当前位置:文档之家› L不锈钢耐腐性性能

L不锈钢耐腐性性能

L不锈钢耐腐性性能
L不锈钢耐腐性性能

不锈钢316L的耐腐蚀性能

不锈钢316L的耐腐蚀性能

316L(UNSS31603)是以钼为基础的奥氏体不锈钢,这个不锈钢与常规的铬-镍奥氏体如304合金相比,具有更好的抗一般腐蚀及点腐蚀、裂隙腐蚀性。这些合金具有更高的延展性、抗应力腐蚀性能、耐压强度及耐高温性能。

一般属性

316(UNSS31600),316L(S31603),317L(S31703)是以钼为基础的奥氏体不锈钢,与常规的铬-镍奥氏体如304合金相比,具有更好的抗一般腐蚀及点腐蚀、裂隙腐蚀性。这些合金具有更高的延展性、抗应力腐蚀性能、耐压强度及耐高温性能。在要求更佳抗一般腐蚀和点腐蚀性能的应用中,317L比316或316L更受欢迎,因为317L含钼量达3-4%,316和316L的含钼量只有2-3%。3 16合金和316L和317L铜-镍-钼合金还具有奥氏体不锈钢的典型特征,即良好的加工性及成形性。

耐腐蚀

一般腐蚀

和18-8不锈钢相比,316,316L和317L在大气环境下和其他温和环境下具有更佳的耐腐蚀性。一般来说,不腐蚀18-8不锈钢的媒介,都不会腐蚀含钼的等级。唯一例外的是高氧化性酸,如硝酸,含钼的不锈钢对这种酸的耐腐蚀性较弱。在硫酸溶液中,316和317L比其他铬-镍类型的等级具有更良好的耐腐蚀性。在温度高达120°F(38°C)的条件下,这两个等级对高浓度溶液都有良好的耐腐蚀性。当然,使用期间的测试是必不可少的,因为作业条件和酸性污染物可能严重影响腐蚀速率。浓缩含硫气体时,这两种等级比其他类型的不锈钢具有更好的耐腐蚀性。然而,在这样的应用中,酸浓度对腐蚀速率的影响相当大,这一因素要慎重考虑。含钼不锈钢316和3 17L,对其他各种环境都有一定的耐腐蚀性。以下的腐蚀数据表明,这些合金在沸腾的20%磷酸溶液中,表现出优越的耐腐蚀性。它们也被广泛应用于处理热有机酸和脂肪酸。食物,医药产品的制造和处理,通常用到含钼的不锈钢,因为要尽量减少金属污染。一般来说,在相同的环境条件下,316,316L可以看成和317L的性能相当。但是在可以引起焊接,热影响区晶间腐蚀的环境下,例外。在这样的媒介,316L和317L更常被选用,因为含碳量低,可以提高耐晶间腐蚀性。

点腐蚀/隙腐蚀

铬,钼,氮含量增加,可以提高奥氏体不锈钢在氯化物或其他卤素离子环境下的耐点腐蚀/隙腐蚀性。点腐蚀通过PREN(点蚀当量)来计算,PRE=Cr+3.3Mo+16N。316,316L的PREN=24.2,30 4的PREN=19.0,这就反映了316(或316L)耐点腐蚀性比304好。317L,钼含量达31%,PREN=2 9.7,说明比316耐点腐蚀性更好。304不锈钢在含100ppm氯化物的水环境下,具有耐点腐蚀和耐隙腐蚀性。含钼的316和317L,分别在含2000ppm和5000ppm氯化物的水环境下,具有耐点腐蚀和耐隙腐蚀性。尽管这两种合金在海水环境下(氯化物含量19000ppm)使用取得一定成效,但是不建议这样使用。2507合金,钼含量4%,铬含量25%,镍含量7%是专门用于咸水环境的。3

16,317L只适用某些海洋环境的应用,如船只导轨,海洋附近建筑物外墙等。316,317L合金在100小时5%盐雾测试中,都没有出现腐蚀(ASTMB117)

粒间腐蚀

316,317L合金暴露在800°F至1500°F(427°C至816°C)温度下,可能引起碳化铬在晶界沉淀。这类不锈钢暴露在苛刻环境下,容易形成粒间腐蚀。但是短暂暴露的时候,如焊接时,317 L由于较高的铬,钼含量,比316更能抵御粒间腐蚀。当焊接厚度超过11.1mm时,即使是317L 合金,也需要做退火处理才行。如果焊接后不能做退火处理或需要做低温应力消除处理时,采用316L和317L可以有效避免粒间腐蚀。在焊态和暴露在800to1500°F(427to826°C)温度范围内,这两种合金有耐腐蚀性。需要做应力消除处理的容器,在此温度范围内做短时间处理,不会影响金属正常的耐腐蚀性能。L等级的大型钢材经过退火后,无需做高温加速冷却处理。316L,317L 和对应的高碳含量合金相比,具有同等的耐腐蚀性和机械性能,在容易产生粒间腐蚀的应用中,这两种合金更是具有额外的优势。在焊接和应力消除遇到的短暂热力,尽管不足以引起粒间腐蚀,但是值得注意的是,连续或者长期暴露在800到1500°F(427到826°C)的温度范围内,对这两种合金来说都是有害的。在1100到1500°F(593到816°C)温度范围下做应力消除处理,可能对这类合金引起轻微脆裂。

应力腐蚀龟裂

在卤化环境下,奥氏体不锈钢容易受应力腐蚀龟裂的影响。尽管316,317L由于含有钼,比18C r-8Ni合金一定程度上具有较好的耐应力腐蚀龟裂性,但是它们仍然是比较容易受影响的。产生应力腐蚀龟裂的条件包括:(1)卤化物的存在(一般来说是氯化物);(2)残余张应力;(3)温度超过120°F(49°C)。焊接过程中,冷变形或热循环可以产生应力。退火,应力消除热处理可以有效减少应力,因此,减低了材料对卤化物应力腐蚀龟裂的敏感性。低碳的L等级,在耐应力腐蚀龟裂方面没有特殊优势,但是在应力消除状态下作业时,L等级是仍然是首选,因为这样的环境下可能引起粒间腐蚀。

抗氧化性

316,317L具有良好的抗氧化性,在大气环境下,温度即使到达1600至1650°F(871至899°C),锈皮产生率也比较低。一般来说,316的性能稍次于304不锈钢,因为304的铬含量稍高(18%,316铬含量16%)。氧化率通常受大气和作业环境所影响,因此无法提供确切的氧化率供参考。

物理性能

结构

适当退火后,316,317合金主要是奥氏体。少量铁素体或许会出现。当从800至1500°F(427至816°C),慢慢冷却,会产生碳化物沉淀,这时结构由奥氏体和碳化物构成。

熔化范围:2450to2630°F(1390to1440°C)

密度:0.29lb/in3(8.027g/cm3)

抗拉弹性模数:29x106psi(200Gpa)

剪切模量:11.9x106psi(82Gpa)

磁导率

奥氏体不锈钢在退火状态和完全奥氏体状态下是无磁性的。316,317L在退火状态下,在200H 情况下,磁导率一般低于1.02。冷变形材料的磁导率因金属成分的不同和冷变形程度的不同而有所不同,但是通常来说,都比退火材料的磁导率高。

疲劳强度

金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。奥氏体不锈钢的疲劳强度一般来说是抗拉强度的35%。在实际作业中,疲劳强度也会受其他因素影响,如:腐蚀情况,应力形式,表面平滑度等。因此,无法给出疲劳极限的确切数值。

热处理

退火

退火状态下的奥氏体不锈钢可以直接使用。在加工中或加工后,可能需要做热处理,用于去除冷成型产生的副作用和溶解沉淀的碳化铬。316,317L固溶退火在1900至2150°F(1040至1175°C)温度范围内完成,然后根据材料的厚度,决定进行空气冷却还是水淬。材料要迅速从1500至800°F(816至427°C)冷却下来,避免碳化铬再沉淀以及提供最佳的耐腐蚀性。材料从退火温度冷却到暗热的时间应少于3分钟。316,317L不能通过热处理硬化。

加工

奥氏体不锈钢,包括316,317L,通常被加工成各种各样的部件。加工方法有穿孔,成形等,所用设备和加工碳钢的设备基本上一样。奥氏体不锈钢的良好延展性,通过弯曲,拉伸,深拉等方法,很容易达到成形。然而,奥氏体不锈钢本身强度和硬化性能较大,因此加工奥氏体不锈钢的功率要求比碳钢大得多。

焊接

奥氏体不锈钢被认为是最容易焊接的不锈钢,可以用所有的融合物焊接,也可以进行电阻焊接。焊接点要考虑两个重要因素1)避免硬化裂纹;2)保持焊口和热影响区的耐腐蚀性。焊接完全奥氏体结构的金属,在焊接操作中更容易形成裂纹。因此,316,316L,317L合金中添加了少量的铁素体,降低材料的裂纹敏感性。在腐蚀环境下使用的焊接件,建议使用低碳的316L和317L 焊基金属和焊料。焊接金属含碳量越高,越容易产生碳化物沉淀(敏化作用),这可能导致粒间腐蚀。低碳的L等级,可以有效降低和避免敏化作用。高钼含量的焊堆在苛刻的环境下,由于钼的微偏析,可能导致耐腐蚀性下降。要克服这种副作用,应该提高焊料的钼含量。317L在某些苛刻的应用中,焊堆的钼含量要达到4%或者更高。904L合金(AWSER385,4.5%Mo)或625合金(A WSERNiCrMo-3,9%Mo)常被用做这种焊料。在焊接区域应该避免铜和锌的污染,因此这两种成分会形成低熔点的化合物,导致焊接裂纹。

信息来源:

不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不{TodayHot}锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。奥氏体不锈钢在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括着名的18Cr-8Ni钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,Te等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显着提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。316和316L不锈钢316和317不锈钢(317不锈钢的性能见后)是含钼不锈钢种。317不锈钢中的钼含量略高明于316不锈钢.由于钢中钼,该钢种总的性能优于310

和304不锈钢,高温条件下,当硫酸的浓度低于15%和高于85%时,316不锈钢具有广泛的用途。316不锈钢还具有良好的而氯化物侵蚀的性能,所以通常用于海洋环境。316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐腐蚀性的用途中。耐腐蚀性耐腐蚀性能优于304不锈钢,在浆和造纸的生产过程中具有良好的耐腐蚀的性能。而且316不锈钢还耐海洋和侵蚀性工业大气的侵蚀。耐热性在1600度以下的间断使用和在1700度以下的连续使用中,316不锈钢具有好的耐氧化性能。在800-1575度的范围内,最好不要连续作用316不锈钢,但在该温度范围以外连续使用316不锈钢时,该不锈钢具有良好的耐热性。316L不锈钢的耐碳化物析出的性能比316不锈钢更好,可用上述温度范围。热处理在1 850-2050度的温度范围内进行退火,然后迅速退火,然后迅速冷却。316不锈钢不能过热处理进行硬化。焊接316不锈钢具有良好的焊接性能。可采用所有标准的焊接方法进行焊接。焊接时可根据用途,分别采用316Cb、316L或309Cb不锈钢填料棒或焊条进行焊接。为获得最佳的耐腐蚀性能,316不锈钢钢的焊接断面需要进行焊后退火处理。如果使用316L不锈钢,不需要进行焊后退火{HotTag}处理。典型用途纸浆和造纸用设备热交换器、染色设备、胶片冲洗设备、管道、沿海区域建筑物外部用材料。铁素体不锈钢在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了它的应用。炉外精炼技术(AOD 或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。奥氏体--铁素体双相不锈钢是奥氏体和铁素体组织各约占一半的不锈钢。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显着提高,同时还保持有铁素体不锈钢的475℃脆性以及导热

系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。马氏体不锈钢通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为C r13型,如2Cr13,3Cr13,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。

各种不锈钢的耐腐蚀性能1

各种不锈钢的耐腐蚀性能? 答:304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S 乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N 以及合硫量较高的易切削不锈钢316F。 是分别以钛,铌加钽、铌稳定化的不锈348 及347、321.钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢与不锈铁的区别 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈

_各种不锈钢的耐腐蚀性能复习过程

_各种不锈钢的耐腐蚀 性能

各种不锈钢的耐腐蚀性能 304是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢的腐蚀与耐腐蚀的基本原理 金属受环境介质的化学及电化学作用而被破坏的现象即腐蚀。化学腐蚀的环境介质是非电解质(汽油、苯、润滑油等),电化学腐蚀的环境介质是电解质(各种水溶液)。电化学腐蚀是涉及电子转移的化学过程,该过程能否进行取决于金属能否离子化,而离子化的趋势可用金属的标准电极电位(ε0)来表示。 由于碳化物、夹杂物,以及组织、化学成分和内部应力的不均匀等的作用,将促使各部分在电解液中产生相互间的电极电位差。电极电位差愈大,微阳极和微阴极间的电流强度愈大,钢的腐蚀速度也愈大,微阳极部分产生严重的腐蚀。在电化学腐蚀中能够控制腐蚀反应速度的现象称为极化,极化可使阳极与阴极参与反应的速度得到减弱和减缓。电解液中离子的缓慢移动、原子缓慢结合成气体分子或电解液中离子的缓慢溶解,都可能是极化的表现形式。反应面积、搅拌或电解液流动、氧气、温度等因素,都将影响极化的速度。用极化技术与临界电位可衡量金属与合金在氯化物溶液中点腐蚀与缝隙腐蚀的敏感性。当不锈钢与异种金属接触时,需考虑电化学腐蚀。但若不锈钢是正极,则不会产生电流腐蚀。

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

常用合金纯属的耐腐蚀性能

常用合金纯金属的耐腐蚀性能 注:为了改善纯金属的机械性能,在冶炼过程中,根据需要加入微量的其它金属。

接触介质部分材质的耐腐蚀性能参考 分类介质名 称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 分 类 介质名称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 无机盐盐酸 5 RT BP ○ ○○ ○ ○ ● ●○○ 有 机 盐 氢氟酸 5 48 RT RT ○ ○ ○ ○ ○ ○ ●○ ○10 RT BP ○ ○○ ○ ○ ● ●○○ 醋酸100 RT BP ○ ○ ● ● ● ● ● ● ● ● ● ●20 RT BP ○ ○○ ○ ○ ● ● ○ ○○ 甲酸50 RT BP ○ ○ ○ ○ ● ● ● ●35 RT BP ○ ○○ ○ ○ ● ● ○ ○ ○ ○ 草酸10 RT BP ○ ○○ ●●○ ○ ○ ○硫酸 5 RT BP ● ○ ●●● ● ○ ○ ○ ○ 柠檬酸50 RT BP ○ ○ ● ● ● ● ● ● ●10 RT BP ○ ○ ● ○ ●● ● ○ ○ ○ ○ 碱 苛性钠 20 RT BP ●● ● ●●● ● ●60 RT BP ○○● ○ ●● ● ○ ○ ○ ○ 40 RT BP ●● ● ●○ ○ ● ●80 RT BP○ ○ ○ ● ○ ○●○ ○ ○ ○ 苛性钾50BP●●●●○95 RT BP○ ● ○ ● ○ ○● ○ ○ ○ ○ ○ 盐 氯化铁30 RT BP ○○ ○○ ○ ○ ● ● ○● ●硝酸 10 RT BP ○● ● ○ ○ ● ● ○ ○ ● ● 氯化钠 20° 饱和 RT BP ● ○ ●● ● ● ● ● ●30 RT BP ○● ●○ ○ ○ ● ● ○ ○ ● ○ 氯化铵25 RT BP ○● ● ●● ●68 RT BP ○●● ○ ● ● ○ ○ ● ● 氯化钙25 RT BP● ● ● ● ● ●● ●发烟RT●○○氯化镁42 RT BP ● ● ● ● ● ● ● ●磷酸 30 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○硫 化 物 硫酸铵 20° 饱和 RT BP ●●●● ● ●●50 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○ 硫化钠10 RT BP ● ● ● ● ● ● ● ●70RT ○●●○●○硫酸钠50RT ●●

304,316不锈钢耐腐蚀性

不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 1、在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1 Cr 17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1 Cr 17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7、1 Cr 18Ni9和0 Cr 18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。 精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。

不锈钢的耐腐蚀性能

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。 不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效

地保护着不锈钢表面,特别是能防止进一步再氧化。这种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

各种不锈钢的耐腐蚀性能

型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号 409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号 416—添加了硫改善了材料的加工性能。 型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 型号 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。500 系列—耐热铬合金钢。 600 系列—马氏体沉淀硬化不锈钢。 型号 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。 309、310、314及330不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317型不锈钢含有钼,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 钢结构防腐工程施工方案 (二)涂装施工工艺 1、基础处理及要求 (1)用细砂纸打磨旧有醇酸红丹漆,并清除掉残留的焊渣以及磨损部位的锈迹; (2)打磨完毕后彻底清扫灰尘和打磨产生的碎屑。 (3)涂装施工前,基层应经甲方、监理方等组织验收,确定已除去所有油、灰、脂、污垢、锈层和其它外部附着物后才能正式进行涂装施工,以保证涂装质量和使用寿命。 (4)每次涂装前都应检查基材或上道漆上是否有油、灰、脂、污垢或其它外部附着物。 (5)涂装底漆前先在边角处、焊接处、接缝以及锈迹打磨后的部位等等涂装困难的位置预涂一道底漆,以保证该部位的漆膜厚度达到要求。 2、施工环境要求 (1) 温度:最低4oC,最高35oC,至少要高于露点3oC 相对湿度:最高85% (2)雨天或三级以上的大风天,不允许施工。施工结束后8小时内不可遇雨(留意天气预报,合理安排工期),雨后1~2天须待基材干燥后方能进行再次施工。 3、涂装施工工艺、方法、技术要求 (1)涂装方法: 常用的涂装方法以刷涂、辊涂及喷涂为主。综合实际施工条件、节省材料、提高性能的目的考虑,底漆建议采用刷涂,以提高底漆附着力,面涂可采用刷涂或喷涂(视工况条件)。 (2)涂装过程注意事项!

不锈钢的耐腐蚀性及其种类

不锈钢的耐腐蚀性及其种类 1.腐蚀的种类和定义: 在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除[wiki]机械[/wiki]失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。 应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性[wiki]环境[/wiki]中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 点腐蚀:是一种导致腐蚀的局部腐蚀形式。 晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。 缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。 全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。 2.各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的[wiki]设备[/wiki]和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度

第五章不锈钢抗腐蚀性能

第五章不锈钢抗腐蚀性能 不锈钢的一般特性 表面美观,可使用性能多样性; 耐腐蚀性能好,可用于弱腐蚀及各种介质环境较强腐蚀; 强度硬度广泛,使用各种性能要求; 耐高温、低温性能好,使用温度适用范围大; 加工性能好; 可焊性好。 但从不锈钢定义可以看出,不锈钢与其他钢的区别就是不锈性,耐腐蚀性,所以我们研究一下它为什么不锈。 金属的腐蚀类型 金属的腐蚀,是金属与周围介质发生化学或电化学反应而发生破坏的现象。金属的抗腐蚀或耐腐蚀性是指金属抵抗腐蚀作用的能力。 化学腐蚀 化学腐蚀是指金属与周围介质直接发生化学反应而产生的腐蚀,例如钢在高温下氧化,就是一种典型的化学腐蚀,其产物沉积在金属表面上,也有人把这种腐蚀叫干腐蚀。 如果金属表面形成的腐蚀产物非常致密,则金属与腐蚀介质就会隔离,腐蚀就会阻滞,例如钢铁零件的蒸汽处理,法兰(黑)处理,就是使零件表面生成一层致密的Fe3O4薄膜,零件不再与周围介质发生接触,防止其化学反应的进行,零件便被保护起来了。 电化学腐蚀

电化学腐蚀是金属与周围介质接触,由于电化学作用而引起表面腐蚀的现象。例如钢在室温下的生锈主要是电化学腐蚀,在电化学腐蚀过程中有电流产生,电化学腐蚀是由于不同的金属之间或同种金属的各相之间存在不同的电极电位,且相互碰撞,并存在于同一种电解溶液中构成分数电池而引起的。如图5-1。 碳素钢在退火或正火状态下的组织是由铁素体和渗碳体组成的,并相互接触。渗碳体的电极电位一般比铁素体高,两相之间存在着电位差,当钢表面有水膜时,加上空气中O2等气体的溶解,在铁素体和渗碳体之间构成一微电池,电极电位低的铁素体称为阳极而被腐蚀引起钢的破坏。如果将钢件放在酸、碱、盐等水溶液中,电化学腐蚀作用更快。钢中的碳化物、夹杂物等,各部分组织和成分不均,内部应力不均,都促使各部分在电解质中促使相互间形成电极位差。这种电极位差愈大,微阳极与微阴极间的电流强度愈大,钢的腐蚀速度也愈大。 有人把电化学腐蚀称为湿 腐蚀,电化学腐蚀能否进行, 取决于金属能否被离子化, 金属离子化的趋势,可以用 金属的标准电极电位(εσ) 来说明。定性的说,金属标 准电极电位越负,则越容易图5-1 碳素钢在潮湿空 离子化。气中产生电化学腐蚀示意图

不锈钢的腐蚀方式与腐蚀性能

不锈钢的腐蚀方式与腐蚀性能 ⑴不锈钢的腐蚀方式简介 在众多的工业用途中,不锈钢能提供令人满意的耐蚀性能。根据使用的经验来看,除机械失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂,点腐蚀,晶间腐蚀,腐蚀疲劳以及缝隙腐蚀)。 ①应力腐蚀开裂(SCC)应力腐蚀开裂是指承受应力的合金在腐蚀性环境中由于裂纹的扩展而产生失效的一种形式。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是参与应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。裂纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩展的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至一定的深度时(此处,承受荷载的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与显微缺陷的聚合想联系的“韧窝”区域。 通常是应力腐蚀开裂的基本条件是:弱的腐蚀介质,一定的拉应力和特定的金属材料构成的特定腐蚀系统。下面将详细介绍这方面的内容。 a 仅当弱的腐蚀在金属表面形成不稳定的保护膜时,才可能发生应力腐蚀开裂。实验结果表明:pH值降低将减弱奥氏体不锈钢的应力腐蚀开裂敏感性。一般的结构用钢在中性pH 值和高pH值介质中,将发生不同机制的应力腐蚀开裂。 b 在一定的拉应力的应变条件下易产生腐蚀。对Cr-Ni不锈钢的应力腐蚀开裂,应力(σ)和开裂时间(t s)关系一般认为符合1gt s=a+bσ方程,式中a,b为常数。这表明所受

在各种环境中不锈钢的耐腐蚀性能

在各种环境中不锈钢的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1Cr17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变,奥氏体型不锈钢如1Cr17Ni7、1Cr18Ni9和0Cr18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0Cr17Ni12M02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素。即表面状态和制作工艺。精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感。即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要经常的清理。 2.淡水 淡水可定义为不分酸性、盐性或微咸,来源于江河、湖泊、池塘或井中的水。 淡水的腐蚀性受水的pH值、氧含量和成垢倾向性的影响。结垢(硬)水。其腐蚀性主要由在金属表面形成垢的数量和类型来决定。这种垢的形成是存在其中的矿物质和温度的作用。非结垢(软)水,这种水一般比硬水的腐蚀性强。可以通过提高pH值或减少含氧量来降低其腐蚀性。 1Cr13不锈钢明显地比碳素钢耐淡水腐蚀,而且在淡水中使用有极好的特征。这种钢广泛用于例如需要高强度和耐腐蚀的船坞和水坝等用途。然而,应当考虑到在某些情况下。1Cr13在淡水中可能对中度点蚀敏感.但是点蚀完全可以用阴极防蚀方法来避免。1Cr17和奥氏体型不锈钢在室温(环境温度)几乎完全可以耐淡水腐蚀。 3.酸性水 酸性水是指从矿石和煤浸析出的被污染的自然水,由于是较强的酸性所以其腐蚀性比自然淡水强得多。,由于水对矿石和煤中所含硫化物的浸析作用,酸性水中通常含有大量的游离硫酸,此外,这种水含有大量的硫酸铁,对碳钢的腐蚀有非常大的作用。 受酸性水作用的碳钢设备通常很快被腐蚀。用受酸性河水作用的各种材料所做试验的结果表明,在这种环境下奥氏体型不锈钢有较高的耐腐蚀性能。 奥氏体型不锈钢在淡水和酸性河水中有极好的耐腐蚀性能,特别是其腐蚀膜对热传导的阻碍较小,所以在热交换用途中广泛使用不锈钢管。 4.盐性水 盐性水的腐蚀特点是经常以点蚀的形式出现。对于不锈钢,在很大程度上是由于盐性水导致起耐腐蚀作用的钝化膜局部破坏。这些钢发生点蚀的其他原因是附着于不锈钢设备上的茗荷介和其他海水有机物可形成报送的浓差电池。一旦形成,这些电池非常活跃,并且造成大量腐蚀和点蚀。在盐性水高速流动的情况下,例如泵的叶轮,奥氏体型不锈钢的腐蚀通常是非常小

不锈钢的耐腐蚀性能

不锈钢的耐腐蚀性能 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显着增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效地保护着不锈钢表面,特别是能防止进一步再氧化。这

种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显着的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

不锈钢的耐腐蚀性主要是因为在钢中添加了较高含量的Cr元素

不锈钢的耐腐蚀性主要是因为在钢中添加了较高含量的Cr元素,Cr元素易于氧化,能在钢的表面迅速形成致密的Cr2O3氧化膜,使钢的电极电和在氧化介质中的耐蚀性发生突变性提高,不锈钢的耐腐蚀性能主要依靠表面覆盖的这一层极薄的(约1mm)致密的钝化膜,这层钝化膜与腐蚀介质隔离,是不锈钢防护的基本屏障,如果钝化膜不完整或有缺陷被破坏,不锈钢仍会被腐蚀。 不锈钢也会锈蚀,不锈钢板材、设备及附件的吊运、装配、焊接、焊缝检查(如着色探伤、耐压实验)及加工过程中带来的表面油污、划伤、铁锈、杂质、低熔点金属污染物、油漆、焊渣、飞溅物等,这些物质影响了不锈钢表面质量,破坏了其表面钝化膜,降低了表面耐蚀性,还易与以后接触的化学品中的腐蚀介质共同作用,引发点蚀、晶间腐蚀、甚至会导致应力腐蚀开裂。 了解一下各种元素对不锈钢的性能和组织的影响。 1.铬——是构成不锈钢的基本元素。 铬是决定不锈钢耐腐蚀性能的最基本元素。在氧化性介质中,铬能使钢的表面很快形成一层实际为腐蚀介质不能透过和不溶解的富铬的氧化膜,这层氧化膜很致密,并与金属基本结合得很牢固,保护钢免受外界介质进一步氧化浸蚀;铬还能有效地提高钢的电极电位。当含铬量不低于%原子时,可使钢的电极电位发生突变,由负电位升到正的电极电位。因而可显着提高钢的耐蚀性。铬的含量越高,钢的耐蚀性能越好。当含铬量达到25%、%原子时,会发生第二次第三次的突变,使钢具有更高的耐腐蚀性能。 2.镍——单独不能构成不锈钢 镍对不锈钢耐腐蚀的影响,只有它与铬配合时才能充分显示出来。因为,低炭镍钢要获得纯奥氏体组织,含镍量需达24%;要使钢在某些介质中的耐腐蚀性能显着改变,含镍量需在27%以上。所以,镍不能单独构成不锈钢。而在含铬18%的钢中加入9%的镍,就能使钢在常温下获得单一奥氏体组织,并可以提高钢对非氧化性介质(如:稀硫酸、盐酸、磷酸等)的耐蚀性,并能改善钢的焊接和冷弯等的工艺性能。 3.锰和氮——可代替铬镍不锈钢中的镍 锰和氮在不锈钢中有镍相仿的作用。锰的稳定奥氏体作用为镍的二分之一,而氮的作用比镍大很多,约为镍的40倍左右。因而锰和氮可代镍获得单一的奥氏体组织。但锰的加入会使含铬低的不锈钢耐蚀性降低。同时,高锰奥氏体钢不易加工。因此,在不锈钢中不单独使用锰,只用部分代替镍。 4.碳——在不锈钢中具有两重性 碳在不锈钢中的含量及其分布的形式,在很大程度上左右着不锈钢的性能和组织:一方面碳是稳定奥氏体元素,并作用的程度很大,约为镍的30倍,含碳量高的(马氏体)不锈钢,完全可以接受淬火强化,从而在机械性能方面可大大提高它的强度;另一方面由于碳和铬的亲和力很大,在不锈钢中要占用十七倍碳量的铬与它结合成碳化铬。随着钢中含碳量的增加,则与碳形成碳化物的铬越多,从而显着降低钢的耐蚀性。所以,从强度与耐腐蚀性能两方面来看,碳在不锈钢中的作用是互相矛盾的。在实际应用中,为了达到耐腐蚀的目的,不锈钢的含碳量一般较低,在大多在%左右,为了进一步提高钢的耐腐蚀能力,特别是抗晶间腐蚀的能力,常采用超低碳的不锈钢,含碳量在%甚至更低;但用于制造滚动轴承、弹簧、工具等不锈钢,由于要求有高的硬度和耐磨性,因而含碳量较高,一般均在~%之间。如9Cr18钢等。 5.钛和铌——能防止不锈钢的晶间腐蚀 不锈钢加热到450~800℃时,常常由于在晶界析出铬的碳化物而使晶界附近的含铬量下降形成贫铬区,导致晶界附近的电极电位下降,从而引起电化学腐蚀。这种腐蚀叫做晶间腐蚀。常见的如在焊缝附近的热影响区内发生的晶间腐蚀。而钛和铌是强碳化物形成元素,它与碳的亲和力比铬大得多,钢中加入钛或铌,就能使钢中的碳首先与钛或铌形成碳化物,而不与铬形成碳化物,从而保证晶界附近不致因贫铬而产生晶间腐蚀。因此,钛和铌常用来固定钢中的碳,提高不锈钢抗晶间腐蚀的能力,并改善钢的焊接性能。 钛或铌的加入量要根据含碳量而定,一般为:钛的加入量为含碳量的5倍,铌为碳的8倍。 6.钼和铜——能提高某些不锈钢对某些介质的耐腐蚀性能 钼和铜能提高不锈钢对硫酸、醋酸等腐蚀介质的耐蚀能力。钼还能显着提高对含氯离子的介质(如盐酸)以及有机酸中的耐蚀能力。但含钼的不锈钢不宜在硝酸中应用,含钼的不锈钢在沸腾的65%硝酸中的腐蚀速度比不含钼的增加一倍;铜加入铬锰氮不锈钢中,会加速不锈钢的晶间腐蚀。 钼对钢获得单一奥氏体组织有不利影响,因此在含钼钢中,为了使钢在热处理后具有单一的奥氏体组织。镍

不锈钢材料抗腐蚀性能及耐各种酸碱大全

不锈钢材料抗腐蚀性能及耐各种酸碱大全 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

301 17Cr-7Ni-低碳 与304钢相比,Cr、Ni含量少,冷加工时抗拉强度和硬度增高,无磁性,但冷加工后有磁性。列车、航空器、传送带、车辆、螺栓、螺母、弹簧、筛网 301L 低碳是在301钢基础上,降低C含量,改善焊口的抗晶界腐蚀性;通过添加N元素来弥补含C量降低引起的强度不足,保证钢的强度。铁道车辆构架及外部装饰材料 304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象(无磁性,使用温度-196℃~800℃)。家庭用品(1、2类餐具、橱柜、室内管线、热水器、锅炉、浴缸),汽车配件(风挡雨刷、消声器、模制品),医疗器具,建材,化学,食品工业,农业,船舶部件 304L 18Cr-8Ni-低碳作为低C的304钢,在一般状态下,其耐蚀性与304刚相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀;在未进行热处理的情况下,亦能保持良好的耐蚀性,使用温度-196℃~800℃。应用于抗晶界腐蚀性要求高的化学、煤炭、石油产业的野外露天机器,建材耐热零件及热处理有困难的零件 304Cu

因添加Cu其成型性,特别是拔丝性和抗时效裂纹性好,故可进行复杂形状的产品成形;其耐腐蚀性与304相同。保温瓶、厨房洗涤槽、锅、壶、保温饭盒、门把手、纺织加工机器。 304N1 18Cr-8Ni-N 在304钢的基础上,减少了S、Mn含量,添加N元素,防止塑性降低,提高强度,减少钢材厚度。构件、路灯、贮水罐、水管 304N2 18Cr-8Ni-N 与304相比,添加了N、Nb,为结构件用的高强度钢。构件、路灯、贮水罐 316 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可在苛酷的条件下使用;加工硬化性优(无磁性)。海水里用设备、化学、染料、造纸、草酸、肥料等生产设备;照像、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母 316L 低碳作为316钢种的低C系列,除与316钢有相同的特性外,其抗晶界腐蚀性优。 316钢的用途中,对抗晶界腐蚀性有特别要求的产品。 316L不锈钢不耐盐酸,因为盐酸中的氯离子会和316中的镍发生化学反应,反应变化慢,但是时间长了还是有问题的。如果是用在化工方便,不防考虑内衬塑料一类的材料另外,腐蚀是多样的,硝酸是强氧化腐蚀,316L对硝酸和硫酸是没有问题的 321 18Cr-9Ni-Ti 在304钢中添加Ti元素来防止晶界腐蚀;适合于在430℃-900℃温度下使用。航空器、排气管、锅炉汽包

316L不锈钢耐腐性性能

不锈钢316L的耐腐蚀性能 不锈钢316L的耐腐蚀性能 316L(UNS S31603)是以钼为基础的奥氏体不锈钢,这个不锈钢与常规的铬-镍奥氏体如304 合金相比,具有更好的抗一般腐蚀及点腐蚀、裂隙腐蚀性。这些合金具有更高的延展性、抗应力腐蚀性能、耐压强度及耐高温性能。 一般属性 316(UNS S31600), 316L(S31603), 317L(S31703) 是以钼为基础的奥氏体不锈钢, 与常规的铬-镍奥氏体如304 合金相比,具有更好的抗一般腐蚀及点腐蚀、裂隙腐蚀性。这些合金具有更高的延展性、抗应力腐蚀性能、耐压强度及耐高温性能。在要求更佳抗一般腐蚀和点腐蚀性能的应用中,317L比316或316L更受欢迎,因为317L含钼量达3-4%,316和316L的含钼量只有2-3%。316 合金和316L 和317L铜-镍-钼合金还具有奥氏体不锈钢的典型特征,即良好的加工性及成形性。 耐腐蚀 一般腐蚀 和18-8不锈钢相比,316,316L和317L在大气环境下和其他温和环境下具有更佳的耐腐蚀性。一般来说,不腐蚀18-8不锈钢的媒介,都不会腐蚀含钼的等级。唯一例外的是高氧化性酸,如硝酸,含钼的不锈钢对这种酸的耐腐蚀性较弱。在硫酸溶液中,316和317L比其他铬-镍类型的等级具有更良好的耐腐蚀性。在温度高达120°F(38°C)的条件下,这两个等级对高浓度溶液都有良好的耐腐蚀性。当然,使用期间的测试是必不可少的,因为作业条件和酸性污染物可能严重影响腐蚀速率。浓缩含硫气体时,这两种等级比其他类型的不锈钢具有更好的耐腐蚀性。然而,在这样的应用中,酸浓度对腐蚀速率的影响相当大,这一因素要慎重考虑。含钼不锈钢316和3 17L,对其他各种环境都有一定的耐腐蚀性。以下的腐蚀数据表明,这些合金在沸腾的20%磷酸溶液中,表现出优越的耐腐蚀性。它们也被广泛应用于处理热有机酸和脂肪酸。食物,医药产品的制造和处理,通常用到含钼的不锈钢,因为要尽量减少金属污染。一般来说,在相同的环境条件下,316,316L可以看成和317L的性能相当。但是在可以引起焊接,热影响区晶间腐蚀的环境下,例外。在这样的媒介,316L和317L更常被选用,因为含碳量低,可以提高耐晶间腐蚀性。点腐蚀/隙腐蚀 铬,钼,氮含量增加,可以提高奥氏体不锈钢在氯化物或其他卤素离子环境下的耐点腐蚀/隙腐蚀性。点腐蚀通过PREN(点蚀当量)来计算,PRE = Cr+3.3Mo+16N。316,316L的PREN=24.2, 304的PREN=19.0, 这就反映了316(或316L)耐点腐蚀性比304好。317L,钼含量达31%,PR EN=29.7,说明比316耐点腐蚀性更好。304不锈钢在含100ppm 氯化物的水环境下,具有耐点腐蚀和耐隙腐蚀性。含钼的316和317L,分别在含2000ppm和5000ppm氯化物的水环境下,具有耐点腐蚀和耐隙腐蚀性。尽管这两种合金在海水环境下(氯化物含量19000ppm)使用取得一定成效,但是不建议这样使用。2507合金,钼含量4%,铬含量25%,镍含量7%是专门用于咸水环境的。316,317L只适用某些海洋环境的应用,如船只导轨,海洋附近建筑物外墙等。316,317 L合金在100小时5%盐雾测试中,都没有出现腐蚀(ASTM B117) 粒间腐蚀 316,317L合金暴露在800°F至1500°F (427°C至816°C)温度下,可能引起碳化铬在晶界沉淀。这类不锈钢暴露在苛刻环境下,容易形成粒间腐蚀。但是短暂暴露的时候,如焊接时,317L由于较高的铬,钼含量,比316更能抵御粒间腐蚀。当焊接厚度超过11.1mm时,即使是3 17L合金,也需要做退火处理才行。如果焊接后不能做退火处理或需要做低温应力消除处理时,采用316L和317L可以有效避免粒间腐蚀。在焊态和暴露在800 to 1500°F (427 to 826°C)

相关主题
文本预览
相关文档 最新文档