当前位置:文档之家› 凝视焦平面阵列红外成像导引头设计探讨

凝视焦平面阵列红外成像导引头设计探讨

凝视焦平面阵列红外成像导引头设计探讨
凝视焦平面阵列红外成像导引头设计探讨

焦平面红外探测器应用现状

焦平面红外探测器应用现状 0 引言 红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。近年来,红外探测器的需求不断增加。据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163.5亿美元,复合年均增长率为7.71%。 红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅和氧化钒探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。 在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。 1 焦平面红外探测器应用现状 热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有碲镉汞(HgCdTe)、InAs / InGaSb Ⅱ类超晶格、GaAs / AlGaAs量子阱等。近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器与理论预测的还是有一定差距。表1对几种常用的光子型焦平面红外探测器进行了比较。 在精确制导领域,主流制导方式有红外制导和雷达制导,这两种方式各有优势,在某些特定的场合,红外制导更是显示出其不可替代性。与雷达制导的主动探测相比,红外探测是

红外焦平面阵列简介

红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。 二、红外焦平面阵列分类 1、根据制冷方式划分 根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到~1011cmHz12W-1,而非制冷型的探测器为~109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分 红外焦平面阵列分为扫描型和凝视型两种,其区别在于扫描型一般采用时间延迟积分技术,采用串行方式对电信号进行读取;凝视型式则利用了二维形成一张图像,无需延迟积分,

红外焦平面阵列简介

红外焦平面阵列简介.doc 红外焦平面阵列简介 自从赫谢尔利第一次发现了红外辐射以来,人们就开始不断运用各种方法对红外辐射进行检测,并根据红外光的特点而加以应用,相继制成了各种红外探测器。进入20世纪后,红外探测器技术取得了惊人的进展,特别是冷战时期,军备竞赛各方投入巨资进行研究,突破了诸多难题,使红外探测器技术从30年代单一的PbS器件发展到现在的多个品种,从单元器件发展到目前焦平面信号处理的大型红外焦平面阵列。红外焦平面阵列技术作为红外探测技术发展的一个里程碑,正在急速地拓展新的应用领域和市场,渗透到工业监测探测、执法、安全、医疗、遥感、设备等商业用领域,改变了其长期以来主要用于军用领域的状况。 红外焦平面阵列是红外系统及热成像器件的关键部件,是置于红外光学系统焦平面上,可使整个视场内景物的每一个像元与一个敏感元相对应的多元平面阵列红外探测器件,在军事领域得到了广泛应用,拥有巨大的市场潜力和应用前景。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。 下面依次介绍其原工作原理、分类以及读出电路,并简述国内外发展情况以及展望其发展方向。 一、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。二、红外焦平面阵列分类 1、根据制冷方式划分

根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶快速起动节流致冷器集成体和杜瓦瓶斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到,1011cmHz12W-1,而非制冷型的探测器为,109cmHz12W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 2、依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下。 3、按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式和Z平面式两种。 4、按成像方式划分

(仅供参考)红外焦平面探测器普及知识

红外焦平面探测器普及知识 红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。 从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。 国内外现状和发展趋势 自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。利用这项技术研制成的装置称为红外成像系统或热像仪。用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。因此,红外热成像技术在海上救援、天文探测、遥感、医学等各领域得到广泛应用。 红外热成像系统可以分为制冷和非制冷两种类型,制冷型有第一代和第二代之分,非制冷型可分为热释电摄像管和热电探测器阵列。第一代热成像系统主要由红外探测器、光机扫描器、信号处理电路和视频显示器组成,其中红外探测器是系统的核心器件,一般是分离式探测器。这种

红外焦平面阵列

红外焦平面阵列 红外测量技术2009-12-08 21:07:23 阅读110 评论0 字号:大中小订阅 1、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。 2、红外焦平面阵列分类 (1)根据制冷方式划分 根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶/快速起动节流致冷器集成体和杜瓦瓶/斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到~1011cmHz1/2W-1,而非制冷型的探测器为~109cmHz1/2W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 (2)依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下[6]。 (3)按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种[7]。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料,如图1所示。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式(图2(a))和Z平面式(图2(b))两种。 (4)按成像方式划分 红外焦平面阵列分为扫描型和凝视型两种,其区别在于扫描型一般采用时间延迟积分(TDI)技术,采用串行方式对电信号进行读取;凝视型式则利用了二维形成一张图像,无需延迟积分,采用并行方式对电信号进行读取。凝视型成像速度比扫描型成像速度快,但是其需要的成本高,电路也很复杂。 (5)根据波长划分 由于运用卫星及其它空间工具,通过大气层对地球表面目标进行探测,只有穿过大气层的红外线才会被探测到。人们发现了三个重要的大气窗口:1mm~3mm的短波红外、3mm~5mm的中波红外、8mm ~14mm的长波红外,由此产生三种不同波长的探测器。 三、读出电路

红外焦平面阵列

红外焦平面阵列 红外焦平面阵列原理、分类 1、红外焦平面阵列原理 焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。 2、红外焦平面阵列分类 (1)根据制冷方式划分 根据制冷方式,红外焦平面阵列可分为制冷型和非制冷型。制冷型红外焦平面目前主要采用杜瓦瓶/快速起动节流致冷器集成体和杜瓦瓶/斯特林循环致冷器集成体[5]。由于背景温度与探测温度之间的对比度将决定探测器的理想分辨率,所以为了提高探测仪的精度就必须大幅度的降低背景温度。当前制冷型的探测器其探测率达到~1011cmHz1/2W-1,而非制冷型的探测器为~ 109cmHz1/2W-1,相差为两个数量级。不仅如此,它们的其他性能也有很大的差别,前者的响应速度是微秒级而后者是毫秒级。 (2)依照光辐射与物质相互作用原理划分 依此条件,红外探测器可分为光子探测器与热探测器两大类。光子探测器是基于光子与物质相互作用所引起的光电效应为原理的一类探测器,包括光电子发射探测器和半导体光电探测器,其特点是探测灵敏度高、响应速度快、对波长的探测选择性敏感,但光子探测器一般工作在较低的环境温度下,需要致冷器件。热探测器是基于光辐射作用的热效应原理的一类探测器,包括利用温差电效应制成的测辐射热电偶或热电堆,利用物体体电阻对温度的敏感性制成的测辐射热敏电阻探测器和以热电晶体的热释电效应为根据的热释电探测器。这类探测器的共同特点是:无选择性探测(对所有波长光辐射有大致相同的探测灵敏度),但它们多数工作在室温条件下[6]。 (3)按照结构形式划分 红外焦平面阵列器件由红外探测器阵列部分和读出电路部分组成。因此,按照结构形式分类,红外焦平面阵列可分为单片式和混成式两种[7]。其中,单片式集成在一个硅衬底上,即读出电路和探测器都使用相同的材料,如图1所示。混成式是指红外探测器和读出电路分别选用两种材料,如红外探测器使用HgCdTe,读出电路使用Si。混成式主要分为倒装式(图2(a))和Z平面式(图2(b))两种。 (4)按成像方式划分 红外焦平面阵列分为扫描型和凝视型两种,其区别在于扫描型一般采用时间延迟积分(TDI)技术,采用串行方式对电信号进行读取;凝视型式则利用了二维形成一张图像,无需延迟积分,采用并行方式对电信号进行读取。凝视型成像速度比扫描型成像速度快,但是其需要的成本高,电路也很复杂。

红外焦平面成像技术发展现状

红外焦平面成像技术发展现状 姓名:高洁班级:11级硕研1班学号:S11080300007 摘要 红外焦平面列阵成像技术已经进入了成熟期。本文对几种红外焦平面列阵器件如MCT、Insb 和QWIP 的最新进展作一评述,简要介绍其器件发展水平、技术路线和关键工艺。简要提及一种新颖的非制冷焦平面成像技术:光学读出微光机红外接收器。 关键词:红外焦平面列阵;碲镉汞;锑化铟;量子阱红外探测器 Abstract Infrared focal plane array (IRFPA) imaging technology has been matured during the passed decade. In this paper an overview of recent progress to several kind of IRFPA such as MCT, Insb and QWIP is provided , focusing on new device development, technical lines and key technologies. Also, a new type of uncooled FPA imaging technigue micro !optomechanical infrared receiver with optical readout is briefly introduced. Key words: IRFPA; MCT; Insb; QWIP 引言 红外探测器技术在20 世纪90 年代取得了飞速发展。红外焦平面列阵成像技术进入了成熟期。高性能大规格焦平面列阵已正式地应用于各种重大国家安全项目中,例如弹道导弹防御计划和重要新型武器系统。另外,新型非制冷红外焦平面技术的涌现正在促进红外技术走向第三代。美国人预言,未来几年美国红外市场将出现年均30%的连续高速增长[1]。本文简要评述了几种红外焦平面列阵器件技术的最新进展。 1. 碲镉汞红外焦平面器件 1.1器件和材料发展水平 通过调整碲镉汞(MCT)材料的组分,可以方便地调节其材料的禁带宽度,器件可以响应多个红外波段范围,因此,MCT 受到各国的高度重视。MCT 焦平面列阵器件在短波(1~3 μm)、中波(3~5μm )、长波(8~12μm )和甚长波(12~18μm )各个波段取得了全面进展。 1.1.1 短波MCT 焦平面 波音北美公司和洛克威尔科学中心合作,在替代衬底PACE-1 上生长的MCT 薄膜材料制造了大规模的焦平面列阵。低背景天文应用,代号为Hawaii-2 的器件性能参数如表1 所示[2]。多光谱遥感应用的1024*1024 元FPA,截止波长2.5 μm,在1.2*1011 phs/cm2 s 背景水平和115 K 工作温度下的平均探测率达到2.3*1013 cmHZ1/2W-1,非均匀性12.5%,量子效率74%,77 K 下平均暗电流仅为0.02 e-/s,有效像元率99.1%,100 次热循环脱焊率<0.2%[3]。

紫外焦平面阵列的基础研究

背照式ZnO基紫外焦平面成像阵列的基础研究 基本信息 批准号60876042 项目名称背照式ZnO基紫外焦平面成像阵列的基础研究 项目类别面上项目 申请代码F040305 项目负责人张景文 负责人职称副教授 依托单位西安交通大学 研究期限2009-01-01 到 2011-12-31 资助经费43.0000(万元) 项目摘要 中文摘要 首次研制出一种背照明的ZnO基垂直结构的紫外探测器焦平面探测阵列,其单元像素光电灵敏度达到1616 A/W,光电响应的上升时间71.2 ns。日盲MSM结构Zn1-xMgxO紫外探测器5V偏压下明暗电流比达3000,对248nm的脉冲激光上升时间45.60μs。阵列式Zn1-xMgxO垂直结构紫外探测单元5V偏压下对248nm的紫外光的响应为1679A/W, 明暗对比达到5150,上升响应时间为23ns。为当前国际最好报道。首次研究出一种高灵敏度光电导型ZnO四脚晶须紫外探测器。发现Zn1-xMgxO纳米线表现出良好的紫外光响应特性,所研制的Zn0.62Mg0.38O 和Zn0.776Mg0.224O纳米线紫外探测器的明暗对比度分别达到了5000和20000。本项目共申报相关发明专利11项,其中已获得授权发明专利10项,取得了相应的知识产权;发表文章17篇,其中被SCI收录6篇,EI收录6篇,全国性学术会议邀请报告2次;承办全国性学术会议一次;培养青年教师两名;毕业博士研究生2人,毕业硕士研究生13人。 中文主题词焦平面探测阵列;紫外探测;ZnMgO;日盲;灵敏度

英文摘要 First developed a high performance back-illuminated ZnO-based ultravi olet focal plane detector arrays, Each back-illuminated ZnO single detector cell of the array had a hig h responsivity of 1616 A/W; the rise time was 71.2 ns. The light and dark contract of solar-blind MSM-Zn1-xMgxO UV detectors were as high as about 3000 when the detec tor was at 5V bias, the rise time was 45.60μs at 248 nm pulse laser irradiation. Each ba ck-illuminated Zn1-xMgxO single detector cell of the array had a high responsivity of 1679 A/W at 5V bias and 248 nm pulse laser irradiati on,the light and dark contract was 5150, the rise time was 23ns. It's the best result of international. First developed a high performance tetrapod ZnO whisker and ZnMgO nanowires UV detectors. We found the ZnMgO nanowires had high property of UV o ptoelectronical response. The light and dark contract of Zn0.62Mg0.38 O and Zn0.776Mg0.224O nanowires were 5000 and 20000 respectively. We have declared 11 invention patents at this project, and 10 invention patents have get authorized among them. We Have publ ished 17 papers,including 6 SCI papers and 6 EI papers, two invited report at national Conference. We have undertaken a natio nal Conference; two young college teachers have been trained and Grad uated two doctoral students and 13 graduates 英文主题词FPA;UV Detectors;ZnMgO;Solar Blind; Responsivity 结题摘要 首次研制出一种背照明的ZnO基垂直结构的紫外探测器焦平面探测阵列,其单元像素光电灵敏度达到1616 A/W,光电响应的上升时间71.2 ns。日盲MSM结构Zn1-xMgxO紫外探测器5V偏压下明暗电流比达3000,对248nm的脉冲激光上升时间45.60μs。阵列式Zn1-xMgxO垂直结构紫外探测单元5V偏压下对248nm的紫外光的响应为1679A/W, 明暗对比达到5150,上升响应时间为23ns。为当前国际最好报道。首次研究出一种高灵敏度光电导型ZnO四脚晶须紫外探测器。发现Zn1-xMgxO纳米线表现出良好的紫外光响应特性,所研制的Zn0.62Mg0.38O 和Zn0.776Mg0.224O纳米线紫外探测器的明暗对比度分别达到了5000和20000。本项目共申报相关发明专利11项,其中已获得授权发明专利10项,取得了相应的知识产权;发表文章17篇,其中被SCI收录6篇,EI收录6篇,全国性学术会议邀请报告2次;承办全国性学术会议一次;培养青年教师两名;毕

相关主题
文本预览
相关文档 最新文档