否活跃 如果满足上述三个条件,应该说这只股票至少有中线价值!至于有没有短线机会还要看是否符合其他预选条件!股票短期迅速大涨的九个必要条件之2:主力开始发动之日最高点、最低点震荡幅度以超过4.5%为好,最好是6.2%之上:blink: 短线大涨的股票如果从K线的震幅上来定一个标准的话,我想在突破前期整理形态时出现带量的大实体阳线是最好的,如果能涨停就更好! 需要补充的是,近期的许多活跃个股在行情启动之前会有一段时间震幅和量能都非常大,如何区别洗盘和突破就非常关了。 票短期大涨的九个必要条件之3 主力开始发动行情之日的换手率起码应超过3%,以超过4.5%为好,最好是6.2%以上

变频器控制电动机停车制动方式

电动机知识 变频器控制电动机停车制动方式 电动机停车方式由P0700和P0701~P0708设置。制动时有如下几种方式: (1)由外接数字端子控制。将P0700设为2,P0701设为1,即可由外接数字端子5 (,低电平)控制电动机制动,制动时间可由P1121设置斜坡下降时间。 (2)由的键控制。将P0700设为1,P0701设为3,为2方式,即按惯性自由停车。用上的(停车)键控制时,按下键(持续2s)或按两次(停车)键即可。 (3)用3命令使电动机快速地减速停车。将P0701设为4,在设置了3的情况下, 为了起动电动机,二进制输入端必须闭合(高电平)。如果3为高电平,电动机才能起动并用1或2方式停车。如果3为低电平,电动机不能起动。3可以同时具有直流制动、复合制动的功能。 (4)直流注入制动。变频调速系统在降速过程中,电动机因为处于再生制动状态而迅速降速。但随着转速的下降,拖动系统的动能减小,电动机的再生能力和制动转矩也随之减小。所以,在惯性较大的拖动系统中,会出现低速时停不住的“爬行”现象。为了克服“爬行”现象,当拖动系统的转速下降到一定程度时,向电动机绕组中通入直流电流,以加大制动转矩,使拖动系统迅速停住。 在预置直流制动功能时,主要设定以下项目: 1)直流制动电压。即需要向电动机绕组施加的直流电压。拖动系统的惯性越大,直流制动电压的设定值也越大。 2)直流制动时间。即向电动机绕组施加直流电压的时间,

可设定得比估计时间略长一些。 3)直流制动的起始频率。即变频调速系统由再生制动状态转为直流制动状态的起始频率。拖动系统的惯性越大,直流制动的起始频率的设定值也越大。 直流注入制动可以与和3命令同时使用。向电动机注入直流电流时,电动机将快速停止,并在制动作用结束之前一直保持电动机轴静止不动。 “使能”直流注入制动可由参数P0701~P0708设置为25。直流制动的持续时间可由参数 P1233设置。直流制动电流可由参数P1232设置。直流制动的起始频率可由参数P1234设置。如果没有数字输入端设定为直流注入制动,而且P1233≠O,那么直流制动将在每个命令之后起作用,制动作用的持续时间由P1233设定。 (5)复合制动。复合制动可以与1和3命令同时使用。为了进行复合制动,应在交流电流中加入直流分量。制动电流可由参数P1236设定。 (6)用外接制动电阻进行动力制动。用外接制动电阻(外形尺寸为A~F的440变频器采用内置的斩波器)进行制动时,按线性方式平滑、可控地降低电动机的速度,如图3 -14所示。 图3 - 14 外接制动电阻进行动力制动 ·变频器维修怎样处理过电压保护 ·电工比武实践试题 ·利用管理变频器处理机械故障 ·正确使用变频器 ·变频器的转差频率控制方式 ·变频器选择时的注意事项 ·变频器应用中存在的问题及对策

启动前必须具备的条件

启动前必须具备的条件 1.1 KDON-6000/6000型空分设备全部安装施工完毕,安装记录核实无误,系统吹除、试压、裸冷,保温材料、吸附剂填充完毕、干燥合格。 1. 2空气过滤器、空压机、预冷系统、纯化系统、单机试车成功,符合要求。安装记录核实无误,具备单机试车条件。 1.3 仪控调试工作全部结束,符合要求,安装记录核实无误。 1.4 保证水、电、气及蒸汽供应。 1.5 操作现场畅通、安全设施齐全、标志醒目,并具备必要的通讯设施, 2、设备启动前的准备 该过程主要是为设备的启动和长期运转打下良好的基础,因此必须做好物质和技术上的准备。即各岗位人员除做到应知应会,对工艺流程和安全技术应有充分的了解外,还应认真做好以下工作,以便顺利开车。 2.1 检查各系统之间的连接情况是否正确。 2.2 按各机组使用说明书的要求,分别检查空压机、膨胀机、冷水机组、水泵等是否正常,并做好启动准备,使各机组均处于待运行状态。 2.3 检查空分装置是否完全干燥,在该区域不允许有液体水分存在,并关闭所有阀门。增压机旁通阀V457、V458除外。 2.4 際分析仪表外,所有仪表的冷门都打开。 2.5 温度记录和测量仪表都要处于通路状态,并检查联锁是否正常。 3、冷却水系统启动 3.1 打开冷却水进出口阀门。 3.2 总冷却水供水。 4、检查并启动分子筛吸附器自动控制系统 4.1 启动除分析仪表外的所有指示仪表。 4.2 接通分子筛吸附器的程序控制器。 4.3 将QD气动碟阀投入运转,检查阀门动作程序是否正常,并仔细观赛冷门动作有无滞后或其它反常情况。 5、启动油路系统(润滑油已循环达标的前提下) 启动空气压缩机的油耗,并调至正常值,使润滑油循环管路正常。 6、启动空气压缩机 按其使用维护说明书的要求启动空压机,缓慢提高空压机排除压力接近0.52Mpa使之运转,打开送气阀向后面送气。 7、启动预冷系统 7.1 检查各管件及离心水泵,检查各仪表、仪控是否正常,通知送电做好消耗启动准备。7.2根据消耗的操作规程启动常温水泵和低温水泵,调节好水冷塔和空冷塔液位并投入自动。 7.3按冷水机组操作说明之要求启动冷水机组,并调节制冷量使出水温度(TIA-1103)约7℃。 8、启动纯化系统 8.1 在纯化系统控制器准备就绪(处于手动全关位置)的情况下,打开空气出MS1201(或MS1202)阀V1203(或V1204);MS1201(或MS1202)吸附器开启充压阀V1251(或V1252),向一台分子筛吸附器导气。在导气过程中要缓慢,要保持空压机出口压力稳定。 8.2 在PI-120120(或PI1202)压力指示达到0.52Mpa时并稳定后,全开MS1201(或MS1202)吸附器空气进口阀V1201(或V1202),关充气阀V1251(或V1252)。 8.3 断续开闭分子筛吸附器下部排放阀,检查空气中是否夹带有游离水,若有水应多吹除几次,一直到无游离水为止。定期开此阀,吹除游离水。

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

工程带电启动应具备的条件

工程带电启动应具备的条件 由试运指挥组提出的工程启动、系统调试、试运方案已经启委会批准;调试方案已经调度部门批准;工程验收检查组已向启动验收委员会报告,确认工程已具备启动带电条件;工程质量监督机构已对工程进行检查,已有认可文件。 变电站启动带电必须具备的条件。 变电站生产运行人员已配齐并已持证上岗,试运指挥组已将启动调试试运方案 向参加试运人员交底。 生产运行单位已将所需的规程、制度、系统图表、记录表格、安全用具等准备好,投入的设备已有调度命名和编号,已向调度部门办理新设备投运申请。 投入系统的建筑工程和生产区域的全部设备和设施,变电站的内外道路、上下水、防火、防洪工程等均已按设计完成并经验收检查合格。生产区域的场地平整,道路畅通,影响安全运行的施工临时设施已全部拆除,平台栏杆和沟道盖板齐全、脚手架、障碍物、易燃物、建筑垃圾等已经清除,带电区域已设明显 标志。 电器设备的各项试验全部完成且合格,有关记录齐全完整。带电部位的接地线已全部拆除,所有设备及其保护(包括通道)、调度自动化、安全自动装置、微机监控装置以及相应的辅助设施均已安装齐全,调试整定合格且调试记录齐全。 验收检查发现的缺陷已经消除,已具备投入运行条件。 各种测量、计量装置、仪表齐全,符合设计要求并经校验合格。

所用电源、照明、通信、采暖、通风等设施按设计要求安装试验完毕,能正常 使用。 必须的备品备件及工具已备齐。 运行维护人员必须的生活福利设施已经具备。 消防设施齐全,并经验收合格,能投入使用。 送电线路启动带电必须具备的条件。 承担线路启动试运行及维护的人员已配齐并持证上岗,试运指挥组已将启动调 试试运方案向参加启动试运人员交底。 线路的杆塔号、相位标志和设计规定的有关防护设施等已经检查验收合格,影 响安全运行的问题已处理完毕。 线路上的障碍物与临时接地线(包括两端变电站)已全部拆除。 已确认线路上无人登杆作业,危及人身安全和安全运行的一切作业均已停止,已向沿线发出带电运行通告,并已做好启动试运前的一切检查维护工作。 按照设计规定的线路保护(包括通道)和自动装置已具备投入条件。 送电线路带电前的试验(线路绝缘电阻测定、相位核对、线路参数和高频特性测 定)已完成。 维护人员必须的生活福利设施及交通工具已按规定配备。 线路带电期间的巡视人员已上岗,并已准备好抢修的手段。

三相异步电动机的制动(可打印修改)

三相异步电动机的制动 - 电动机控制电路图 三相异步电动机的反转和制动 一、三相异步电动机的反转 二、三相异步电动机的制动 一、三相异步电动机的反转 只要改变旋转磁场的旋转方向,可使三相异步电动机的反转。 三相异步电动机的反转的方法:将三相异步电动机两相绕组与交流电源的接线互相对调,则旋转磁场的旋转方向反向,三相异步电动机反转。 二、三相异步电动机的制动 制动的概念 制动的方法 一)制动的概念 所谓制动,就是给电动机一个与转动方向相反的转矩使它迅速停转(或限制其转速)。制动的方法一般有两类:机械制动和电气制动。 二)制动的方法 制动的方法一般有两类: 机械制动 电气制动 (一)机械制动

利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。 常用的方法:电磁抱闸制动。 1、电磁抱闸的结构 2、电磁抱闸制动的特点 1、电磁抱闸的结构: 主要由两部分组成:制动电磁铁和闸瓦制动器。 制动电磁铁由铁心、衔铁和线圈三部分组成。闸瓦制动器包括闸轮、闸瓦、杠杆和弹簧等,闸轮与电动机装在同一根转轴上。断电制动型性能是:当线圈得电时,闸瓦与闸轮分开,无制动作用,当线圈失电是,闸瓦紧紧抱住闸轮制动。通电制动型的性能是:当线圈得电时,闸瓦紧紧抱住闸轮制动;当线圈失电时,闸瓦与闸轮分开,无制动作用。 2、电磁抱闸制动的特点 优点:电磁抱闸制动,制动力强,广泛应用在起重设备上。它安全可靠,不会因突然断电而发生事故。 缺点:电磁抱闸体积较大,制动器磨损严重,快速制动时会产生振动。 (二)电气制动 1、能耗制动 2、反接制动 3、回馈制动 4、电容制动 1、能耗制动 能耗制动的原理 能耗制动的特点 1)能耗制动的原理: 电动机切断交流电源后,转子因惯性仍继续旋转,立即在两相定子绕组中通入直流电,在定子中即产生一个静止磁场。转子中的导条就切割这个静止磁场而产生感应电流,在静止磁场中受到电磁力的作用。这个力产生的力矩与转子惯性旋转方向相反,称为制动转矩,它迫使转子转速下降。当转子转速降至0, 转子不再切割磁场,电动机停转,制动结束。此法是利用转子转动的能量切割磁通而产生制动转矩的,实质是将转子的动能消耗在转子回路的电阻上,故称为能耗制动。 2)能耗制动的特点:

三相异步电动机制动方法

三相异步电动机常见的制动方法与应用 电气知识2007-05-31 10:39:48 阅读38 评论0 字号:大中小订阅 三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。 1.机械制动 采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。 (1)电磁抱闸断电制动控制电路 电磁抱闸断电制动控制电路如图1所示。合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K 可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。

(2)电磁抱闸通电制动控制电路 电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。

[同步电动机,装置]大型同步电动机的静止变频起动装置

大型同步电动机的静止变频起动装置 摘要:大型同步电动机能够输出稳定的动力,不会随着载荷的增加而减少,因此,在各行业中的大型机械中被广泛使用,工作可靠稳定,能够提供足够的动力驱动各种设备的稳定运转。由于提供的电流和功率远高于启动所需,会造成启动困难,产生较大的振动,对电动机的零部件造成不利的影响。因此,实现大型同步电动机的静止变频具有重要的意义,能够将所需频率调成与启动的额定频率相同,是电动机稳定的启动,降低产生的机械冲击,对设备的工作效率、使用年限都有利。本研究对静止变频装置进行分析,了解静止变频的工作原理,促进静止变频在同步电动机中的良好应用。 关键词:大型同步电动机;静止变频;分析 前言 同步电动机因为其与同步转速具有一定的比例关系,而且一旦确定比例因数就不会改变,始终保持相应的转动频率,所以称为同步电动机。根据同步电动机的这一特性,在我国的经济发展中起到了重要的作用,用于工、农业等大型用电机械的动力来源,能够输出固定的动力,而不随着载荷变化,与异步电动机相比,能够输出更稳定的动力来驱动设备,满足设备的工作需求,得到了广泛的应用。但是其频率是固定值,不会发生改变,也有一定的限制性,同步电动机的启动较为困难,能够提供的转速与所需频率不符,需要多次的启动才能实现,在大型同步电动机上体现的更加明显,这不仅会加大大型同步电动机零部件的磨损,减少同步电动机的使用寿命,还会浪费不必要的资源。实现同步电动机的静止变频能够有效的弥补同步电动机具有的局限性,是电动机能够更加稳定的启动,应用在大型机械中更加安全可靠。 1 大型同步电动机静止变频简介 1.1 大型同步电动机起动困难 大型同步电动机对电压的波动不敏感,自身受到的影响很低,而且,具有可调的功劳因数,适用范围广,在水泵、大型风机、抽水设备等大型的机械中都能蚪行使用,不论设备的负载多大,同步电动机始终能够提供固定的动力,具有可靠、稳定、动力大的特点,受到了广泛的应用。但是,大型同步电动机的起动十分困难,提供的电流和功率是所需的6-8倍,远远大于额定电流和额定功率,造成起动困难、起动滞后等现象。提供的起动电流过大,会使得电动机工作状况不稳定,往往需要多次起动才能成功,在这个过程中,对设备的磨损和损耗加大,造成设备的振动,可能会造成内部结构的变形、移动等,降低设备的使用寿命,也会增加设备发生事故的可能性。要实现大型同步电动机在技术上的进步,使得同步电动机的应用范围加大,对我国的经济发展和社会建设发挥更大的作用,解决大型同步电动机的起动困难是首要应该解决的问题。 1.2 静止变频在国内外的发展现状 同步电动机在国内外都得到了广泛的应用,起动困难这一缺点也受到了关注,都积极寻求可靠的解决方法。在不同的设备上使用的同步电动机特性也有所不同,要解决起动困难问题的静止变频装置也会发生变化。最初实现同步电动机的静止变频是西方发达国家在燃气轮

电动机的制动方式

电动机的制动方式(转)

电动机的制动方式主要有机械制动和电气制动,机械制动是通过机械装置来卡住电机主轴,使其减速,如电磁抱闸、电磁离合器等电磁铁制动器。电气制动时在应用中多采用电气制动,常用的电气制动方式有: 1. 短接制动制动时将电机的绕组短接,利用绕组自身的电阻消耗能量。由于绕组的电阻较小,耗能很快,有一定的危险性,可能烧毁电机。 2. 反接制动直流电机制动,将电机的电源正负极反接,改变电枢电流的方向,这样转矩的方向也改变,使得转速与转矩的方向相反。交流电机制动采用改变相序的方法产生反向转矩,原理类似。反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。 3. 能耗制动制动时在电机的绕组中串接电阻,电动机相当于发电机,将拥有的能量转换成电能消耗在所串接电阻上。这种方法在各种电机制动中广泛应用,变频控制也用到了。从高速到低速(零速),这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势EU(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来但由于通常变频器是交-直-交主电力AC/DC整流电路是不可逆的因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当超过设定上限值电压时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗电压随之下降,待到设定下限值时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的。制动电阻的选取经验:①电阻值越小,制动力矩越大,流过制动单元的电流越大; ②不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件; ③制动时间可人为选择; ④小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的;


⑤当在快速制动出现过电压时说明电阻值过大来不及放电,应减少电阻值. 4. 直流制动主要用于变频控制中。在电动机定子加直流电压,此时变频器的输出频率为零,这时定子产生静止的恒定磁场,转动着的转子切割此磁场产生制动力矩,迫使电动机转子较快的停止,这样电动机存诸的动能换成电能消耗于步电动机的转子电路中。 5. 能量回馈制动当采用有源逆变技术控制电机时,将制动时再生电能逆变为与电网同频率同相位的交流电回送电网,并将电能消耗在电网上从而实现制动。能量回馈装置系统具有的优越性远胜过能耗制动和直流制动所以近年来不少使用单位结合使用设备的特点纷纷提出要求配备能量回馈装置的要求国外也仅有ABB、西门子、富士、安川、芬兰Vacon等少数不多的公司能提供产品国内几乎空白。 6. 并联电容制动一种电容放电式三相单相伺服电机电制动方法,其特征在于:在旋转的电机需要制动时,将原电源输入断开,并同时将充有电能的电容连接在伺服电机绕组上,通过电机绕组放电,在电机内产生直流磁场,在直流磁场作用下,使电机转子制动,进行电机制动,同时电容的电能消耗,当电机制动后,电容的电能耗尽。其方法能耗温升小,防止电机烧毁,电机寿命长,制动效果好。该结构便于现场更换,提高电制动效果,提高了电动执行器的可靠性。

交流异步电动机制动的几种方式附原理案例

交流异步电动机制动的几种方式附原理案列 工业变频2009-06-16 16:00:42 阅读4628 评论1 字号:大中小订阅 一、再生回馈制动 再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。 二、反接制动 反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。 三、能耗制动 电机在正常运行中,为了迅速停车,在电机定子线圈中接入直流电源,在定子线圈中通入直流电流,形成磁场,转子由于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。 1.能耗制动的原理 如果三相异步电动机定子绕组断开三相电源后,则电机内无磁通势。从而电磁转矩=0, 电动机在负载转矩作用下,自然停车,这是自然制动过程。 能耗制动的电路原理图如图5.22所示,三相异步电动机定子绕组切断三相交流电源后(1K 断开),同时,在定子绕组任意两相上接入直流电流( 也称直流励磁电流),即接通开 关2K,从而在电机内形成一个不旋转的空间位置固定的磁通势,最大幅值为。在三相交流电源切断后的瞬间,电动机转子由于机械惯性其转速不能突变,而继续维持原 逆时针方向旋转。此时,直流电流产生的空间固定不转的磁通势相对于旋转的转子是一个旋转磁通势;旋转方向为顺时针,转速大小为。这种相对运动导致了转子绕组有 感应电动势,并产生电流和电磁转矩,根据左手定则可知,的方向与磁通势 相对于转子的旋转方向是一样的,但与转速的方向相反,电动机处于制动运行状态, 电机转速迅速下降,直到转速时,磁通势与转子相对静止,=0, =0, , 减速过程结束,电动机将停转,实现了快速制动停车。如果负载是反抗性负载,则 电机转速将停车。如果负载是位能性负载,则电机转速时必须立即用机械抱

机组禁止启动条件

1.1 禁止启动条件 1.1.1 影响机组启动的安装、检修、调试工作未结束,工作票未终结或未收回,设备现场不符合《电业安全工作规程》的有关规定。 1.1.2 机组任一安全保护装置失灵。 1.1.3 机组仪表及保护电源失去。 1.1.4 机组主要联锁保护试验不合格。 1.1.5 机组主要调节控制系统失灵。 1.1.6 DEH、FSSS、DCS控制系统工作不正常。 1.1.7 机组主要检测仪表监视功能失去或机组主要监测参数超过规定值。 1.1.8 仪用压缩空气系统工作不正常。 1.1.9 汽水品质不合格。 1.1.10 调速系统存在调节部套卡涩、调整失灵、不能维持汽轮机空转或甩负荷后动态飞升转速超出危急保安器动作值或其它工作不正常情况。 1.1.11 主机危急保安器动作不正常。 1.1.12 汽轮机高中压主汽门及调门、抽汽逆止门、高排逆止门任一卡涩、关闭不严或动作失灵,VV阀或BDV阀动作不正常。 1.1.13 交流润滑油泵(TOP)、启动油泵(MSP)、直流润滑油泵(EOP)、顶轴油泵、EH油泵任一故障或联锁保护试验不合格。 1.1.14 汽轮机润滑油油箱油位低于极限值或油质不合格。 1.1.15 EH油箱油位低或油质不合格。 1.1.16 密封油系统故障。 1.1.17 主机转子偏心大于原始值的110%。 1.1.18 盘车装置故障、盘车不动或盘车电流明显增大或大幅摆动。 1.1.19 盘车时汽轮发电机组转动部分有明显摩擦声或其他异音。 1.1.20 汽轮机旁路系统工作不正常。 1.1.21 汽轮机高、中压内缸上下缸温差超过35℃,高、中压外缸上下缸温差超过50℃。 1.1.22 发电机定子冷却水系统有故障或水质不合格。 1.1.23 发电机氢冷系统故障或氢气纯度、湿度不合格。 1.1.24 发变组绝缘不合格。 1.1.25 直流系统工作不正常。 1.1.26 UPS系统工作不正常。 1.1.27 柴油机、保安电源系统工作不正常。 1.1.28 锅炉两侧汽包水位计均故障不能投运。 其它威胁机组安全启动或安全运行的严重缺陷

§7三相异步电动机的制动

§7 三相异步电动机的制动 与直流电动机制动相同点:转矩、工作象限、能量转换 §7-1 回馈制动 一、 条件:0n n n s ,n .n 0 00<-=> 二、 功率平衡关系:电动机发电运行 Pcus P Fes Pem Pcur=P f P 1P M P0P2转差功率=Pem·s (4-82) 输入有功功率 电磁功率机械功率 轴上输出功率 P0=Pfv+Ps=风摩损耗+杂散损耗(含各谐波损耗) 回馈 Er=Es '·· Is ·Im ·Ir '·+ - 0S < 不计电动机本身损耗P0时,轴上输出的机械功率 0R s s 1I 3P P ' r 2'r M 2<-== (4-80) 电磁功率0s R I 3P 'r 2'r em <= (4-78) 制动时电机轴上机械能被转化为电能由转子侧传送到定子

侧。 Er=Es '··Ir '·Is ·Im ·Us ·jIrXr ·'' Ir ·'Rr/s '-Es ·IsRs ·jIsXs ·Φ r m · φ φs >90o >90o 0 s 0r 'r 'r 'r 'r 'r 2'r 2 'r 'r r 90 90X I j s R I E , 0X )s /R (s /R cos >φ?>φ+=<+= φ??? 0cos I U 3P s s s 1<φ= 由转子侧送定子侧的功率最终回送电网。 三、 机械特性 () ]X X s R R [f 2S R pU 3T 2'r s 2'r s 'r 2s em ++? ?? ? ??+π= (4-93),S<0

n T s 01 回馈制动 电动 n0 S<0 四、 回馈制动的产生 ·变极或变频调速时 n T s 01回馈制动 电动 n0 T L f1或P=1f2或P=20 S<0 ·下放位能负载 n T s 0 1回馈制动 反向电动 n0T L T L T M T L T M S<0

三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法 【摘要】电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。对异步电动机起动性能的要求,主要有以下两点:起动电流要小,以减小对电网的冲击;起动转矩要大,以加速起动过程,缩短起动时间。其起动方法有直接起动、降压起动。异步电动机制动的目的是使电力拖动系统快速停车或者使拖动系统尽快减速,对于位能性负载,制动运行可获得稳定的下降速度。其制动方法有能耗制动、反接制动和回馈制动。 【关键词】直接起动;降压起动;能耗制动;反接制动;回馈制动 引言 电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。三相异步电动机除了运行于电动状态外,还时常运行于制动状态。 运行于电动状态时,Tem与n方向相同,Tem是驱动转矩,电动机从电网吸收电能并转换成机械能从轴上输出,其机械特性位于第一或第三象限。运行于制动状态时,Tem与n方向相反,Tem是制动转矩,电动机从轴上吸收机械能并转换成电能,该电能或消耗在电机内部,或反馈回电网,其机械特性位于第二或第四象限。 本篇将分别介绍笼型异步电动机和绕线转子异步电动机的起动方法,异步电动机的能耗制动、反接制动和回馈制动方法。 1.三相笼型异步电动机的起动 笼型异步电动机的起动方法有两种:直接起动和降压起动。下面分别进行介绍。 1.1 直接起动 直接起动也称全压起动。起动时,电动机定子绕组直接接入额定电压的电网上。这是一种最简单的起动方法,不需要复杂的起动设备,但是,它的起动性能恰好与所要求的相反。即: 1.1.1 起动电流Ist大 对于普通笼型异步电动机,起动电流倍数kI=Ist/IN=4~7。起动电流大的原因是:起动时,n=0,s=1,转子电动势很大,所以转子电流很大,根据磁动势平衡关系,定子电流也必然很大。 1.1.2 起动转矩Tst不大

同步电动机常见启动故障分析及处理

同步电动机常见启动故障分析及处理 摘要:同步电动机能否顺利启动,不仅影响到同步电动机自身的安全,还影响到生产系统,为了快速、准确的发现故障、排除故障,对同步电动机常见的启动故障分析就显得非常必要。文章结合维修实践,分析了同步电动机常见启动故障,并给出了具体的处理措施,为今后同步电动机启动故障的维修提供了方法,具有一定的参考价值。 0 引言 同步电动机由于其功率因数高,运行效率高,稳定性好,转速恒定等优点广泛应用于工业生产中。熟悉同步电动机启动故障,并及时排除故障,对电 动机本身及生产系统都具有现实意义,为了能及时、准确排除故障,必须对 同步电动机常见故障进行详细的分析。 1 常见故障 1)同步电动机通电后,不能启动。 同步电动机接通电源后,不能启动和运行,一般有以下几方面的原因:(一)电源电压过低,由于同步电动机启动转矩正比于电压的平方,电源电压过低,使得电机的启动转矩大幅下降,低于负载转矩,从而无法启动,对此,应提高电源电压,以增大电机的启动转矩。(二)电动机本身的故障检查电动机定、转子绕组有无断、短路,开焊和连接不良等故障,这些故障都使电机无法建立起额定的磁场强度,从而电动机无法启动;检查电动机轴承有无损坏,端盖有无松动,如果轴承损坏或端盖松动,造成转子下沉,与定子铁心相擦,从而导致电机无法启动。对定、转子绕组故障可用低压摇表,逐步查找,视具体情况,采取相应的处理方法,对轴承和端盖松动故障,每次开车前都应盘车,看电动机转子转动是否灵活,如轴承(或轴瓦)损坏,应及时更换。(三)控制装置故障此类故障多为励磁装置的直流输出电压调整不当或无输出,造成电动机的定子电流过大,致使电机过流保护动作或引起电机的失磁运行,此时,检查励磁装置的输出电压、电流是否正常,电压、电流波形是否正常,如电压或电流波形不正常,为了节省时间,更换备用触发板。(四)机械故障如被拖动的机械卡住,

电动机几种制动方式

电动机的制动方式 电动机的制动方式主要有机械制动和电气制动,机械制动是通过机械装置来卡住电机主轴,使其减速,如电磁抱闸、电磁离合器等电磁铁制动器。 电气制动时在应用中多采用电气制动,常用的电气制动方式有:1. 短接制动制动时将电机的绕组短接,利用绕组自身的电阻消耗能量。由于绕组的电阻较小,耗能很快,有一定的危险性,可能烧毁电机。 2. 反接制动直流电机制动,将电机的电源正负极反接,改变电枢电流的方向,这样转矩的方向也改变,使得转速与转矩的方向相反。交流电机制动采用改变相序的方法产生反向转矩,原理类似。反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。 3. 能耗制动制动时在电机的绕组中串接电阻,电动机相当于发电机,将拥有的能量转换成电能消耗在所串接电阻上。这种方法在各种电机制动中广泛应用,变频控制也用到了。从高速到低速(零速),这时电气的频率变化很快,但电动机的转子带着负载(生产机械)有较大的机械惯性,不可能很快的停止,这样就产生反电势EU(端电压)电动机处于发电状态,其产生反向电压转矩与原电动状态转矩相反,而使电动机具有较强的制动力矩,迫使转子较快停下来但由于通常变频器是交-直-交主电力AC/DC整流电路是不可逆的因此无法回馈到电网上去,结果造成主电路电容器二端电压升高,称泵升电压,当

超过设定上限值电压时,制动回路导通,这就是制动单元的工作过程,制动电阻流过电源,从而将动能变热能消耗电压随之下降,待到设定下限值时即断.这种制动方法属不可控,制动力矩有波动,制动时间是可人为设定的。 制动电阻的选取经验: 1、电阻值越小,制动力矩越大,流过制动单元的电流越大; 2、不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件; 3、制动时间可人为选择; 4、小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的;


5、当在快速制动出现过电压时说明电阻值过大来不及放电,应减少电阻值. 4. 直流制动主要用于变频控制中。在电动机定子加直流电压,此时变频器的输出频率为零,这时定子产生静止的恒定磁场,转动着的转子切割此磁场产生制动力矩,迫使电动机转子较快的停止,这样电动机存诸的动能换成电能消耗于步电动机的转子电路中。 5. 能量回馈制动当采用有源逆变技术控制电机时,将制动时再生电能逆变为与电网同频率同相位的交流电回送电网,并将电能消耗在电网上从而实现制动。能量回馈装置系统具有的优越性远胜过能耗制动和直流制动所以近年来不少使用单位结合使用设备的特点纷纷提出要求配备能量回馈装置的要求国外也仅有ABB、西门子、富士、安川、

三相异步电动机制动方法及应用

西安科技大学继续教育学院《电力拖动技术课程设计》报告书 三相异步电动机制动方法及应用 专业:电气自动化 学生姓名: sjcqing 班级:09电气自动化大专班 指导老师: 提交日期: 2012 年 3 月

摘要 近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。电机的控制包括电机的起动、调速和制动。异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。据统计,其耗电量约占全国发电量的40%左右。当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。异步电动机的起动性能最重要的是起动电流和起动转矩。因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。电动机机应用广泛,种类繁多、性能各异,分类方法也很多。本文是对三相异步电动机做出深入的剖析与设计。三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。 关键词:三相异步电动机结构制动方式 1

同步电机启动

同步电机启动困难的原因: 当同步电机在频率恒定的电源下启动时,定子产生旋转磁动势F 以同步转速p N n f n 601=旋转。由于机械惯性的作用,电动机转速具有较大的滞后,不能快速的跟随同步转速;由电机的转矩角特性可以知道:转矩角是以2π为周期按正弦规律变化的。当转矩角0<θ<π时,电磁转矩大于零;当转矩角π<θ<2π时电磁转矩小于零,在一个周期内,电磁转矩的平均值等于零。所以在启动时,电磁转矩对转子的作用是一种高频的振动,不能使转子加速启动以达到同步转速,造成同步电机的启动困难。 同步电机稳定运行要求: 由隐极同步电机的转矩角特性图可以知道,当同步电机稳定运行于1θ时,此 时0<1θ<2 π电磁转矩和负载转矩平衡,当负载加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁转矩也会增大,电磁转矩与负载转矩在 2θ处达到了新的平衡,同步电机仍以同步转速稳定运行。 图1 在0<θ<2 π隐极同步电机的转矩角特性 图2 在2 π<θ<π隐极同步电机的转矩角特性 当同步电机运行于3θ时,2 π<3θ<π,电磁转矩和负载转矩相等,当负载转矩加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁

转矩会减小,电磁转矩减小,导致转矩角的进一步增大,则电磁转矩持续减小,最终电机的转速会偏离同步转速,就会导致失步。总之,在,2 π< <π范围内,同步电机不能稳定的运行,会产生失步现象。 失步现象: 同步电动机运行时,定子磁场拖动转子磁场旋转。两个磁场之间存在着一个固定的力矩,这个力矩的存在是有条件的,必须两者的转速要相等,即同步才行, 所以这个力矩也称为同步力矩 。 一旦两者的速度不相等 , 则同步力矩就不存在了,电机就会慢慢停下来。这种转子速度与定子磁场不同步,而造成同步力矩消失 , 转子慢慢停下来的现象,称为“失步现象”。 为什么失步时,电动机就没有旋转力矩呢?因为当转子与定子磁场不同步的话 , 两者的相对位置就会起变化,即转矩角就会变化。当转子落后定子磁场角度在转矩角0 ~ 180°度时定子磁场对转子产生的是驱动力;当转矩角180° ~ 360°时,定子磁场对转子产生的是阻力,所以平均力矩为零。 引起同步电机失步的原因:欠励失步、过励失步、断电失步。 ○ 1欠励失步 欠励失步主要是因为转子的励磁回路发生断路或者是接触不良、励磁绕组发生匝间短路、励磁系统发生故障等,导致同步电机的励磁绕组欠励磁或者是失去励磁,就会导致转子磁场滞后旋转磁场很大角度导致同步电机不能稳定运行,发生失步。 ○ 2过励失步 过励失步主要是由于相邻出线端头短路故障、附近大型机组或机组群起动或自起动引起母线电压较长时间较大幅度的降低、电动机所带负载的大幅度突增以及起动过程中励磁系统过早投励等原因所引起。电机在过励失步时,励磁系统虽仍有直流励磁,但励磁电流及定子电流都很大并且产生强烈脉振,转子磁场超前旋转磁场很大角度,有时甚至产生电磁共振和机械共振。 ○ 3断电失步 断电失步主要是由于外部供电系统跳闸及人工切换电源时,使交流电机供电电源输送渠道短暂中断而导致。在电源中断又重新恢复期间,同步电动机转子转速不断降低,电源重新恢复时,转子磁场的转速低于定子磁场的同步转速。导致失步。 怎么解决同步电机的失步问题: 同步电机的失磁是导致失步很重要的原因,为了防止失磁,可以在励磁机电源回路串联EPS 专门供电,防止外部大功率设备启动引起电网电压大幅波动。

三相异步电动机常见的制动方法(精)

三相异步电动机常见的制动方法 作者:骑着乌龟追蚂蚁,2007-5-31 10:47:00 发表于:《变频器与调速论坛》共有11人回复,1096次点击加为好友查看播客发 送留言 最近公司在安装大型的行车,原理图上有电动机的几种制动方式,我在网上查了一下,与大家分享一下. 三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。 1.机械制动 采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。 (1电磁抱闸断电制动控制电路 电磁抱闸断电制动控制电路如图1所示.合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈 YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。

(2电磁抱闸通电制动控制电路 电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开,克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。 2.电力制动 电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩使电动迅速停止的方法。最常用的方法有:反接制动和能耗制动。 (1反接制动。在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。 反接制动控制电路如图4所示。其主电路和正反转电路相同。由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。因此反接制动电路增加了

相关主题
文本预览
相关文档 最新文档