当前位置:文档之家› 第二次 动量在磁场中的应用-1

第二次 动量在磁场中的应用-1

第二次 动量在磁场中的应用-1
第二次 动量在磁场中的应用-1

动量定理与动量守恒定律与电磁感应-1

【例1】如图所示,质量为m 的导体棒垂直放在光滑的、足够长的U 形导轨的底端,导轨宽度和棒长相等且接触良好,导轨平面与水平面成θ角,整个装置处在与导轨平面垂直的匀强磁场中.现给导体棒沿导轨向上的初速度v 0,经时间t 0导体棒到达

最高点,已知磁感应强度为B ,导轨宽度为L ,导体棒的电阻为r ,其余电阻不计,重力加速度为g ,忽略电路中感应电流之间的相互作用.求:导体棒从底端运动向上运动的最大距离。

【解析】:此题中导体棒在上升过程中,速度在不断减小,对应的电场力也在不断变小,所以导体棒的加速度也不断变化,无论是从简单的运动学公式还是从能量角度解题,几乎是不可能的。

上升过程中,当速度为v 时,r

v

l B mg F 22sin +=θ合

则m r v

l B g a 22sin +=θ瞬 ∴t a v ?=?瞬

∑∑∑∑?+?=?=?t mr v

l B t g t a v 22sin θ瞬

v

v =?∑;

1

sin sin sin t

g t g t g θθθ=?=?∑∑;

∑∑=?=?mr S

l B t v mr v l B t mr v l B 222222。) ∴mr

S

l B t g v 2210sin +=θ

解得2

210)sin (l B m r

t g v S θ-=

【同类题】如图所示,质量为 m 的导体棒垂直放在光滑、足够长的的 U 形导轨底端,导轨宽度和棒长相等且接触良好,导轨平面与水平面成θ 角。整个装置处在与导轨平面垂直的匀强磁场中。现给导体棒沿导轨向上的初速度v 0,经时间t 0,导体棒到达最高点,然后开始返回,到达底

端前已做匀速运动,速度大小为01

4v 。已知导体棒的电阻为R ,

其余电阻不计,重力加速度为g 忽略电路中感应电流之间的相互作用。求:

( 1 )导体棒从开始到返回底端的过程中回路中产生的电能 E 。 ( 2 )导体棒在底端开始运动时的加速度的大小 a 。

( 3 )导体棒上升的最大高度 H 。

【答案】 ( 1 )由能量守恒定律得 222

0001115()22432

v E mv m mv ?=-=

( 2 )设开始时棒上的电流为 I ,到达最高点后再返回底端时棒上的电流

为 'I ,则有: sin mg BIL ma θ+= 其中,0=

E

I E BLv R

=

联立可得:220

sin B L v a g mR

θ=+

棒到达底端时已做匀速运动,则有

sin 'mg BI L θ= 其中,0'

'='4

BLv E I E R = 解得:5sin a g θ=

(3)选沿斜面向上为正方向,上升过成中的加速度为'a ,上升到最高点的

路程为x ,则 22'=-(sin )B L v a g mR

θ+

取一极短的时间t ? ,速度微小变化为v ? ,则有 ='v a t ??

得 22=-(gsin B L v

v t t mR

θ??+?) 其中x v t ?=?,在上升过程中,有:22

=-(gsin B L v t x mR

θ??+?∑∑∑) 即 22

000=-(gsin B L v t x mR

θ-+) 且220

=sin sin 4B L v H x g mR θ

θ= ,解得:2000sin =4v gv t H g

θ-

【例2】(2017年11月浙江选考)【加试题】所图所示,匝数N =100、截面积s =1.0×10-2m 2、电阻r =0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B 1,其变化率k =0.80T/s 。线圈通过开关S 连接两根相互平行、间距d=0.20m 的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m =1.0×10-2kg 的导体棒ab 搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B 2。接通开关S 后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。

(1)求磁感应强度B 2的大小,并指出磁场方向;

(2)断开开关S 后撤去挡条,棒开始下滑,经t =0.25s 后下降了h =0.29m ,求此过程棒上产生的热量。

解( 1 )线圈的感应电动势为 E :B

E N

Ns t t

?Φ?==??

通过导体棒的电流 I 1 :12()

2

E I R r =

+

导体棒对挡条的压力为 0, 则 21B I d mg = 2+2)

0.5T m g R r B Ed

=

=(

(2)S 断开后,则 22()2mg B Id t mv B dh

It q R ?-=?

?=?=

??

22

22hB d v gt Rm =- ab 棒产生的热量 Q :2311

() 2.2510J 22

Q mgh mv -=

-=?

【练习】

1如图所示,在光滑的水平面上,有一垂直

向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a

(v

圈的速度是多少(用v 0和v 表示)?(2)线圈在进入磁场和穿出磁场过程中产生热量之比Q 1:Q 2。

解(1)设线框全部进入磁场中的速度为v 1,线框右边开始进入磁场到全部

进入磁场,由动量定理:

1110

231111Ft mv mv B a Ft I Bat R

=-==

(1) 线框左边出磁场到全部离开磁场,由动量定理:

221

232222F t mv mv B a F t I Bat R

=-==

(2)

解(1)、(2)式,得 0

12

v v v +=

(2)由能量守恒,221000111

()(3)228

Q mv mv m v v v v =

-=-+ 222100111

()(3)228

Q mv mv m v v v v =-=-+

故:

01203+3v v Q Q v v

+= 2 CD 、EF 是水平放置的电阻可忽略的光滑平行金属导轨,

两导轨距离水平地面

a a

高度为H ,导轨间距为L ,在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场(磁场区域为CPQE ),磁感应强度大小为B ,如图所示。导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R 。将一阻值也为R 的导体棒从弯曲轨道上距离水平金属导轨高度h 处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端水平距离x 处。已知导体棒质量为m ,导体棒与导轨始终接触良好,重力加速度为g 。求:

(1)电阻R 中的最大电流和整个电路中产生的焦耳热。 (2)磁场区域的长度d 。

【答案】(1

(2

)222mR d B L =

【解析】(1)由题意,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大 由机械能守恒定律有:2

112mgh mv =

解得:1v =由法拉第电磁感应定律得:1E BLv = 由闭合电路欧姆定律得:2E I R =

联立解得:I =

由平抛运动规律可得:2

21,2

x v t H gt ==

解得:2v =由能量守恒定律可知整个电路中产生的焦耳热为:

2

221211224mgx Q mv mv mgh H =-=-

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

动量和冲量概念详解+典型例题

第二讲动量与能量 命题趋向 “动量和能量”问题是高考的主考题型,出现的频率也是比较高的,是高考的一个热点,专家命题十分重视对主干知识的考查,在命题时不避讳常规试题,也考查我们认为的超纲问题(弹性碰撞)。注重对试题的题境的创新、设问的创新、条件的变化,注重考查学生对概念的理解、规律的应用及学生学习中可能存在的思维障碍。动量、能量考点在历年的高考物理计算题中一定应用,且分值都不低于20分,09年也不例外。 力与运动、动量、能量是解动力学问题的三种观点,一般来说,用动量观点和能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点. 有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化. 考点透视 1、动量 动量观点包括动量定理和动量守恒定律。 (1)动量定理 凡涉及到速度和时间的物理问题都可利用动量定理加以解决,特别对于处理位移变化不明显的打击、碰撞类问题,更具有其他方法无可替代的作用。 (2)动量守恒定律 动量守恒定律是自然界中普通适用的规律,大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及较复杂的相互作用的物体系统类问题的基本规律。 动量守恒条件为: ①系统不受外力或所受合外力为零 ②在某一方向上,系统不受外力或所受合外力为零,该方向上动量守恒。 ③系统内力远大于外力,动量近似守恒。 ④在某一方向上,系统内力远大于外力,该方向上动量近似守恒。 应用动量守恒定律解题的一般步骤: 确定研究对象,选取研究过程;分析内力和外力的情况,判断是否符合守恒条件;选定正方向,确定初、末状态的动量,最后根据动量守恒定律列方程求解。 应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。 2、能量

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

专题一 动量和动量定理的理解和应用

专题一动量和动理定理的理解和应用 一、动量和动量变化量的理解 1.物体质量和速度的乘积叫动量,动量是矢量,方向与速度的方向相同。 2.动量与动能的关系:E k=p2 2m或p=2mE k。 3.动量的变化量Δp=p′-p,Δp也是矢量,其方向与速度变化量的方向相同。若初、末动量在一条直线上,计算时可把矢量运算化为代数运算;若初、末动量不在一条直线上,运用平行四边形定则求解。 [复习过关] 1.(多选)下列关于动量的说法正确的是() A.动量相同的两个物体,质量大的动能小 B.一个物体动量改变了,则速率一定改变 C.一个物体的速率改变,它的动量一定改变 D.一个物体的运动状态变化,它的动量一定改变 解析由动能公式E k=p2 2m 可知A正确;动量为矢量,动量发生变化有可能是速度方向发生变化,B错误;同理C、D正确。 答案ACD 2.一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为() A.大小为3.6 kg·m/s,方向向左 B.大小为3.6 kg·m/s,方向向右 C.大小为12.6 kg·m/s,方向向左 D.大小为12.6 kg·m/s,方向向右 解析选向左为正方向,则动量的变化量为Δp=m v1-m v0=(-0.18×45-0.18×25)kg·m/s=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,故D正确。

答案 D 3.一质量为m的小球以速度v在水平面内做匀速圆周运动,从如图1中的A点转过90°到达B点,小球动量的变化量是多少? 图1 解析如图所示。由于初、末动量不在一条直线上,由平行 四边形定则可知 Δp=mΔv=(m v)2+(m v)2 =2m v。 tan α=m v′ m v =1,α=45°, Δp与A点速度方向的夹角为135°。 答案2m v,与A点速度方向的夹角为135° 二、冲量的理解和计算 1.冲量的公式I=Ft,矢量,方向与力的方向相同,反映了力的作用对时间的积累。 2.冲量的计算: (1)直接由定义式I=Ft计算。 (2)F-t图像中可用图像与坐标轴围成的面积表示。 [复习过关] 4.关于冲量,下列说法正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上的力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 解析力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,选项

电磁场在社会中的应用解读

电磁场在社会中的应用 麦克斯韦全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场” 和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础。 麦克斯韦方程组是麦克斯韦建立的描述电场与磁场的四个方程。 方程组的微分形式,通常称为麦克斯韦方程。在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的。另外,这个理论被广泛地应用到技术领域。 麦克斯韦方程组的积分形式如下: (1) (2) (3) (4) 上面四个方程可逐一说明如下:在电磁场中任一点处 (1)电位移的散度等于该点处自由电荷的体密度 ; (2)磁感强度的散度处处等于零。 (3)电场强度的旋度等于该点处磁感强度变化率的负值; (4)磁场强度的旋度等于该点处传导电流密度与位移电流密度的矢量和; 在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而 完整地概括了电磁场的基本规律,并预言了电磁波的存在。 1 CDMA 技术 CDMA ,就是利用展频的通讯技术,因而可以减少手机之间的干扰,并且可以增加用 户的容量,而且手机的功率还可以做的比较低,不但可以使使用时间更长,更重要的是可以降低电磁波辐射对人的伤害。 CDMA 的带宽可以扩展较大,还可以传输影像呢,这是第三代手机为什么选用CDMA 的原因。就安全性能而言,CDMA 不但有良好的认证体制,更因为其传输的特性,用码来区分用户,防止被人盗听的能力大大地增强。 目前CDMA 系统正快速发展中。 Wideband CDMA(WCDMA)宽带码分多址传输技术,为IMT-2000的重要基础技术,将是第三代数字无线通信系统的标准之一。 1.1 CDMA 技术背景 CDMA 技术的出现源自于人类对更高质量无线通信的需求。第二次世界大战期间因战 争的需要而研究开发出CDMA 技术,其思想初衷是防止敌方对己方通讯的干扰,在战争期间广泛应用于军事抗干扰通信,后来由美国高通公司更新成为商用蜂窝电信技术。1995年,第一个CDMA 商用系统(被称为IS-95)运行之后,CDMA 技术理论上的诸多优势在实践中得到了检验,从而在北美、南美和亚洲等地得到了迅速推广和应用。全球许多国家和地区,包括中国大陆、中国香港、韩国、日本、美国都已建有CDMA 商用网络。 S d t D J s l d H c S )(??+=???S d t B l d H S S ????-=?dV S d D V V S ??=?ρ 0=??S S d B

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

磁场的综合应用

磁场的综合应用 [P3 .] 复习精要 带电粒子在复合场中的运动规律广泛应用于近代物理的许多实验装置中,如质谱仪、回旋加速器、磁流体发电机、电磁流量计等,因此,在复习中应将基础理论知识融入实际应用之中,提高分析和解决实际问题的能力。 一、质谱仪 右图的两种装置都可以用来测定带电粒子的荷质 比。也可以在已知电量的情况下测定粒子质量。 ⑴带电粒子质量m ,电荷量q ,由电压U 加速后垂直 进入磁感应强度为B 的匀强磁场,设轨道半径为r , 则有: 221mv qU =,r m v qvB 2=,可得222r B U m q = ⑵带电粒子质量m ,电荷量q ,以速度v 穿过速度选择器(电场强度E ,磁感应强度B 1), 垂直进入磁感应强度为B 2的匀强磁场。设轨道半径为r ,则有:qE=qvB 1,r m v qvB 2 2=,可得:r B B E m q 21= [P5 .]二、速度选择器 正交的匀强磁场和匀强电场组成“速度选择器”。带电粒子(不计重力)必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq , B E v =。在本图中,速度方向必须向右。 ⑴这个结论与离子带何种电荷、电荷多少都无关。 ⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力 方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。 [P6 .]三、回旋加速器 利用带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关的特点,可以作成回旋加速器。在AA 和A /A /间加交变电压,其周期与粒子运动周期相同。带电粒子在两个D 形金属盒之间运动时,被电场加速;在D 形金属盒内运动时,由于D 形金属盒可以屏蔽电场,因此带电粒子只受洛伦兹力作用而作匀速圆周运动。D 形金属盒的半径与粒子的最大动能对应。用此装置可以将质子加速到约20MeV 。 [P7 .] 06年广东东莞中学高考模拟试题8.回旋加速器是加速带电粒子的装置, 其核心部分是分别与高频交流电两极相连接的两个D 形金属盒,两盒间的狭缝中 形成的周期性变化的匀强电场,使粒子在通过狭缝时都能得到加速.两D 形金属盒处于垂直于盒底面的匀强磁场中,如图所示,设匀强磁场的磁感应强度为B , E

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

动量和动能练习题

动量练习题 例1.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等。两者质量之比 M m 可能为( ) A.2 B.3 C.4 D.5 解析:解法一:两物块在碰撞中动量守恒:12Mv Mv mv =+,由碰撞中总能量不增加有: 21 2Mv ≥ 22121122 Mv mv +,再结合题给条件12Mv mv =,联立有3M m ≤,故只有A B 、正确。 解法二:根据动量守恒,动能不增加,得222(2)222p p p M M m ≥+,化简即得3M m ≤,故A B 、正确。 例2.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m L =,现有质量 10.2kg m =可视为质点的物块,以水平向右的速度02m/s v =从左端滑上小车,最后在车面 上某处与小车保持相对静止。物块与车面间的动摩擦因数0.5μ=,取2 10m/s g =,求 (1) 物块在车面上滑行的时间t ; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度0v '不超过多少。 解析:(1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律有 2012()m v m m v =+ ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有 220Ft m v m v -=- ② 2F m g μ= ③ 解得10 12()m v t m m g μ= +,代入数据得0.24s t = ④ (2)要使物块恰好不从车面滑出,须使物块到车面最右端时与小车有共同的速度,设其为v ',则 2012()m v m m v ''=+ ⑤ 由功能关系有 222012211 ()22 m v m m v m gL μ''=++ ⑥ 代入数据得05m/s v '= 故要使物块不从小车右端滑出,物块滑上小车左端的速度0v '不超过5m/s 。 m 2 m 1 v

动量和动量守恒

第五章 动量和动量守恒 冲量和动量是物理学中的重要概念,动量定理和动量守恒是自然界中最重要、最普遍、最基本的客观规律之一.动量定理和动量守恒定律是可以用牛顿第二定律导出,但适用范围比牛顿第二定律要广。动量守恒定律广泛应用于碰撞、爆炸、冲击;近代物理中微观粒子的研究,火箭技术的发展都离不开动量守恒定律有关的物理知识。在自然界中,大到天体间的相互作用,小到如质子、中子等基本粒子间的相互作用,都遵守动量守恒定律。 第一讲 动量基本知识 动量问题是指与动量有关的问题和用动量观点解决的问题。其中,与动量有关的问题,本专题主要指动量定理和动量守恒定律。用动量观点解决问题,即是指用动量定理和动量守恒定律解决的问题。 1.1动量定理 ⑴动量定理内容:物体所受合外力的冲量等于它的动量变化。 ⑵动量定理公式:12mv mv Ft -=∑,它为一矢量式,在一维情况时可变为代数式运算。 ⑶动量定理的研究对象是质点。它说明的是外力对时间的累积效应。应用动量定理分析或解题时,只考虑物体的始、末状态的动量,而不必考虑中间的运动过程。 ⑷应用动量定理的思路: a. 确定研究对象,进行受力分析; b. 确定初末状态的动量mv 1和mv 2(要先规定正方向,以便确定动量的正负, 还要把v 1和v 2换成相对于同一惯性参照系的速度); c. 利用12mv mv Ft -=∑列方程求解。 1.2动量守恒定律 ⑴内容及表达式: a. 动量守恒定律内容:系统不受外力或所受外力的合力为零时,系统的总动量保持不变。 b. 动量守恒定律的公式:'2'121mv mv mv mv +=+ ⑵说明及注意事项: a.定律适用条件: ① 系统不受外力或所受外力的合力为零时; ② 系统内力远大于外力时(如碰撞、爆炸等); ③ 系统在某一方向上不受外力或所受外力的合力为零时(只在这一方向上动量守恒) b .注意表达式的矢量性: 对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。 c .注意速度的相对性。 所有速度必须是相对同一惯性参照系。 d.注意同时性: 表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相 互作用后同一时刻的瞬时速度。

动量和动量定理的应用

动量和动量定理的应用 知识点一——冲量(I ) 要点诠释: 1. 定义:力F 和作用时间的乘积,叫做力的冲量。 2. 公式: 3. 单位: 4. 方向:冲量是矢量,方向是由力F 的方向决定。 5. 注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力 1. 推导: 设一个质量为的物体,初速度为,在合力 F 的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 2. 动量定理:物体所受合外力的冲量等于物体的动量变化。 3. 公式:或 4. 注意事项: ②式中F 是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F 应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; 规律方法指导 1. 动量定理和牛顿第二定律的比较 (1 )动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2 )由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。 (3 )在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4. 应用动量定理解题的步骤 ①选取研究对象;

②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1. 关于冲量,下列说法中正确的是() A. 冲量是物体动量变化的原因 B. 作用在静止的物体上力的冲量一定为零 C. 动量越大的物体受到的冲量越大 D. 冲量的方向就是物体受力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化, A 对; 只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B 错误;物体所受冲量大小与动量大小无关, C 错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故 D 错误。 答案:A 【变式】关于冲量和动量,下列说法中错误的是() A. 冲量是反映力和作用时间积累效果的物理量 B. 冲量是描述运动状态的物理 量 C. 冲量是物体动量变化的原因 D. 冲量的方向与动量的方向一致 答案:BD 点拨:冲量是过程量;冲量的方向与动量变化的方向一致。故BD 错误。 类型二——用动量定理解释两类现象 2. 玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不 易碎。这是为什么? 解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。 因为杯子是从同一高度落下,故动量变化相同。但杯子与地毯的作用时间远比杯子与水泥地面的作用时间长,所以地毯对杯子的作用力远比水泥地面对杯子的作用力小。所以玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。 3. 如图,把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是() A. 在缓慢拉动纸带时,重物和纸带间的摩擦力大

2019届二轮复习 动量及其守恒定律 作业 (全国通用)

专题二·第二讲 动量及其守恒定律——课后“高仿”检测卷 一、高考真题集中演练——明规律 1.(2017·全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30 kg·m/s B .5.7×102 kg·m/s C .6.0×102 kg·m/s D .6.3×102 kg·m/s 解析:选A 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -m v 0=0,解得p =m v 0=0.050 kg ×600 m/s =30 kg·m/s ,选项A 正确。 2.[多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下 从静止开始沿直线运动。F 随时间t 变化的图线如图所示,则( ) A .t =1 s 时物块的速率为1 m/s B .t =2 s 时物块的动量大小为4 kg·m/s C .t =3 s 时物块的动量大小为5 kg·m/s D .t =4 s 时物块的速度为零 解析:选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。 法二:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s ,A 正确;t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s ,B 正确;物块在2~4 s 内做匀减速直线运动,加速度的大小为a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1) m/s =1.5 m/s ,动量大小为p 3=mv 3=3 kg·m/s ,C 错误;t =4 s 时物块的速率v 4=v 2-a 2t 4=(2-0.5×2) m/s =1 m/s ,D 错误。 3.(2018·全国卷Ⅱ)汽车A 在水平冰雪路面上行驶。驾驶员发现 其正前方停有汽车B ,立即采取制动措施,但仍然撞上了汽车B 。两 车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动 了4.5 m ,A 车向前滑动了2.0 m 。已知A 和B 的质量分别为2.0×103 kg 和1.5×103 kg ,两

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

相关主题
文本预览
相关文档 最新文档