当前位置:文档之家› 聚氨酯的阻燃性机理研究进展

聚氨酯的阻燃性机理研究进展

聚氨酯的阻燃性机理研究进展
聚氨酯的阻燃性机理研究进展

 第22卷第5期高分子材料科学与工程Vo l.22,N o.5 2006年9月POLYM ER M AT ERIALS SCIENCE AND EN GINEERING Sept.2006聚氨酯的阻燃性机理研究进展

袁开军1,江 治1,李疏芬1,周允基2

(1.中国科学技术大学化学物理系,安徽合肥230026; 2.香港理工大学屋宇设备工程系,香港)

摘要:介绍了有关聚氨酯材料的阻燃化技术,着重阐述了聚氨酯的添加型阻燃剂和结构型阻燃剂阻燃机理的研究进展,同时也阐述了阻燃技术今后的发展方向。

关键词:聚氨酯;阻燃剂;阻燃机理

中图分类号:T Q323.8 文献标识码:A 文章编号:1000-7555(2006)05-0001-04

聚氨酯泡沫塑料是一种新型的高分子合成材料,具有优良的物理力学性能、声学性能、电学性能和耐化学性能,尤其是硬质聚氨酯泡沫塑料的热导率特别低,是一种优质的绝热保温保冷材料。聚氨酯泡沫塑料的密度大小及软硬程度均可以随着原料及配方的不同而改变,而且成型施工方便,因此应用范围十分广泛,几乎渗透到国民经济各部门,特别在家具、床具、运输、冷藏、建筑、绝热等部门使用得十分普遍,已经成为不可缺少的材料之一。但是近几十年来,聚氨酯材料的火灾事故频繁发生,材料的安全性问题变得越来越重要。目前许多科学家正致力于聚氨酯阻燃性的改善及技术的实现。阻燃化技术多种多样,已有人做过比较详细的总结[1,2],本文侧重概述阻燃性机理的研究进展。

1 聚氨酯的阻燃性研究

提高阻燃性的途径主要有两条[3]。一是添加含氯、溴、磷等元素的化合物,另一条就是在聚醚或异氰酸酯键上引入氯、溴、磷、锑等原子,得到结构型阻燃材料。

1.1 添加型阻燃剂

在合成聚氨酯泡沫塑料时,添加一些与反应物不起反应的阻燃剂是提高材料阻燃性的有效方法。添加性型阻燃剂,可分为无机阻燃剂和有机阻燃剂,无机阻燃剂主要是锑、铝、硼、磷等化合物,有机阻燃剂主要是磷卤有机酯,卤化脂肪烃,有机磷化合物等。

1.1.1 无机阻燃剂阻燃机理:无机阻燃剂的阻燃机理主要以降低燃烧所产生的热量来达到阻燃的目的。氧化锌,氧化锑,氢氧化铝,硼酸盐是常用的阻燃剂[3]。这些无机化合物可以磨成很细的粉末与组分混合,它们有很高的沸点,不易着火,在材料燃烧时发生复杂的变化。氧化锑阻燃机理是当材料燃烧时,在材料的热分解层上,氧化锑发生熔融(其熔点为650℃)生成一层气体透不过的薄膜,而达到阻燃效果。氢氧化铝分子中含有大量的化学结合的结晶水,当材料燃烧时,结晶水分解放出,同时吸收热量,反应生成的氧化铝和材料燃烧所生成的炭化物结合,形成保护膜,断绝了材料继续燃烧所需的氧气。同时,放出的水蒸汽又稀释了可燃气体,从而达到较好的阻燃效果。

最近不少工作者研究了层状石墨的阻燃机理[4,5]。他们认为,石墨与聚氨酯不发生化学反应,但石墨在200℃~300℃间可形成一种虫洞般结构层包覆处于分解中的聚氨酯,在高温时比较稳定,阻止了热量由热源传到内层,物质由内层传到热源,从而提高了材料的热稳定性。

矿石云母不受热、溶剂以及酸碱的影响,因此Pinto提出将云母和三水合铝一起作为添加剂加入到聚氨酯材料中[6],三水合铝阻燃效果

收稿日期:2004-12-08

 联系人:李疏芬,主要从事燃烧化学和新材料的研制。E-mail:lsf@https://www.doczj.com/doc/fd1168976.html,

显著,但却降低了材料的拉伸强度和硬度,而云母有很好的绝热效应,对材料的力学性能没有影响,是三水合铝的有益补充。

1.1.2 有机阻燃剂阻燃机理:有机阻燃剂的阻燃机理随组分不同而不同。磷化物的阻燃机理是能消耗聚合物燃烧时的分解气体,促进不易燃烧的炭化物生成,阻止氧化反应的进行,从而抑制燃烧的进行。而卤化物则可以抑制聚合物燃烧的基本反应,稀释可燃气体,以达到阻燃目的。

近年来,对磷卤阻燃剂作为添加剂的阻燃机理研究得比较多[7~13]

。M odesti 等认为自由卤素阻燃剂的阻燃机理是可与自由基反应[7],能降低可燃性产物生成的速率,从而降低热量产生的速率,推迟燃烧。他还对磷胺类阻燃剂AP (过磷酸胺)和APM (过磷酸胺和三聚氰胺的混合物,质量比为3∶1)进行了阻燃性的比较

研究,结果表明,包含APM 的聚氨酯泡沫比包含AP 的聚氨酯泡沫有更低的热失重率。M od-esti 等认为,三聚氰胺的存在,促进了胺类化合物的形成,这类产物形成一层绝热层覆盖在聚合物表面,因此阻止了进一步的热分解,导致较低的失重率。同时AP 的存在能促使聚氨酯在燃烧时产生大量高分子量的炭化物,减少小分子量的气体产物,从而产生的烟雾较少。

S .W .zhu 等研究了HPU A -P (含磷丙烯酸酯支化聚氨酯)的阻燃性机理[8]。他们用FT-IR 检测热降解过程,比较阻燃发生的地点,发现含阻燃剂的体系P-O-C 键比C-O-C 键易断裂,同时形成P -O -P 键,从而促进更紧凑的碳链的形成,保护内层聚合物链能承受更强的热攻击。若磷氮同时作用于这个系统,在磷含量0.7%左右时,可达到最好的合成效果,形

成很稳定的炭化物外壳。

Fig .1 Structural of the four types of flame retardants

目前磷卤膨胀型阻燃剂阻燃机理取得了共识[5,9~12]

。受热时,膨胀型材料形成一层炭化物保护层,限制了热量与物质的传递,从而保护了炭层下的基层物质。张静等人采用以磷氮为主要元素的功能性阻燃剂研究了阻燃性聚氨酯软泡[9],泡沫燃烧发烟量大大降低,且无任何热熔融滴落物,即使长时间或重复暴露在火焰中也有很好的耐燃性。因为它在受热过程中发泡胀大而形成耐热的炭化物层,炭化物层通过隔热、隔气和吸附三重作用达到阻燃效果。Duquesne 等人进一步分析了炭化物层的物理化学性

质[5]

,他们认为炭化物层的黏度适中是其阻燃的主要原因。黏度太小,包覆不了内层,黏度太大,承受不住内层扩散气体的压力。

M atuschek 等用热解-色谱-质谱联用的方式详细地研究了四种有机磷卤阻燃剂在阻燃过程中的热分解机理[13]。在以MDI (4,4′-二苯基甲烷二异氰酸酯)为原料合成的聚氨酯中依次加入占总质量10%~11%的T CEP(I)、TCPP (II )、TDCP (III )、DAM P (IV ),其分子式见

Fig .1。

结果表明,在200℃~220℃范围聚氨酯中的阻燃剂首先分解,其分解产物为H 3PO 4、

2

高分子材料科学与工程2006年 

C 3H 5Cl 、C 3H 4Cl 2、C 2H 5Cl 、C 2H 4、HCl 、H 2O 及小分子量的离子。分解生成的磷酸盐和卤代烃热稳定性比较高,一方面对聚氨酯中的氨基甲酸酯、脲基、酯基等基团的分解产物起到稀释作用,另一方面阻燃剂分解吸收了大量的热量,防止了热量的迅速聚集所导致的燃烧。P.S.

Wang 的观点与此类似[14]

,他提出阻燃剂的气相机理和固相机理,气相阻燃机理在于稀释可燃气体和捕获自由基,特别是活性高的氢自由基和氢氧自由基,而固相机理在于促进脱水反应,形成炭化物层,降低固相周围的温度。

评价阻燃剂的阻燃效果,普遍采用氧指数来衡量。氧指数值越大,表明阻燃效果越好。国内张亚峰等研究了用环状三聚磷腈-硅酯(HC-CP )改性聚氨酯[15]

,结果表明,用共混发泡法改性的聚氨酯的氧指数随添加量的增加而增加,空白聚氨酯的氧指数只有16.8,当HCCP 含量为12.81%时,氧指数提高到19.6。用物理浸渍改性的聚氨酯的氧指数有同样的规律,当HC-CP 含量为27.9%时,氧指数达到22.5。当HC-CP 含量为9.96%时,改性后的聚氨酯在空气中

较长时间才可以自熄,随浸渍浓度的增加,自熄时间减少。HCCP 含量为21.65%,需要136s 可以自熄,而当含量达到27.9%时,自熄时间只有46s 。

1.2 结构型阻燃剂阻燃机理

磷酸盐化合物作为聚合物的添加剂起到阻燃作用,已得到广泛的接受。但是在应用时它易通过蒸发,溶剂的作用而失去,降低了阻燃效果。如果磷酸盐作为聚合物结构的一部分,就可以克服以上缺点。基于此点,M equanint 等合成了磷酸盐-聚氨酯交联聚合物

[16]

,其结构式见

Fig.2。这种聚合物由于含磷片段容易分解而有较低的热稳定性,但是它们分解时形成炭化物的产率很高。炭化物的形成可限制聚合物燃烧时产生的可燃性气体的数量,并且它在聚合物的表面上形成一层热绝缘层,炭化物就像是易燃气体的扩散势垒区。含磷量越高,炭化物产率就越高,阻燃效果也就越好。因此Lyon 等通过热分析数据提出了一种可形成炭化物的阻燃剂的阻燃机理模型[17],他认为测量炭化物产率可

以间接比较这类阻燃剂的阻燃效果。

Fig .2 S tructure of the phosphated polyurethane

Schell 等认为使聚合物结构紧凑有助于提高其热性能[18],他们以二溴取代新戊醇(II )和三溴取代新戊醇(III )作为阻燃剂(这两种化合物有很高的热稳定性),将它们引入到氨基甲酸酯键中,见反应式(1)和(2),其产物比无阻燃剂的聚氨酯结构紧凑,可延迟聚氨酯泡沫塑料的

点燃时间,起到了阻燃效果。Pielicho wski 则有不同观点[19],他将3-氯1,2-丙烷醇引入聚合物主链上,经分析这种结构延迟了聚氨酯的固相反应,同时自身产生的CO 2和结晶水通过冷却和稀释作用,推开火焰区,使其远离聚合物表面,

从而切断热量传递。

3

 第5期袁开军等:聚氨酯的阻燃性机理研究进展

2 结束语

近年来,考虑到环保问题,含氮化合物成为一类增长迅速的阻燃剂[20]。它们的主要优点是不引入新的元素,在燃烧时没有氢卤酸生成,发烟量小。它们的阻燃效率介于卤素化合物和三水合铝,氢氧化镁之间。金属氢氧化物分解放出水,对环境无污染,但是其活性低,需要较大量才能起作用,这样会改变聚合物的力学性能。卤素类化合物活性高,但分解产生的氢卤酸毒性大,发烟量也很大。含氮化合物的另一个优点是可回收再利用。因为氮化物阻燃剂有很高的分解温度,低温热氧化不改变其结构。这类化合物的阻燃机理目前还在进一步的研究中。

参考文献:

[1] 付步芳(FU Bu-fang),魏建国(W EI Jian-guo),刘洁

琪(LIU Jie-qi).材料开发与应用(Stud y and Applica-tion s of M aterials),1998,13:42.

[2] 叶诗茂(YE S hi-mao).消防技术与产品信息(Tech-

niques of Preventing Fire an d Information of Products),

2003,4:75.

[3] 方禹生(FANG Yu-sheng),朱吕民(ZH U Lv-ming).

聚氨酯泡沫塑料(Polyureth ane Foams),北京(Beijin g):化学工业出版社(C hem ical Instudy Press),

1994.

[4] Camino G,et al.Proceedin gs ACS Fall M eeting PM SE

Section,2000,83:42.

[5] Duquesne S,Delobel R,Bras M L,et al.Polymer

Deg radation and Stability,2002,77:333.

[6] Pinto U A,et al.European Polym er J ournal,2001,37:

1935.

[7] M odes tio M,Lorenzattio A,Simionio F,et al.Polymer

Dagredation and Stability,2001,74:475.

[8] Zhu S W,Shi W F.Polymer Degradation an d Stability,

2002,75:543.

[9] 张静(ZHANG Jing),袁国渊(YUAN Guo-yuan),刘

鸿慈(LIU Hong-ci).河南化工(Henan Ch emical In-du stry),2001,10:9.

[10] Delobel R,Br as M L,Ouas sou N,et al.Journal of

Fire S cience,1990,8:85.

[11] Bour bigot S,Bras M L,Delobel R,et al.Journ al of

Ch emical S ociety,Farad ay T ransform,1996,92(1):

149.

[12] Duqu esn e S,Bras M L,Bourb igot S,et al.Journal

Applied Polymer S cience,2001,82(13):3262.

[13] M atus chek G.T herm ochimica Acta,1995,263:59.

[14] Wang P S,Ch iu W Y,Chen L W,et al.Polymer

Degr adation and Stability,1999,66:307.

[15] 张亚峰(ZHANG Ya-feng).华南理工大学学位论文

(PhD Thesis of Huan an Ligong University),2002. [16] M equanint K,S an ders on R,Pas ch H.Polymer Degra-

dation and Stability,2002,77:121.

[17] L yon R E.Polymer Degradation and Stability,1998,

61:201.

[18] Schell S H,Gibbons C,Petrella R V.Advances in

U rethane S cien ce and Techn ology,1976,4:198. [19] Pielichow ski K,S lotwin ska D.Polym er Degrad ation

and Stability,2003,80:327.

[20] Horacek H,Grabner R.Polymer Degradation and S ta-

bility,1996,54:205.

The Fire Retardant Mechanism of Polyurethane

YUAN Kai-jun1,JIANG Zhi1,LI Shu-fen1,ZHOU Yin-ji2

(1.Dep ar tment of Chemical Phy sics,Univ ersity of S cience and Technology of

China,H ef ei230026;2.Dep artment o f Build ing Serv ices E ngineering,T he

H ong K ong P oly technic University,H ong K ong)

ABSTRACT:In this paper,different flame retar ding techniques o f polyurethane are critically r e-view ed.T he fire retar dants are intr oduced in the polyurethane either as additives or co mbined w ith the reaction nuclei produced in the initial stag e of poly urethane decomposition process to fo rm mor e stable pro ducts.T he related flam e retar ding mechanisms are discussed in detail.T he techniques for mor e environmentally friendly flame retardants are also briefly mentioned.Results are useful for designing mo re therm ally stable poly urethane-based m aterials.

Keywords:polyurethane;flame retarding mechanism;flam e retardant

4高分子材料科学与工程2006年 

聚氨酯泡沫的阻燃研究

万方数据

万方数据

万方数据

万方数据

聚氨酯泡沫的阻燃研究 作者:孙付宇, 秦泽云, 张美, Fuyu Sun, Zeyun Qin, Mei Zhang 作者单位:孙付宇,秦泽云,Fuyu Sun,Zeyun Qin(中北大学材料科学与工程学院,山西太原,030051),张美,Mei Zhang(中北大学理学院,山西,太原,030051) 刊名: 化工中间体 英文刊名:CHEMICAL INTERMEDIATE 年,卷(期):2011,08(5) 被引用次数:1次 参考文献(27条) 1.刘益军;柏松聚氨酯泡沫塑料的阻燃[期刊论文]-塑料工业 2003(10) 2.袁开军;江治;李疏芬聚氨酯的阻燃性机理研究进展[期刊论文]-高分子材料科学与工程 2006(05) 3.于永忠;吴启鸿;葛世成阻燃材料手册 1990 4.胡源;范维澄;王清安磷腈改性聚氨酯燃烧过程气相中长寿命自由基的研究[期刊论文]-自然科学进展 1999(01) 5.金军聚氨酯硬质泡沫阻燃技术研究及趋势[期刊论文]-安徽冶金科技职业学院学报 2007(04) 6.钟柳;刘治国;欧育湘-种新型含氯的磷-膦酸酯阻燃聚氨酯的阻燃性能 2007(04) 7.欧育湘;韩廷解阻燃塑料手册 2008 8.陈鹤;罗运军;柴春鹏阻燃水性聚氨酯研究进展[期刊论文]-高分子材料科学与工程 2009(06) 9.赵哲;张鹏;夏祖西阻燃聚氨酯软泡的研究进展[期刊论文]-应用化工 2008(05) 10.王升文;秋银香阻燃剂的研究现状和进展 2008(01) 11.孟现燕;唐建华;叶玲聚氨酯泡沫塑料阻燃研究现状[期刊论文]-化学工程与装备 2008(5) 12.杨伟平;戴震;许戈文聚氨酯阻燃的研究进展 2010 13.张理平;王俏不同阻燃剂对聚氨酯软泡阻燃性能影响的研究[期刊论文]-材料开发与应用 2006(03) 14.史以俊;罗振扬;何明含磷阻燃剂对聚氨酯硬泡燃烧特性影响的研究[期刊论文]-聚氨酯工业 2009(05) 15.T.C.Chang;Y.S.Chiu;H.B.Chen Degradation of phosphorus-containing polyurethanes 1995 16.张蕾;吴晓青;张文才聚氨酯树脂在环保方面的应用与研究[期刊论文]-中国胶粘剂 2008(02) 17.郝冬梅;刘彦明;林倬仕无卤膨胀性阻燃剂ANTI-2阻燃聚氨酯弹性体的研究 2008 18.W.Wei;X.Peng Preparation of aqueous polyurethane flameretardant[期刊论文]-Textile Auxiliaries 2004(05) 19.刘斌;杨小燕聚氨酯材料的阻燃与防火[期刊论文]-江苏化工 2003(06) 20.陈雷;高增明三(-缩二丙二醐亚磷酸酯阻燃剂的应用 1991(04) 21.韦玮;王建明新型阻燃聚醚多元醇的合成研究 1998(01) 22.高明;王涛;吴发超氨基树脂型膨胀阻燃剂处理软质聚氨酯泡沫塑料的阻燃性能[期刊论文]-高分子材料科学与工程 2009(01) 23.罗振扬;史以俊;何明匀泡剂对阻燃硬质聚氨酯泡沫塑料燃烧性能的影响[期刊论文]-中国塑料 2009(01) 24.付步芳;魏建国;刘洁琪硬质聚氨酯泡沫塑料的阻燃技术[期刊论文]-材料开发与应用 1998(04) 25.张骥红;陈峰聚氨酯泡沫阻燃剂浅谈[期刊论文]-聚氨酯工业 2001(4) 26.张田林;李再峰纳米氢氧化镁补强阻燃聚氨酯弹性体[期刊论文]-弹性体 2004(05) 27.K.Kuleszal;K.Pielichowski;Z.Kowalski Thermal characteristics of novel NaH2PO4/NaHSO4 flame retardant system for polyurethane foams[外文期刊] 2006(02)

聚氨酯的燃烧和阻燃

聚氨酯的燃烧和阻燃 聚氨酯材料是由碳—碳键为基本结构组成的有机高分子聚合物,属于可燃物质。用聚氨酯材料生产的各类产品与制品,在人们的社会活动中随处可见。由于它们处在各种各样的环境之中,引发火灾的几率较高。由各种引火源引发聚氨酯材料的燃烧以及伴随燃烧产生的烟雾毒性,已成为消防安全密切关注的重点之一,对有关聚氨酯产品及生产制定了日益严格的阻燃标准和法规。 同时,聚氨酯产品的生产所使用的大量原料多属于有机化合物和聚合物,也同属于可燃物之列,而在生产中使用的许多原料助剂,如有机溶剂及其配置的涂料、脱模剂等,因闪点、着火点较低,都存在不同程度的燃烧隐患;此外,在大型软质聚氨酯块泡的生产中,由于使用高水量配方生产低密度泡沫体产生的热量多而泡沫体的散热性差,因此在贮存过程中,由泡沫体产生自燃而引发的火灾也曾有发生。 由聚氨酯泡沫体等燃烧产生的火灾危害,不仅来源于燃烧本身产生的大量热辐射而引发的火焰的蔓延和扩大,同时还来源于燃烧时产生的烟雾和分解释放出来的诸多有毒气体。许多火灾报告指出:由燃烧烟雾和有毒气体造成人员伤亡的比例远远高于真正燃烧本身造成的伤亡人数。因此,为保证生产过程和使用过程中的防火安全,必须系统地研究该类产品的燃烧机理、检测方法以及阻燃办法,制定产品的生产、使用安全标准和法规。下面,洛阳天江化工新材料有限公司将就聚氨酯泡沫的燃烧机理以及阻燃方法这两方面为大家进行简单介绍。 一、燃烧机理 在聚氨酯产品中,由于聚氨酯泡沫塑料的质量轻、体积大且传热系数低、最易发生燃烧,因此将它作为燃烧行为的研究对象最具有代表性。 一般物质的燃烧行为基本可分为三个阶段:第一个阶段为物质引燃和火焰蔓延的初期阶段;第二个阶段为物质的完全燃烧的发展阶段;第三个阶段则为火焰衰减、燃烧熄灭的最终阶段。洛阳天江化工新材料有限公司在这里告诉大家,物质引燃的难易程度是物质燃烧行为的第一表征,它与物质本身的化学结构、组成、传导能力、热分解温度以及反应所产生的气体和液滴的助燃程度等因素有关。此外,还有一点需要注意的是,不同的物质有不同的闪点和着火点,闪点和着火点越低的物质越容易燃烧。

聚氨酯泡沫塑料的火灾危险及消防对策

聚氨酯泡沫塑料的火灾危险及消防对策【摘要】通过对聚氨酯泡沫塑料火灾危险性的分析,结合典型火灾案例,提出了在冷冻、冷藏库(间)建筑和通风、空调管道等部位使用聚氨酯泡沫塑料作为保温隔热材料时,应在技术上和管理上采取的消防安全管理对策。 【关键词】聚氨酯;火灾危险性;消防管理对策 聚氨酯泡沫塑料是聚氨基甲酸乙酯树脂(polyurethaneresin)泡沫塑料的简称,其 导热率仅为软木或聚苯乙烯泡沫塑料的40%左右,有足够的强度、耐油性和粘接能力,是优良的隔热材料,广泛应用于医用包扎品、工业环境实验室、建筑通风、空调管 道以及食品行业冷冻、冷藏库(间)作为保温隔热材料,坚硬性的聚氨酯泡沫塑料还可以用于建筑物绝缘结构。但是,在使用中如不加以注意,极易引发火灾事故。 2000年4月22日,山东省青州市的丰旭实业有限公司肉食鸡加工车间发生火灾,造成38人死亡、20人受伤的特大恶性事故,经公安消防机构查明,火灾原因就是日光灯镇流器过热,引燃聚氨酯泡沫塑料保温材料所致。 1聚氨酯泡沫塑料的火灾特性 聚氨酯泡沫塑料是以聚醚或聚酯树脂为主要原料,与异氰酸酯定量混合,进行发泡 制成的一种发泡塑料。聚氨酯泡沫塑料在热力学方面的参数在许多文献资料上都未 提及。

1.1测试数据 公安部四川消防科研所对从一起火灾现场提取的聚氨酯泡沫塑料进行的测试分析[1],有助于我们充分认识聚氨酯泡沫塑料的火灾危险性。 对试样用水平燃烧法测试燃烧速度,试件尺寸125mm*12mm*12mm,在燃烧过程中有大量的烟产生,并有卷曲,试件燃烧长度超过100mm,试件燃烧速度为256mm/min(按GB2408-08)。 测试试件氧指数数值,试件尺寸150mm*6mm*6mm,测试结果为23.4。 对试件进行热重分析,温升速度40C/min,空气流量40ml/min,试件质量2.4141mg。试件在达到85C前失重约1.6%(可能为吸附湿气);在达到116C时开始失重,到398C 时共失重44.1%,其中250-341C期间分解剧烈;在660C时全部烧尽,无残留物。 1.2分析结构 通过对以上数据的分析,可以得出以下结构:

聚氨酯阻燃剂的特性和行业分类应用简介

和其他大多数高分子材料一样,聚氨酯不耐热,容易被点燃,产生毒性气体,危害人身财产安全。所以,一般通过各种方法,使聚氨酯制品具有一定的阻燃性。添加阻燃剂是最常用的方法,阻燃剂是聚氨酯材料的重要助剂。 一、卤代磷酸酯 卤代磷酸酯类化合物是聚氨酯泡沫塑料中应用广泛、效果显著的一大类添加型有机阻燃剂。多数卤代磷酸酯常温下有液态,使用方便,与多元醇有良好的相容性,且价格适中。卤代磷酸酯阻燃剂的品种非常多,我们就对常用的几种分别作一下介绍。 1、三(2-氯乙基)磷酸酯 三(2-氯乙基)磷酸酯(TCEP)是一种添加型阻燃剂,在聚氨酯软泡、硬泡生产中都能使用。但以用于硬泡效果更好,这是因为硬泡的闭孔率高,透气性小,阻燃剂挥发较困难,阻燃效果维持的比较长久。它的缺点是用量较大,如果用量超过15%时,泡沫塑料的物性则有下降现象。 TCEP广泛用于阻燃聚氨酯泡沫塑料,在聚氨酯硬泡或半硬泡中添加10%TCEP可获得显著的效果。使用TCEP降低硬泡的脆性,而不削弱泡沫的抗蚀性。当TCEP用于聚氨酯软泡,例如阻燃改性高回弹泡沫,TCEP可与三聚氰胺结合使用。TCEP可作为一个单独组分在发泡过程中直接注入混合头,也可在发泡前与聚醚多元醇混合,同时可降低多元醇组分黏度。 TCEP是应用最早、最广也是最便宜的阻燃剂,它具有较好的抗水解性和较高的阻燃效率,但容易挥发损失,阻燃持久性较差。 生产厂家:美国雅保(Antiblaze 100),德国科莱恩,美国康普顿集团公司,江都大江,江苏雅克等。 2、三(2-氯丙基)磷酸酯 三(2-氯丙基)磷酸酯(TCPP)是一种添加型阻燃剂,兼具有良好的增塑作用。由于分子内同时含有磷、氯两种元素,阻燃性能显著,同时还有增塑、防潮、抗静电等作用。因为磷氯含量比TCEP低,因此它的阻燃效果也相对减弱。 TCPP主要用于聚氨酯泡沫塑料的阻燃剂。一般较多的用于聚氨酯硬泡及PIR硬泡中,也用于聚氨酯软泡。用于聚氨酯软泡时持久性不好,但不会使泡沫发生焦烧现象。 生产厂家:美国雅保(Antiblaze TMCP及Antiblaze 80),德国科莱恩,德国拜耳(Levagard PP),江都大江,江苏雅克,张家港常余等。 二、磷酸酯类阻燃剂 磷酸酯的品种较多,许多磷酸酯可用作聚氨酯的阻燃剂。但磷酸酯同时具有增塑效应,

聚氨酯泡沫塑料的阻燃

聚氨酯泡沫塑料的阻燃 刘益军柏松 (江苏省化工研究所南京210024) 摘要:简要介绍了对多孔性材料聚氨酯泡沫塑料进行阻燃处理的重要性,并对各类阻燃剂的阻燃机理以及聚氨酯泡沫塑料阻燃研究领域的技术进展进行了介绍。较全面地综述了改善软质和硬质聚氨酯泡沫塑料阻燃性能的方法,包括:各种添加型阻燃剂和反应型阻燃剂的特点及使用效果,不同阻燃剂的协同作用,引入异氰脲酸酯基团对硬泡阻燃性能提高,采用阻燃剂溶液浸渍开孔泡沫塑料等。 关键词:聚氨酯;泡沫塑料;阻燃剂;阻燃 聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,未经阻燃处理的聚氨酯是可燃物,遇火会燃烧并分解,产生大量有毒烟雾,给灭火带来困难。特别是聚氨酯软泡开孔率较高,可燃成分多,燃烧时由于较高的空气流通性而源源不断地供给氧气,易燃且不易自熄。聚氨酯泡沫塑料的许多应用领域如建筑材料、床垫、家具、保温材料、汽车座垫及内饰材料等,都有阻燃要求。国外对聚氨酯泡沫材料的阻燃相当重视,颁布了许多有关阻燃的法规和阻燃标准。在我国,对用于飞机、轮船、铁路车辆、汽车、其它重要场所及设施的聚氨酯泡沫,先后都提出了阻燃要求,且很多已采用了阻燃级聚氨酯泡沫[1]。 所谓阻燃,实际上指达到某种规范或某种试验方法的一个具体标准,塑料的“阻燃”或“难燃”一般只是对于小火而言,在大火中仍能燃烧。不过阻燃性能好的泡沫塑料遇小火年自熄,不易引起火灾;在火灾中,由于燃烧性能的降低,可降低火灾蔓延及产生刺激性有毒烟雾的危险。 已有大量的文献综述阻燃剂在聚氨酯泡沫塑料中的应用[1~3],现根据部分文献数据,对聚氨酯泡沫塑料的阻燃技术作一简单的综述。

1 阻燃原理 一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。 在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。 含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性[1]。 典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。 氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。 2 添加阻燃剂制备阻燃泡沫塑料

硬质聚氨酯泡沫塑料.docx

硬质聚氨酯泡沫塑料 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受到限制。1.硬质聚氨酯泡沫塑料的主要性能 硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5 s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1 各种绝热材料性能 项目聚氨酯硬质泡沫塑料聚苯乙烯泡沫玻璃聚氯乙然泡沫软木 密度/kg·m -3 50 50 160~190 60~70 240~250

导热系数/W·(m·K) -1 0.023~0.026 0.043 0.055~0.060 0.043 0.058 耐热度/℃+130 +75 +400 +80 +100 耐寒度/℃-110 -80 -270 -35 吸水率体积/%0.2 0.4 <0.2 0.3 压缩强度/MPa ≥0.2 0.18 >0.5 0.18 自熄性自熄易燃不燃易燃燃烧 2.硬质聚氨酯泡沫塑料原料的性质、规格与选择 硬质聚氨酯泡沫塑料是以多元羟基化合物和异氰酸酯为主要原料。在催化剂、发泡剂的作用下,经加成聚合发泡而成。主要反应力异氰酸酯与多元羟基化合物中的羟基反应生成聚氨酯。催化剂主要有叔胺和有机锡等。发袍反应为异氰酸酯与水反应,产生二氧化碳气体和脲。反应产物脲及叔胺等物对此反应有催化作用。反应所产生的二氧化碳气体被用来发泡。但水发泡的最大缺点是耗费昂贵的异氰酸酯。也常用低沸点氟氯烷化合物(即F-113等),利用聚合过程中的反应热汽化,使物料在逐步固化前形成泡沫,发泡剂用量可根据所需泡沫体密度来决定。 (1)聚酯。硬质泡沫聚氨酯所用的聚酯,其羟值通常控制在300~500 之间。456聚酯指标如下。 (2)Ⅲ型阻火聚醚:是三羟基含磷含氯阻火聚醚。由于分子结构中引入

聚 氨 酯

聚氨酯 【摘要】:聚氨酯硬泡大很多应用场合都是阻燃要求的,20年来中国相应的材料阻燃标准在不断修订,并逐步与国际标准接轨。通过对以往研究工作的总结,本文就聚氨酯硬泡在实施《建筑材料燃烧性能分级方法》(GB8624-2006)后应向什么方向发展,提出了几点建议。[关键词]:阻燃标准;聚氨酯硬泡;阻燃方向 聚氨酯硬泡20余年执行的相关阻燃标准 1.1《建筑材料燃烧性能分级方法》(GB8624-1997)对于PU硬泡B1等级的严格要求近20年来,我国聚氨酯工业发展很快。由于该产品具有非常低的导热系数及透水蒸汽性,质轻、比强度高,加之其与纸、金属、木材、水泥板、砖墙塑料板、沥青毡等具有很强的粘接性,不需另加其它粘合剂等优点,已为众多的工业及民用部门所采用。但是,聚氨酯与其它有机高分子材料一样是一种可燃性较强的聚合物。硬质聚氨酯泡沫塑料的密度小,绝热性能好,与外界的暴露面比其它材料大,因此更容易燃烧。随着聚氨酯泡沫塑料的广泛运用,其材料的耐燃、防火等问题已成为迫切需要解决的重要课题。在我国,由于不慎引燃聚氨酯泡沫塑料而导致火灾的事件时有发生,给聚氨酯泡沫的应用带来了一些负面影响。在国外许多专家甚至认为这个问题是硬质聚氨酯泡沫塑料今后能否继续发展的关键之一。因此硬质聚氨酯泡沫塑料的耐燃性、安全性,已成为能否用于建筑材料的重要技术指标。许多国家的建筑立法机构都制定了一系列难燃法规,与此同时又相应的制定了一系列对聚氨酯泡沫塑料燃烧性能的测试方法。我国从1980年开始制定了4项塑料燃烧性能试验方法的国家标准,即氧指数法(GB2406-1980)、炽热棒法(GB2407-1980)、水平燃烧法(GB2408-1980)、垂直燃烧法(GB2409-1980),特别是氧指数法(GB2406-1980)是我国适用于硬质聚氨酯泡沫塑料燃烧性试验的第1个国家标准。1984年上海市公安局颁布了《关于生产、销售、使用高分子建筑材料的管理规定》,其中明确指出:硬质聚氨酯泡沫塑料使用在建筑上,氧指数不得小于26%。相当多的省市部门及公安消防机构参照此规定陆续颁布了各地方和部门的法规。研制氧指数大于26%的硬质聚氨酯泡沫塑料,也引起了国内相关研究部门的普遍重视。国家科委在“六五”、“七五”期间将硬质聚氨酯泡沫塑料氧指数大于26%的指标列为国家攻关课题,并在“七五”攻关成功。这对安全使用硬质聚氨酯泡沫塑料,减少和消除火灾事故,起到了积极的作用。但随着我国科学技术不断提高,生产、使用硬质聚氨酯泡沫塑料的有关单位和公安消防部门的工作人员逐渐认识到,其是一种有机高分子材料,即使氧指数达到26%或者更高,并非意味着在火中不燃烧。高氧指数可通过提高阻燃剂的含量来达到,而大量阻燃剂的使用却又带来了烟雾大、

聚氨酯研究进展

聚氨酯树脂的研究进展 摘要:本文综述了聚氨酯目前研究热点,其中包括氟硅改性、水性化、非异氰酸酯聚氨酯和聚氨酯纳米复合材料的研究,指出了聚氨酯未来研究方向。 关键词:聚氨酯;氟硅改性;水性;非异氰酸酯;纳米复合材料 Research progress of polyurethane Abstract:This article reviews the current research focus of polyurethane, including fluorine-modified, water-based, non-isocyanate polyurethane and polyurethane nano-composites,demonstrating future research directions of polyurethane. Keyword: polyurethane; fluorine-modified; non-isocyanate; nano-composites 引言 聚氨酯树脂(PU)是一种重要的合成树脂,它具有优良的性能,如硬度范围宽、强度高、耐磨、耐油、耐臭氧性能优良,且具有良好的吸振,抗辐射和耐透气性能,具有高拉伸强度和断裂伸长率,良好的耐磨损性、抗挠曲性、耐溶剂性,而且容易成型加工,并具有性能可控的优点;它的产品形态多样,如泡沫塑料、弹性体、涂料、胶黏剂、纤维素、合成革等;因此广泛应用于交通运输、建筑、机械、家具等诸多领域。 1.氟硅改性 氟硅改性聚氨酯是目前研究的热点之一,氟硅具有独特的化学结构,其表面能较低,因此在成膜过程中向表面富集,可赋予改性聚合物涂膜优良的耐水、耐油污、耐候、耐高低温使用性能以及良好的机械性能。常有两种: 一种方法是将含有羟基或胺基的硅氧烷树脂或单体与二异氰酸酯反应,将有机硅氧烷引到水性聚氨酯中,利用硅氧烷的水解缩合交联来改善聚氨酯的性能;另一种方法是在环氧硅氧烷作为后交联剂引入到体系中,形成环氧交联改性聚氨酯体系。Cheng(Cheng, Zhang et al. 2005)等人基于聚丙二醇(PPG),聚醚接枝聚硅氧烷(PE- PSI),2,4 - 甲苯二异氰酸酯(TDI),二羟甲基丙酸(DMPA)和1,4 -丁二醇(BDO)合成一个新颖的硅氧烷改性聚氨酯(PE- PSI)。Luo(Luo, Huang et al. 2010)等人基于异佛尔酮二异氰酸酯(IPDI),以二端羟烷基聚[甲基-(3,3,3- 三氟丙基)]硅氧烷(PMTFPS)为软段,聚己内酯(PCL)的混合软段的基础上,合成氟-硅氧烷改性聚氨酯系列。Linlin(Linlin, Xingyuan et al. 2007)等以2,4-甲苯二异氰酸酯、二端羟丁基聚二甲基硅氧烷(DHPDMS)、聚四氢呋喃醚二醇、1,4-丁二醇为主要原料合成了系列的有机硅改性聚氨酯(Si-PU)。硅烷改性聚氨酯的研究十分活跃,以聚氨酯为主链通过硅烷封端改性,是一个重要的发展方向。Mahdi(Mahdi, Syed Z. Rochester Hills et al. 2001)通过硅烷偶联剂改性聚氨酯,提高了聚氨酯密封胶对玻璃的粘接性,而且不用底涂剂,甚至可胶接油漆面和有机物污染的表面。Sun, DX(Sun, Miao et al. 2011)等用硅烷偶联剂(SiCA)改性功能化的纳米二氧化硅聚氨酯,提高其热稳定性、

硬质聚氨酯泡沫塑料

编号:SY-AQ-06349 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 硬质聚氨酯泡沫塑料 Rigid polyurethane foam

硬质聚氨酯泡沫塑料 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 硬质聚氨酯泡沫塑料是一种绝热防腐高分子合成材料,用作防腐保温保冷层,它导热系数低、密度小、强度高、吸水性小、绝热、绝缘、隔音效果好、化学稳定性能好,作为一种绝热材料,广泛应用于石油、化工、运输、建筑、日常生活等领域,如输油和辅热水管道、油库、贮罐、冷库、空调、冰箱、集中供热供汽管道等设施的保温保冷。有数据显示,用硬质聚氨酯泡沫塑料保温的管道比传统的管道可减少热损失35%,节约了大量能源,减少了维修费用。另外,它还具有优良的防水防腐性脂,可直接埋入地下或水中,使用寿命可达20~30年以上,使用温度-190~120℃。 聚氨酯泡沫塑料有聚酯与聚醚型之分。通常聚酯在强度、耐温性能等方面较聚醚型为好,但因聚酯原料成本高,所以在应用上受到限制。 1.硬质聚氨酯泡沫塑料的主要性能

硬质聚氨酯泡沫塑料1000℃火焰温度下燃烧5s后离火,在1~2s内自熄。耐浓度小于10%的无机酸,不耐高浓度的无机酸;耐中等浓度的碱液;耐汽油、机油,耐酮、耐酯,不耐醇。 各种绝热材料性能对比见表5—1。 表5-1各种绝热材料性能 项目 聚氨酯硬质泡沫塑料 聚苯乙烯 泡沫玻璃 聚氯乙然泡沫 软木 密度/kg·m-3 50 50 160~190 60~70

聚氨酯泡沫阻燃

聚氨酯泡沫塑料的阻燃 阻燃原理 一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。 在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。 含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性。 典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。 氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。 添加阻燃剂制备阻燃泡沫塑料 人们发现,含磷、氮、卤素、锑、铝、硼等元素的塑料制品具有较好的阻燃性能。一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。 一用于聚氨酯的阻燃剂有非反应性添加型阻燃剂及反应型阻燃剂两类。 A 添加非反应性阻燃剂 聚氨酯泡沫的阻燃剂以液态阻燃剂为主。液体阻燃剂主要是含磷、氯、溴元素的有机化合物,如三(2-氯丙基)磷酸酯(TCPP)、三(2-氯乙基)磷酸酯(TCEP)、三(二氯丙基)磷酸酯(TDCPP)、四(2-氯乙基)亚乙基二磷酸酯、甲基膦酸二甲酯(DMMP)、多溴二苯醚,等等。固态阻燃剂如三聚氰胺、三氧化锑、氢氧化铝、硼酸盐、聚磷酸铵、三(2,3-二溴丙基)异三聚氰胺酯等也用于聚氨酯泡沫塑料的阻燃。 B添加液态有机阻燃剂 在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯,如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3-二氯丙基)磷酸酯,可使硬泡的氧指数达26;添加15%该阻燃剂可使软泡的阻燃性能达到UL94 HF-1或ASTM D1692阻燃要求。 卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚氨酯软泡的阻燃。典型的产品有:四(2-氯乙基)二亚乙基醚二磷酸酯,含磷12%、氯27%,日本进口产品牌号CR505;四(2-氯乙基)亚乙基二磷酸酯,含磷13%、氯30.5%,美国进口产品牌号Thermolin101。其它产品如四(1,3-二氯-2-丙基)-2,2-二(氯甲基)-1,3-亚丙基二磷酸酯、四(1,3-二氯-2-丙基)-亚乙基二磷酸酯、四(2,3-二溴丙基)-1,2-亚乙基二磷酸

聚氨酯阻燃等级

引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB / T 2406 —93塑料燃烧性能试验方法氧指数法 GB / T 2408 —80塑料燃烧性能试验方法水平燃烧法. GB / T 4609 —84塑料燃烧性能试验方法垂直燃烧法 GB / T 5454 —85纺织织物燃烧性能测定氧指数法 GB / T 5455 —85纺织织物阻燃性能测定垂直法 GB / T 5464 —85建筑材料不燃性试验方法 GB / T 8332 —87泡沫塑料燃烧性能试验方法水平燃烧法 GB / T 8333 —87硬泡沫塑料燃烧性能试验方法垂直燃烧法 GB / T 8625 —88建筑材料难燃性试验方法 GB / T 8626 —88建筑材料可燃性试验方法 GB / T 8627 —88建筑材料燃烧或分解的烟密度试验方法 GB / T 8629 —88纺织品试验时采用的家庭洗涤及干燥程序 GB / T 11785 —89铺地材料临界辐射通量的测定辐射热源法 GB / T14402 —93建筑材料燃烧热值试验方法 GB / T 14403 —93建筑材料燃烧释放热量试验方法3建筑材料燃烧性能的级别和名称 建筑材料燃烧性能的级别和名称见表1。 表1燃烧性能的级别和名称 4不燃类材料(A级) 4. 1 A级匀质材料 按GB/T 5464进行测试,其燃烧性能应达到: a)炉内平均温升不超过50 C; b)试样平均持续燃烧时间不超过20s; c)试样平均质量损失率不超过50%。 4. 2 A级复合(夹芯)材料 达到下述各项要求的材料,其燃烧性能定为A级。 a)按GB/T 8625进行测试,每组试件的平均剩余长度》35 cm(其中任一试件的剩余长度>20cm),且每次测试 的平均烟气温度峰值w 125C,试件背面无任何燃烧现象; b)按GB/T 8627进行测试,其烟密度等级(SDR)w 15; c)按GB /T 14402和GB /T 14403进行测试,其材料热值w 4. 2MJ / kg,且试件单位面积的热释放量w 16. 8MJ/ m2; d)材料燃烧烟气毒性的全不致死浓度LCo > 25mg/L。 5可燃类材料(B级) 5. 1 B1级材料 达到下述各项要求的材料,其燃烧性能定为B1级。 a)按GB/T 8626进行测试,其燃烧性能应达到GB /T 8626所规定 的指标,且不允许有燃烧滴落物引燃滤纸 的现象; b)按GB/ T 8625进行测试,每组试件的平均剩余长度》15 cm(其中任一试件的剩余长度>0cm),且每次测试 的平均烟气温度峰值w 200 C; c)按GB/T 8627进行测试,其烟密度等级(SDR)w 75。 精选范本,供参考!

B1级聚氨酯保温板简介

B1级聚氨酯保温板简介 概述 聚氨酯保温板是由组合聚醚和聚合MDI(多苯基多亚甲基多异氰酸酯)进行发泡反应而制得,经GB8624-2012标准检验判定阻燃等级为B1级的硬质聚氨酯泡沫塑料有机保温材料。主要用于建筑物围护节能和大型冷库、冷链保温领域。同时,也可用于工业厂房、船舶、车辆、军工、水利建设等领域的防火保温隔热。 现行国家标准GB 8624-2012《建筑材料及制品燃烧性能分级》将建筑材料按阻燃能力高低依次划分为A级(不燃材料)、B1级(难燃材料)、B2级(可燃材料)、B3级(易燃材料)。根据不同的应用场合,建筑材料选用时应满足国家、地方法律法规要求的最低阻燃等级要求。 聚氨酯保温板由于其有机材料的特性,在现行的技术条件下,最高只能达到阻燃等级B1级的判定。且B1级聚氨酯保温板的研发和制造在技术上有瓶颈和难处,目前国内只有少数几家大的生产企业能够做到。大部分中小企业所生产的聚氨酯保温板只能达到B2级甚至是B3级。 2研发途径 提高聚氨酯材料的阻燃性能通常有以下三种方法:1、添加阻燃剂,主要有磷系、卤素系类的阻燃剂;2、提高配方中异氰酸根指数,即增加黑料(MDI)的用量;3、通过分子结构改性技术,增加材料阻燃性能。 外加阻燃剂容易造成聚氨酯泡沫塑料燃烧时产烟量和毒性增大,且随着时间的推移,阻燃剂容易迁移失效。而聚合MDI的成分单一,黏度较大,可调整的余地很小。因此聚氨酯泡沫塑料性能的改进主要是通过调节聚氨酯硬泡组合聚醚的组分来实现,聚氨酯硬泡组合聚醚性能将直接影响聚氨酯硬泡生产的工艺性能和最终产品的物理性能与使用特性,泡沫导热系数、密度、强度、硬度、阻燃性能等均可以随聚氨酯硬泡组合聚醚原料配方的不同而改变。 3技术特点

聚氨酯泡沫塑料火灾危险性分析极其防火措施

聚氨酯泡沫塑料 火灾危险性分析及其防火措施 合肥市公安消防支队赵治安鲁广斌 摘要聚氨酯泡沫塑料是一种高分子合成材料,应用范围十分广泛,但聚氨酯泡沫塑料在 火灾时能放出使人窒息死亡的毒气,特别是近年来已在一些场所造成重大的人员伤亡事故。文章通过对聚氨酯泡沫塑料的燃烧过程及燃烧产物的毒性分析,探讨聚氨酯泡沫塑料的防火措施,并首次提出聚氨酯泡沫塑料在火灾初期对人体的伤害以及如何在一些场所有效、安全、合理地使用这一材料。 关键词聚氨酯燃烧火灾毒性阻燃措施 The toxicity of urethane foams fire hazards and the fire-protection measures ZHAO Zhi-an Lu Guang-bin Lu Jian (Hefei Fire Brigade,Hefei 230061,China) Abstract:The urethane foams is a kind of high molecular synthetic material and can be used widely.But being burned,it can get out the poison suffocatingly gas . Especially it lead to some accidents with a lot of peoples death. The thesis research the technology of fire-protection for urethane foams by the combustion process of the urethane foams and the combustion products of it. The thesis raise the combustion products of the urethane foams injury to people firstly,and the ways to use it effectively,safely and reasonably . Key words: urethane foams;synthesis combustion;fire;toxicity;measure;

聚氨酯泡沫火灾危险性及防火对策(正式版)

文件编号:TP-AR-L4174 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 聚氨酯泡沫火灾危险性 及防火对策(正式版)

聚氨酯泡沫火灾危险性及防火对策 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、火灾危险性 “聚氨酯”全称为聚氨基甲酸酯,用这种材料做 成的泡沫塑料具有优越的绝缘、保温和隔音性能。聚 氨酯泡沫塑料,俗名海绵塑料(以下简称聚氨酯泡 沫),是生产、生活中广泛利用的畅销制品。聚氨酯 泡沫成品是多孔性的固体,导热性极差,容易造成热 量积聚。硬质泡沫塑料的闪点为310℃,自燃温度为 416℃,每燃烧1千摩尔泡沫塑料可放出3073.53KJ 的热量。未经阻燃处理的成品,氧指数为20左右;经 阻燃处理的在23~27之间,个别也可达30左右。在

200℃时发生热降解,放出CO和醇类等低分子物。 对于软质聚氨酯泡沫,根据火险参数差热分析的测定结果,其初始分解温度为260℃以上,激烈分解温度为280℃,自燃温度在330℃以上,极易造成自燃和分解性燃烧。燃烧后,会分解产生氰化氢、一氧化碳等剧毒性气体,使人吸入后几秒钟就中毒身亡,且燃烧产生大量烟气,降低空间能见度,使人失去逃生能力。 二、火灾特性 聚氨酯泡沫火灾与其他可燃固体火灾相比,存在有不同的独特个性。主要表现在: 1、易产生阴燃 实验证明,某些标准规格的聚氨酯泡沫,即使在单独存放的情况下,也可发生阴燃。软质聚氨酯泡沫在静止空气中,产生阴燃的最高温度不超过400℃,

聚氨酯阻燃材料在国内外发展远景

聚氨酯阻燃材料在国内外发展远景 因为聚氨酯材料优良的性能,近年来聚氨酯工业的发展很快。我国在2000年聚氨酯总产量已经超过100万吨。无论是发达国家还是发展中的国家,聚氨酯工业一直保持了高于GDP的较高增长率。聚氨酯材料和其他有机高分子材料一样,是一种可燃性较强的聚合物。特别是软酯质泡沫塑料,由于密度小,比表面积较大,绝热性能好,其燃烧问题尤为突出,自身氧指数只有14-16,极易被点燃和燃烧。而且,一旦着火,燃烧速度猛烈,不易扑灭。其燃烧过程中产生的烟雾有毒,极易造成人员窒息死亡。最近颁发的《中华人民共和国消防法》对建筑和交通部门使用的聚氨酯材料的阻燃性能做了明确的规定。 一.现状与发展 PU阻燃技术发展除了非卤化、抑烟化和无毒气体化趋势,具体要求已从自熄型(氧指数26)向难燃型(氧指数30)提高。 综合各方面的资料来看,对PU材料阻燃主要有两种方法:添加法和反应型阻燃法。添加法在聚氨酯制品配方中加入含磷、氯、溴、锑、铝、硼、氮等阻燃元素的添加型阻燃剂,使制得的产品具有阻燃性能。从理论上讲,这种方法最为简便,不需要添加什么大型设备就可以按普通的生产方法进行生产。大量的实验证明,绝大多数阻燃剂都会导致泡沫塌泡、收缩或开裂,而且制得的产品的物理机械性能较差,仅有为数不多的阻燃剂可以使用,且这些阻燃剂单独添加时阻燃效果都不显著。同时,由于使用较多含溴阻燃剂,燃烧烟气毒性也较大。从目前阻燃剂

的发展方向来看,主要从不含卤系等有机阻燃剂方向发展,着重于无机阻燃剂。因为无机阻燃剂燃烧的烟气毒性小,甚至没有,而且价格比有机阻燃剂便宜。 反应型阻燃剂法在生产PU配方中加入含磷、氯、溴、硼、氮阻燃元素的多羟基化合物等反应型阻燃剂,或在生产PU主要原料——聚醚多元醇、聚酯多元醇、异氰酸酯分子中引入阻燃元素,使制得的PU材料分子中含有阻燃元素,从而获得阻燃性能。此种方法虽然具有阻燃性能持久性好、对物理机械性能影响较小等优点,但在聚醚多元醇、聚酯多元醇或异氰酸酯中引入阻燃元素的反应需要专用设备,生产过程较复杂。而用阻燃聚醚多元醇或异氰酸酯,原料不易购买。 二.研究概况 PU材料的火灾危险性在国外早已引起很多国家的关注,对PU软质泡沫塑料都已提出了阻燃的要求,并制定颁布了FMVSS-302标准和加利福尼亚州的家具燃烧试验标准CAL.117,限制非阻燃泡沫的生产和使用,到1978年,使用的泡沫几乎都为阻燃型产品。英国要求用于家具和床垫的泡沫都必须阻燃,1988年底宣布禁止不阻燃的普通泡沫和高回弹泡沫用于家具制品。西欧共同体己批准此项禁令,其它欧洲国家也纷纷效仿。德国也建立了相应法规限制非阻燃泡沫的生产及使用。日本运输省81号文件对于客车的座、卧垫材规定都必须使用阻燃制品,要求氧指数26.5。国外PU软质泡沫塑料阻燃技术受到了较为普遍的重视,许多国家都投入了大量人力、物力进行研究开发工作。国外过去的研究工作主要偏重于添加法阻燃技术,开发生产了大量的阻燃PU软质

聚氨酯泡沫塑料的火灾危险及消防对策

板,正好二步高,每步1170m左右,绑扎扫地杆、护身栏杆及立护网,用8#铅丝将脚手架与现浇混凝土柱上的对拉扁铁及与预留钢筋环拉结牢固,从2层开始,每4层在室外挂一悬挑式安全网保护。 313 预制C20混凝土板,因场地有限,采取叠层施工法,将10块板重叠浇筑,在每块板下边铺塑料布或锯末隔离。 314 东南角2~5层补角,在八字角挑板的上面,两侧及正面各设3个后埋件,用M12×100膨胀螺栓固定,将2675mm 长的4根∠50×5焊在后埋件上,挑出长度为275mm,上、下沿正面分别焊接1270mm长∠50×5的两根,880mm长∠50×5两根将挑出的角钢连成一体,焊接<615@150双向钢筋,使角部增加200mm;支模采用木模,先吊底模,再支侧模,浇筑C30混凝土进行补角与6~20层的异形角一致。 4 聚苯保温板及装饰施工 411 制作钢筋挂件,将200mm长的<6钢筋弯90°成L型,短边长60mm,长边长140mm,12#铅丝挂钩和钢筋挂件形状大小一样成L形。 412 八字角框架按860mm×800mm分档放线,垂直方向4档5个点,水平方向10档11个点,共55个点,将L形钢筋挂件与L形12#铅丝挂钩焊在距顶部下50mm,距地面上50mm,中间3根,焊接方法将L形钢筋挂件与L形12#铅丝并在一起,将短边60mm满焊在角钢上,长边140mm朝室内。413 在预制板墙上浇水湿润刷素水泥浆一道(内掺水泥重量的3%~5%TG胶)。抹1∶3∶9混合砂浆10mm厚,只露挂件和挂钩。 414 将二层50mm厚聚苯板分层挂在L形钢筋挂件上与L 形12#铅丝挂钩上,注意一层缝隙错开。水平方向用5根7870mm通长<6钢筋压牢,用22#铅丝将钢筋绑牢。 415 在聚苯板外挂10mm×10mm网眼铅丝布,用22#铅丝绑在L形钢筋挂件和L形12#铅丝挂钩上,垂直方向用11根3430mm长<6钢筋压牢,将12#铅丝弯起压牢,使铅丝网、聚苯板与角钢连成整体。 416 室内抹灰用1∶3∶9混合砂浆打底10mm厚,1∶3∶9混合砂浆中层10mm厚,1∶3∶9混合砂浆找平层8mm厚,矿棉白灰罩面2mm厚,满刮腻子三道,刷106涂料三遍;室外装饰贴瓷砖。 5 结语 由于设计单位和施工单位的配合,满足了建筑使用功能和要求,节约了资金,加快了进度,取得了较好的经济效益和社会效益。 [收稿日期] 2002-09-09 [第一作者简介] 武喜明,男,1948年12月生,山西榆次人,工 程师,从事建筑施工工作。 聚氨酯泡沫塑料的火灾危险及消防对策 司 戈 王健民2 (11哈尔滨工业大学 150006; 21黑龙江省消防局 哈尔滨 150001) 【摘 要】 通过对聚氨酯泡沫塑料火灾危险性的分析,结合典型火灾案例,提出了在冷冻、冷藏库(间)建筑和通风、空调管道等部位使用聚氨酯泡沫塑料作为保温隔热材料时,应在技术上和管理上采取的消防安全管理对策。 【关键词】 聚氨酯;火灾危险性;消防管理对策 【中图分类号】 T U545 【文献标识码】 B 【文章编号】 100126864(2002)04-0060-02 聚氨酯泡沫塑料是聚氨基甲酸乙酯树脂(polyurethane resin)泡沫塑料的简称,其导热率仅为软木或聚苯乙烯泡沫塑料的40%左右,有足够的强度、耐油性和粘接能力,是优良的隔热材料,广泛应用于医用包扎品、工业环境实验室、建筑通风、空调管道以及食品行业冷冻、冷藏库(间)作为保温隔热材料,坚硬性的聚氨酯泡沫塑料还可以用于建筑物绝缘结构。但是,在使用中如不加以注意,极易引发火灾事故。 2000年4月22日,山东省青州市的丰旭实业有限公司肉食鸡加工车间发生火灾,造成38人死亡、20人受伤的特大恶性事故,经公安消防机构查明,火灾原因就是日光灯镇流器过热,引燃聚氨酯泡沫塑料保温材料所致。 1 聚氨酯泡沫塑料的火灾特性 聚氨酯泡沫塑料是以聚醚或聚酯树脂为主要原料,与异氰酸酯定量混合,进行发泡制成的一种发泡塑料。聚氨酯泡沫塑料在热力学方面的参数在许多文献资料上都未提及。111 测试数据 公安部四川消防科研所对从一起火灾现场提取的聚氨酯泡沫塑料进行的测试分析[1],有助于我们充分认识聚氨酯泡沫塑料的火灾危险性。 对试样用水平燃烧法测试燃烧速度,试件尺寸125mm×12mm×12mm,在燃烧过程中有大量的烟产生,并有卷曲,试件燃烧长度超过100mm,试件燃烧速度为265mmΠmin(按G B2408-08)。 测试试件氧指数数值,试件尺寸150mm×6mm×6mm,测试结果为2314。 对试件进行热重分析,温升速度40℃Πmin,空气流量40mlΠmin,试件质量214141mg。试件在达到85℃前失重约116%(可能为吸附湿气);在达到116℃时开始失重,到398℃ 06 低 温 建 筑 技 术 2002年第4期(总第90期)

相关主题
文本预览
相关文档 最新文档