当前位置:文档之家› 动力集中动车组动力车电气系统冗余方案研究

动力集中动车组动力车电气系统冗余方案研究

动力集中动车组动力车电气系统冗余方案研究
动力集中动车组动力车电气系统冗余方案研究

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

比亚迪E6纯电动汽车动力系统的结构与检修

比亚迪E6纯电动汽车使用磷酸埋钻铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1 kWh)以内,每1 00km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。 一、比亚迪E6纯电动汽车动力系统的结构 1.比亚迪E6纯电动汽车动力系统 比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。

(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。 (2)电动车的动力模块有:电动机总成、电池包体总成。

(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。 2.动力控制系统的工作原理 (1)充电过程 充电站的380V高压充电桩通过车辆上的充电口,或者220V市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直接途径应急开关后对Hv电池组充电。在充电过程当中,电源管理器一直监控着HV电池组的温度和电压,如果发现HV电池组内部某单体温度或电压过高,就会切断配电箱给HV电池组的供电。 (2)放电过程 HV电池组在电源管理器和漏电保护器的监控下,通过应急开关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控制器的信号)控制着电机控制器的工作,电机控制器主要控制流向电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换器将高压直流电转化为低压直流电,为车辆电动液压助力转向系统提供42V的电源,同时还为整车用电设备提供12V的电源。 3.动力系统各部件的作用 (1)电机控制器:负责控制电机的前进、倒退、维持电动车的正常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控制电流的工作,保证能够按照我们的意愿输出合适的电流参数。 (2)DC-DC:负责将330V高压直流转低压提供给车载低压用电设备,如

(完整word版)电气传动与调速系统

电气传动与调速系统课程总复习2011.7 一、教材信息: 《机电传动控制》,邓星钟主编,华中科技大学出版社 二、考试题型 客观题(单项选择、判断题) 主观题(填空、简答、分析和计算) 三、总的复习题 一、选择题 1、电动机所产生的转矩在任何情况下,总是由轴上的负载转矩和_________之和所平衡。 ( D )A.静态转矩B.加速转矩C.减速转矩D.动态转矩 2、机电传动系统稳定工作时中如果T M>T L,电动机旋转方向与T M相同,转速将产生的变化是。( B )A.减速B.加速 C.匀速D.停止 3、机电传动系统中如果T M

电气传动自动控制系统课程设计说课材料

课程设计报告书 题目:电气传动自动控制系统 报告人:王宗禹 学号:1043031325 班级:2010级34班 指导教师:肖勇 完成时间:2013年7月日 同组人:王大松 秦缘 龚剑 电气信息学院专业实验中心

一.设计任务 1.设计目标: (1)系统基本功能:该调速系统能进行平滑的速度调节,负载电机不可逆运行,系统在工作范围内能稳定工作 (2)已知条件: (3)稳态/动态指标:静态:s% ≤ 5% D = 3 动态:σi% ≤ 5% σn% ≤ 10% (4)期望调速性能示意说明:静差率小于5%,调速范围D=3. (5)系统电路结构示意图: 2.客观条件: (1)使用设备列表清单及主要设备功能描述: 二.系统建模(系统固有参数测定实验内容)

1.实验原理 (1)变流电源内阻Rn的测定: a.电路示意图如下: 可以等效如下: b.利用伏安法可以测出内阻R n的大小,方法是在电机静止,电枢回路外串限流电阻,固定控制信号 Uct 大小,0.5A≤Id ≤1A的条件下用伏安法测量Ud1,Id1和Ud2,Id2;利用公式可以求得Rn。 (2)电枢内阻 Ra、平波电感内阻 Rd的测定: a.电路示意图如下:

b.实验方法步骤: ◆电机静止,电枢回路外串限流电阻 ◆固定控制信号Uct 大小,Id ≈1A(额定负载热效点) ◆使电枢处于三个不同位置(如上图约120o对称)进行三次测量(Ura,Urd,Id),求 Ra , Rd 的平均值. (3)电动机电势转速系数 Ce的测定: a.实验原理: 由公式 可以推导出Ce的测定公式: b.实验方法步骤: ◆空载启动电机并稳定运行(I d0大小基本恒定) ◆给定两个大小不同的控制信号Uct ,测量两组稳定运行时的Ud、n数据 (4)整流电源放大系数 Ks的测定: a.实验原理: Ks可以根据公式Ud0=Ks*Uct可知Ks就是以Uct为横坐标Ud0为纵坐标的如下图曲线中线性段的斜率。故可以通过公式测定Ks.

混动汽车动力系统控制策略设计

4.1控制系统的各状况分析 1. 一键启动,车门解锁; 2?进人;由车门传感器检测:车门开启 -进人动作-车门关闭-车门锁死 3. 设置路径;由语音提示,根据情况分析最优路径,最短距离,最短时间; 4. 开始旅行 (1) 判断蓄电池能否正常行驶 当SOC (剩余电量) 当SOC (剩余电量) (2) 平地行驶 ①首先蓄电池驱动, 足下列任意条件 V 60km/h Tre Tm Tre (汽车需求转矩) V (行驶速度) 满足则启动点火装置f 发动机启动; ②此时由发动机驱动,后由车速传感器和扭矩传感器检测分析是否 满足下列所有条件 V 60km/h Tre Tm V 40km/h Tm (纯电动机行驶最大转矩) 满足则关闭发动机,由蓄电池驱动; ③制动 由加速度传感器和节气门位置传感器 (3)爬坡 》0.4将由畜电池启动; < 0.4全程发动机驱动; 然后由车速传感器和扭矩传感器检测分析是否满

①用坡度传感器检测坡度,同时满足下列时 a 10% Tre < Tm

a (坡度) 由蓄电池驱动 ②用坡度传感器检测坡度,满足下列任一项时 Tre > Tm 发动机启动; ③爬坡制动时 车速传感器和加速度传感器检测车轮的旋转方向当旋转 方向与实际方向相反紧急制动 同时启动电动机发电机; (4)泥泞及高低不平路段 根据转矩传感器检测数据, (5 )大风及恶劣天气行驶 时 根据转矩传感器检测数据, 5.到达目的地旅行结束 电动机缓慢驱动汽车制动,解锁车门; 4.2控制系统的各个流程图 1.由SOC电量判断启动方式启动发动机; 启动发动机;

2.由需求转矩和速度判断工作模式 (1).若由发动机驱动 发动机驱动 (2 )若由蓄电池驱动

新能源汽车的驱动及传动系统 概述

新能源汽车的驱动及传动系统概述 (一)新能源之未来趋势 当今汽车行业,不管是基于全球眼光还是身在中国更为特殊更为年轻的汽车市场环境,如果谈车不谈电动汽车,就像谈手机不谈未来信息技术一样,都是看不到未来,不能把握住未来市场,毫无远见的。面对越来越大的环境污染压力,全球范围内都提倡甚至出台相关政策来降低汽车尾气的排放。就国内而言,按照我国电动汽车充电设施标准化总体部署,在国家标准委协调和支持下,由工业和信息化部、国家能源局组织,全国汽标委牵头,汽研中心、电力企业联合会和电器科学研究院共同起草了《电动汽车传导充电用连接装置第1部分:通用要求》、《电动汽车传导充电用连接装置第2部分:交流充电接口》、《电动汽车传导充电用连接装置第3部分:直流充电接口》三项国家标准;由国家能源局、工业和信息化部组织,电力企业联合会和汽研中心共同起草了《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》国家标准。该四项标准已2011年12月22日以“中华人民共和国国家标准公告2011年第21号”批准发布,2012年3月1日起实施。2012年12月,环境保护部发布了《关于实施国家第五阶段气体燃料点燃式发动机与汽车排放标准的公告》;电动汽车方面,2013年9月,工信部装备工业司发布《关于继续开展新能源汽车推广应用工作的通知》,从政策上给新能源汽车的发展尽量铺平了道路。所以,当今,新能源汽车尤其是电动汽车是大势所趋,是符合国家长远发展,行业技术突破的趋势的。 (二)电动汽车与传统内燃机汽车在结构上的对比 电动汽车以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。传统内燃机汽车以石油产品作为能源,通过在内燃机中燃烧释放出能量来产生动力,并由变速器实现驱动控制;而电动汽车采用蓄电池作为能源,由电动机来驱动并配以调速器进行速度控制。两者的最大区别在于动力系统和能源供应系统。最主要的改动是将燃油汽车的

新能源汽车复习题

复习题 一、名词解释 1、电动汽车 2、再生回馈制动 3、电池比能量 4、混合动力汽车 5、燃料电池 6、充电倍率 二、简答题 1、超级电容器在汽车中有哪些应用? 2、电动汽车使用的动力电池可以分几类? 3、电动汽车对动力电池的要求主要有哪些? 4、混合动力电动汽车按结构分哪几类?画出结构图 5、SOC的定义和意义? 6、简述飞轮电池的工作过程的三个阶段 7、目前电动汽车的关键技术有哪些? 8、简述开关磁阻电机的工作原理。 9、简述混合动力汽车扭矩耦合技术,并举出两种扭矩耦合技术,画出其示意图。 10、简述并联式混合动力电动汽车的工作模式。 11、请说明质子交换膜燃料电池的三个关键问题 12、燃料电池汽车优、缺点是什么? 13、什么是可变压缩比发动机技术?为什么要采用变压缩比? 14、请列举出至少6种汽车节能技术。 三、阐述分析题 1、阐述转速耦合的并联式混合动力电驱动系统的工作原理。 转速特点:当任一元件转速一定,其他两元素转速代数和为定值,但其间的分配关系可任意改变,及转速解耦。 两个动力源的动力也可以通过速度耦合方式耦合在一起进行传动,如图9所示速度耦合特性可以描述为ωout=k1ωin1+k2ωin2 T out=T in1/k1=T in2/k2其中k1 和k2 是与实际设 计相关的常数典型的速度耦合器如图10、11所示,图中两种结构分别是带行星轮和带有浮动定子的电动机(也称为传动器)的耦合器行星轮是由太阳轮,齿圈和行星架三部分组成的速度就是通过耦合器中的太阳轮,齿圈以及行星齿轮的传动而输出的该常数 和取决于齿轮的半径和齿数。

图10中,发动机通过离合器和变速器为太阳轮提供动力变速器用来改变发动机的转速转矩特性,以满足牵引力的需求电动传动器通过环形齿轮副提供动力锁1和2分别用于锁定太阳齿轮和环形齿轮,以满足不同操作模式的要求它可以实现:(1)混合动力驱动:锁1和锁2都打开,太阳齿轮和环形齿轮都可以自由旋转,发动机和电机同时提供正向的转速和扭矩(正转矩)到驱动车轮(2)发动机单独驱动:锁2将齿圈与车架锁定,而锁1打开,此时只有发动机提供动力驱动车轮(3)电机单独驱动:锁1将太阳轮与车架锁定(发动机被关闭或离合器张开)而锁2打开,此时只有电动机提供动力驱动车轮(4)再生制动:锁1在锁定(发动机被关闭或离合器脱开),电动机开始发电(负转矩),车辆的部分能量被电力系统吸收(5)发动机给电池充电:当控制器给电机以反向转速时,发动机即可给电池充电。 带传动器的传动系统如图11所示,其结构与图10的类似锁1和2分别用于将定子与车架锁定和与转子锁定这种传动系统也可以实现上述所几种运行模式速度耦合混合动力传动系统的主要优点是,两个动力源的转速是分开的,因此,两个动力装置的速度可自由匹配 2、阐述纯电动汽车的结构组成。 纯电动汽车主要由电力驱动系统、电源系统、辅助系统、控制系统、安全保护系统等组成。车行驶时,由蓄电池输出电能(电流)通过控制驱动电动机运转,电动机输出的转矩经传动系统带动车轮前进或后退。 21电力驱动系统 纯电动汽车的电力驱动系统的构成简图如图4所示,主要由电子控制器、驱动电动机、电动机逆变器、各种传感器、机械传动装置和车轮等组成,其中最关键的是电动机逆变器,电动机不同,控制器也有所不同,控制器将蓄电池直流电逆变成交流电后驱动交流驱动电动机,电动机输出的转矩经传动系统驱动车轮,使电动汽车行驶。该系统的功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。 22电源系统 纯电动汽车的电源系统包括车载电源、能量管理系统和充电机等。它的功用是向电动机提供驱动电能、监测电源使用情况及控制充电机向蓄电池充电。 23辅助系统 纯电动汽车辅助系统主要包括辅助动力源、空调器、动力转向系统、导航系统、刮水器、收音机及照明和除霜装置等。辅助动力源主要由辅助电源和DC/AC转换器组成,其功用是向动力转向系统、空调及其他辅助设备提供电力。 2.4控制系统 EV的控制系统主要是对动力蓄电池组的管理和对驱动电动机的控制。EV的控制系统的主要作用有:将加速踏板、制动踏板机械位移的行程量转换为电信号,输入至中央控制单

电气传动自动控制系统第2章01

电力传动自动控制系统 2019-06-16 第2章 直流电动机传动基础 直流电动机是电力传动系统的主要传动元件之一,它具有良好的起动和调速性能。直流电动机按励磁方式可分为:他励(Separately excited)、并励(Shunt)、串励(Series)、复励(Compound)(积复励、差复励)。本章主要研究直流他励电动机的运行问题,诸如机械特性及其计算;各种工作状态及其计算;调速特性及其计算等。 2.1 直流他励电动机的机械特性 在“电机学”中,注重电机的结构与原理,主要研究的是电机在进行能量转换时其内部的电磁过程;而“电力传动”,则注重的是电动机的使用,主要研究的是电机的外特性。在电动机的各类工作特性中首要的是机械特性。 电动机的机械特性(Speed-Torque Characteristics),是电动机产生的转矩(电磁转矩)T 与其转速n 之间的关系,即n =f (T )。 电动机的机械特性是电动机性能的主要表现,只有掌握好电动机的机械特性,才能正确选择和使用电动机。电动机的机械特性在很大程度上决定了电力传动系统的稳态运行和过渡过程的性质和特点。因而,电动机机械特性的研究是“电力传动”课程的核心内容。 2.1.1 直流他励电动机的机械特性方程式 直流他励电动机的基本接线图如图2-1所示。 电枢回路 励磁回路 图2-1 直流他励电动机的接线图 电枢回路包括电枢绕组、电刷、换向极绕组和补偿绕组(若存在的话),其总电阻称为电枢内阻r a 。电枢回路还串有附加电阻R ad ,则电枢回路电阻总值为R a =r a +R ad 。励磁回路的电源U f 与U 无关(他励),励磁回路包括励磁绕组,其电阻为r f ,还有附加电阻R fad 。 假设:电源电压为恒值,磁通为恒值,即励磁电流不变,认为无电枢反应,电枢回路电阻为恒值。对大多数电机,在机械特性的工作范围内,以上假设所带来的误差是不大的。 电枢回路的电压平衡方程式为: U =E +IR a (2-1) 式中: U ——电动机的电枢电压(V); E ——电动机电枢绕组的感应电势(电枢电势)(V); I ——电枢电流(A); R a ——电枢回路总电阻(Ω),R a =r a +R ad 。 直流电机的电枢电势公式为: E =C e Φn (2-2)

变频器在电气传动自动控制中的应用

龙源期刊网 https://www.doczj.com/doc/fc2829037.html, 变频器在电气传动自动控制中的应用 作者:王学雷董文新 来源:《城市建设理论研究》2013年第09期 摘要:从电力半导体、控制技术和主电路拓扑结构等方面综述了变频调速技术的发展历史和现状,并总结了在变频控制中的主要控制技术。 关键词:矢量控制; 交流电动机; PWM 技术; 高压变频器 中图分类号:O183 文献标识码:A 文章编号: 国内外交流变频调速技术的现状 早在国家“八五”科技攻关计划中,交流调速技术就被列为重点科技攻关项目,但是由于我国电力电子器件总体水平很低,IGBT、GTO 器件的生产虽引进了国外技术,但一直未形成规模经济效益,几乎不具备变频器新产品的独立开发能力,这在一定程度上影响了国内变频调速技术的发展。在大功率交- 交变频技术、无换向器电机等方面,国内产品在数字化及系统可靠性方面与国外水平相比,还有相当差距。在中小功率变频技术方面,国内几乎所有的产品都采用普通V/F 控制,仅有少量样机采用矢量控制,品种与质量不能满足市场需要。而在国外,变频调速技术得到了充分的发展,并在各个方面取得了显著成就。在功率器件方面,高电压、大电流容量的SCR、GTO、IGBT、IGCT 器件的出现和并联、串联技术的应用,高压大功率变频器产品得到生产和推广应用。在微电子技术方面,16 位、32 位高速微处理器以及DSP 和ASIC(Application Specific IC) 技术的快速发展,为实现变频器高精度、多功能化提供了硬件手段。在理论方面,矢量控制、磁通控制、转矩控制、智能控制等新的控制理论都为高 性能变频器的研制提供了相关理论基础。可以看出,总体上我国交流变频调速技术水平较国际先进水平有着很大差距。 交流变频调速在控制中的主要应用 交流变频调速技术在20 世纪得到了迅速发展。这与一些关键性技术的突破性进展有关,它们是交流电动机的矢量控制技术、直接转矩控制技术、PWM 技术,以及以微型计算机和大规模集成电路为基础的全数字化控制技术、自整定技术等。 1.矢量控制技术 矢量变换控制技术是西门子公司于1971 年提出的一种新的控制思想和控制理论。它是以转子磁场定向,采用矢量变换的方法实现定子电流励磁分量和转矩分量之间的解耦, 达到对交流电动机的磁链和电流分别控制的目的,从而获得了优良的静、动态性能。迄今为止,矢量控制技术已经获得了长足的发展,并得到了广泛的应用。

电气基础自动化及电气传动

电气基础自动化及电气传动 6.3.1 主要电气控制项目 6.3.1.1概述 当板坯进入加热炉区的上料台架后,经过台架装置的移动,将坯料送到受料辊道上,并进入测长辊道,对坯料的进行测长、测温。 确认坯料合格后,将钢坯通过过渡辊道送到加热炉尾的装料辊道上。对坯料进行炉宽方向的定位。 定位完成后,在加热炉满足装钢条件时,装料炉门开启,装钢机按照计算好的行程将板坯推入炉内固定梁的预定位置上,然后装钢机退回原始位置,炉门关闭; 放进炉内的钢坯根据轧线系统对生产节奏的要求,通过炉内步进梁的正循环动作,板坯依次通过炉子的预热段、加热段及均热段,并被充分的加热到予期的出炉温度。 当出钢侧的激光检测到有钢信号,步进梁停止前进,等待出钢;当轧线发出出钢请求时,出料炉门开启,出钢机根据计算好的行程,伸入炉内预定位置,将已加热好的板坯托起,抽出放在出炉辊道中心线上,然后出钢机返回到原始位等待下次动作。 加热好的钢坯放到出炉辊道上后,辊道启动前进,将钢坯送出至轧机。 在上述上料、装出钢及炉内步进的过程中,所有电控设备的运转状态、电气故障、设备故障均通过电控系统进行在线监控,对重故障、轻故障报警分类,并以声、光报警方式提示、打印,记录报警类型。 6.3.1.2 电气基础自动化的控制项目及控制功能 加热炉电气基础自动化系统的硬件、软件的配备,是根据钢坯的输送和加热炉机械设备的动作要求而设置的。整个炉区需要具备如下控制功能: 6.3.1.2.1 上料台架的控制 本系统分两组上料台架,分别由两组液压缸驱动,通过PLC完成各种动作,使得坯料顺利落到受料辊道(A1或A2)上。 操作地点:装钢操作台;装料侧HMI。 传动方式:阀控液压传动。 台架上坯料检测元件:冷金属检测器(CMD)共4个

电气传动自动控制系统课程设计大学论文

电气传动自动控制系统课程设计 学院:电气信息 专业:自动化 年级:2012级 小组成员:邓建儒 2012141441300 沙华 2012141441299 张政 2012141441326 陆啸 2012141441015 完成时间:2015年7月13日 指导教师:肖勇

直流双闭环调速系统设计 摘要:转速、电流反馈控制直流调速系统的设计主要是通过对直流双闭环调速系统中电流调节器(ACR)和速度调节器(ASR)的设计与调试,以达到给定系统静、动态性能指标。在实验中要通过实验装置中已有的参数来确定调节器的各个参数,在单元调试环节中,需要整定调节器ACR、ASR的运放输出限幅值,在系统调试环节中,需要对电流环和转速环进行整定。对于系统性能的测定,则需要对静态和动态性能分别做实验测试,在电压给定或者负载给定的情况下,分别对两种状态做性能分析。根据设计要求确定调速方案和主电路的结构型式,主电路和闭环系统确定下来后,实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,电流环应以跟随性能为主,即应选用典型Ⅰ型系统;转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能,因为转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主,以此使电动机满足所要求的静态和动态性能指标。然后按照确定时间常数、选择调节器结构、计算调节器参数、校验近似条件的步骤一步一步的实现对调节器的具体设计。再对系统的启动过程进行分析,以了解系统的动态性能。之后,用Matlab软件中的Simulink模块对设计好的系统进行模拟仿真,得出仿真波形。最后给出参考资料和总结。 关键词:直流双闭环调速系统、电流调节器(ACR)、速度调节器(ASR)、调试、动态静态性能指标 目录 第一章 ..............................任务描述第二章 ..............................系统建模第三章 ..............................系统设计第四章 ..............................系统调试第五章 ..............................系统评价

汽车动力学控制系统

汽车动力学控制系统 吴正明 (上海通用东岳动力总成有限公司) 【摘要】 汽车动力学控制系统是一种新型的主动安全控制系统,它是继防抱死系统和防滑控制系统发展起来的。文章详细介绍了它的原理,并通过仿真计算阐述它在汽车中的作用及发展状况和前景。 【主题词】 控制系统 动力学 汽车 车辆动态稳定性主要是指车辆行驶的方向稳 定性和抵抗外界侧向力的能力,它主要包括两个方面:操纵稳定性能和方向稳定性能。车辆动力学控制(VDC )是利用车辆动力学状态变量反馈来调节车轮纵向力大小及匹配,使车辆在各种路面和各种工况下都获得良好的操纵稳定性和方向性的一种新型主动安全控制技术。 1 车辆动力学控制原理 汽车在路面上行驶,其附着力要受路面条件的影响,当附着力达到附着极限时,车辆的动力学性能将发生改变。附着力包括纵向力和侧向力,当纵向力达到附着极限时,将影响车辆的驱动性能或制动性能,同理,当侧向力达到附着极限时就将影响车辆的侧向性能,也就会影响车辆的动力学稳定性能。侧偏力是由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的作用引起的,随之也产生侧偏角。从轮胎特性方面来说,随着侧偏角的增大,它与侧向力的关系也将发生变化,图1为某车辆侧向力与侧偏角在不同附着路面上的 关系,其中轮胎垂直载荷和轮胎的滑转率相同。 从图中可以看出,当侧偏角较小时,侧偏力基本与侧偏角成线性关系,但当侧偏角达到一定值时,侧偏力不再随侧偏角的增加,而是基本保持不变,达到饱和状态,也就是侧向力达到附着极限。从图中还可以看出,路面的附着情况不同,汽车达到饱和状态时的侧偏角也不相同,高附着路面轮胎的侧向力附着极限要比低附着路面高。汽车在路面 收稿日期:2004-06- 21 图1 轮胎侧向力与侧偏角的关系 行驶,时常要作曲线运动,当侧向加速度比较小时,侧偏角也比较小,与侧偏力基本上成线性关系,当进行高速转弯或在滑路上转弯时,侧向力接近附着极限或达到饱和状态,车辆的转向特性将发生改变,一方面汽车处于失控状态,出现转向半径迅速减小或迅速增大的过多转向或不足转向过量的危险局面,从而导致侧滑、激转、侧翻或转向反应迟钝等丧失稳定性或方向性的危险局面;另一方面使驾驶员不能准确操纵而引起事故,一般来说,只有当汽车的响应如横摆角速度等与方向盘转角满足一种线性关系时,驾驶员才能正确地操纵汽车,而在极限行驶工况时,这种关系已变成一种非线性关系,驾驶员想适应这种关系是很困难的,也就引起事故的发生。 通过以上的分析可以看出,轮胎的非线性特性是车辆操纵性发生变化的根本原因,特别是在高速转弯和低附着路面上转向行驶,常常会使车辆失去控制,有关资料表明有43.1%的交通事故都是由于车辆丧失动力学稳定性造成的。车辆

现代电气传动及控制技术的发展

现代电气传动及控制技术的发展 1 电气传动技术概述 电气传动技术,是指用电动机把电能转换成机械能,去带动各种类型的生产机械、交通车辆以及生活中需要运动的物品的技术。是通过合理使用电动机实现生产过程机械设备电气化及其自动控制的电气设备及系统的技术总称。 一个完整的电气传动系统包括三部分:控制部分、功率部分、电动机。 2电气传动优点 (1)电机的效率高,运转比较经济; (2)电能的传输和分配比较方便; (3)电能容易控制,因此现在电气传动已经成为绝大部分机械的传动方式,成为工业化的重要基础。传动方式的一种,有机械式如摇臂之类,有压力如液压传动,而通过控制电机来传动的方式就是电气传动。 3 电气传动技术的发展史 电气传动技术诞生于20世纪初的第二次工业革命时期,电气传动技术大大推动了人类社会的现代化进步。它是研究如何通过电动机控制物体和生产机械按要求运动的学科。随着传感器技术和自动控制理论的发展,由简单的继电、接触、开环控制,发展为较复杂的闭环控制系统。自从人类发明并掌握各种机械帮助自己劳动以来,就需要有推动机械的原动力,除人力本身外,最初使用的是畜力、水力和风力,后来又发明了蒸汽机、柴油机、汽油机,19世纪才发明电动机。20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的全新学科技术一现代电气传动技术。 4 电气传动的主体——电动机 电动机分为交流电动机和直流电动机。二者的结构、工作原理不同,所需的电气传动装置也不同。电气传动可分为两类:直流电气传动和交流电气传动。由于历史上最早出现的是以蓄电池形式供电的直流电动机,所以直流传动也是唯一的电气传动方式。 直到1885年意大利都灵大学发明了感应电动机,而后出现了交流电,解决了三相制交流电的输变问题交流电气传动才出现。20世纪80年代之前,直流电

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(Battery Electric Vehicle,BEV)与混合动力汽车(Hybrid Electric Vehicle,HEV)和燃料电池汽车(Fuel Cell Electric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1 传统汽车与纯电动汽车综合能量效率比较(单位:%)(2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车动力匹配计算要求规范(纯电动)

电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 2015-10-15发布2015-11-1实施 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为

纯电动汽车动力系统及驱动技术

纯电动汽车动力系统及驱动技术 一、电动汽车简介及现状 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车和混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。 大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。和传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。 国内电动汽车发展现状 我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力和财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。 2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车和纯电动汽车为“三纵”,以多能源动力总成、驱动电机和动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂和北京理工大学,承担纯电动轿车研发的是上海汽车、上海交通大学、天津汽车集团等。 自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。 国外电动汽车发展现状 在电动汽车的发展进程中,各国和各地区都依据自己的国情和特点择了不同的技术路线,而处在技术领先位置的仍然是日本、美国和欧洲,他们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别是在当地政府部门。但是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本和美国,所以其注意力更多地转向了其它清洁能源车的开发。下表是国外几种电动汽车的技术指标。

电气传动自动控制系统第2章03

2.4 调速系统的基本指标与直流电机的基本调速方法 许多生产机械的运行速度,随其具体工作情况而不同。例如:车床切削工件时,精加工用高转速,粗加工用低转速;龙门刨床刨切时,刀具切入和切出工件用较低速度,中间一段切削用较高速度,工作台返回时用高速度。这就是说,传动系统的运行速度需要根据生产机械的工艺要求而人为调节。 调速即是速度调节的简称。调速可分为机械调速和电气调速两类。改变传动机构速比的调速方法称为机械调速。而通过改变电动机相关参数而改变系统运行转速的调速方法称为电气调速。在电力传动系统中研究的调速,一般是指电气调速,即指在某一不变负载条件下,人为地改变电路的参数,而得到不同的速度。调速与由其他因素(如负载变化)引起的速度变化不同,后者称为速度变化。 生产机械的调速是工业生产的实际需要。大量的生产机械都需要调速。可调速电力传动是现代电力传动的特点之一。正确地选择可调速电力传动系统,可以保证工艺过程的顺利实现和完成,可以达到提高生产质量和增加产量的目的。同时,在很多情况下,可以简化机械结构。 2.4.1 调速系统的基本指标 如何选择和评价一个调速系统?应考虑以下指标(技术指标和经济指标):调速范围、调速的稳定性和相对稳定性(即静差率)、调速的平滑性、调速的负载能力以及调速的经济性。 2.4.1.1 调速范围——D 电力传动系统的调速范围,是指系统所能给出的最高转速n max 与最低转速n min 的比值,即 min max n n D = (2-52) 电力传动系统的调速范围,一般是机械调速和电气调速配合起来实现的。所以,系统的调速范围应为机械调速范围与电气调速范围的乘积。这里,主要研究电气调速范围。在决定调速范围时,一般取额定转矩下的最高转速与最低转速的比值,即 N T T n n D == min max 最高转速受电动机的换向和机械强度的限制; 最低转速受生产机械对转速相对稳定性(静差率)要求的限制。 一般,金属切削机床主传动系统的调速范围为4~100,辅助传动系统可达1000;轧钢工业中的热轧机传动调速范围为3~10,而冷轧机可达20以上;造纸机传动系统调速范围为10~20。 2.4.1.2 调速的稳定性和静差率s 调速的稳定性是表示负载转矩在给定范围内变化时所引起的速度变化。它决定于机械特性的斜率。斜率大的机械特性在发生负载波动时,引起的速度变化也大,如图2-26所示。这会影响到加工质量和生产效率。 只用机械特性的斜率来表示调速的稳定性很不确切,需要引入新的概念来表示调速的相对稳定性——静差率。 静差率是指电机由理想空载到满载(额定负载)时的转速落差与理想转速的比值,即

电气传动控制系统

1 电气传动控制系统 1.1 电气传动自动控制系统优化设计方法研究概述 电气传动系统又称电力拖动系统,是以电动机作为原动机的机械系统的总称。其目的是为了通过对电动机合理的控制,实现生产机械的起动,停止,速度、位置调节以及各种生产工艺的要求。随着技术的进步及社会对环保、节能要求的日渐严格,电气传动系统在社会各方面的使用越来越广泛。如何优化、设计电气传动系统,以实现更低廉的成本、更好的性能就具有十分重要的意义。近年来许多新理论新策略应用于电气传动系统中,并获得了良好的效果。但对大部分系统而言,其基本的闭环控制结构、利用调节器对控制对象进行校正以使系统符合要求的方法基本未变。所以,我国电气传动系统设计领域的权威专家陈伯时教授总结出的调节器的“工程设计方法”,目前在实际设计中仍然是主流设计方法。如何设计出优秀的调节器依然是电气传动系统优化设计的主要内容。因此借鉴了“工程设计方法”的基本思想,以电气传动系统的优化设计为目的,在现有的调节器“工程设计方法”基础上,采用其采用少量典型系统、分步设计的基本设计思路,以系统闭环幅频特性峰值、调节时间最小为最优化原则,分别针对典型Ⅰ、Ⅱ、Ⅲ型系统研究出一套更能满足实际工程需要的设计方法。并总结出了便于设计者使用的参数、性能指标值计算公式及图表。针对交流电机矢量控制系统鲁棒性差的问题则进行了研究并提出了优化方案。利用MATLAB编程和SIMULINK仿真对所设计的系统进行验证,结果表明针对典型Ⅰ、Ⅱ型系统的设计方法所设计出的系统性能指标及设计灵活性均好于“工程设计方法”;针对典型Ⅲ型系统的设计方法则是“工程设计方法”所未涉及而又实际需要的,故填补了“工程设计方法”的空白;在交流电机矢量控制系统中引入复合磁链观测器及双层模糊控制器后,系统的鲁棒性及性能得到了提高。 1.2 信息化时代的电气传动技术 当前世界上正处于信息化的时代,而我国工业化尚未完成,以信息化带动工业化是我们的重要任务。电气传动是工业化的重要基础。正如人体,信息技术好

基于某款纯电动汽车动力系统计算与仿真分析

基于某款纯电动汽车动力系统计算与仿真分析 摘要动力系统参数的选择与匹配对电动汽车的动 力性和经济性会产生很大的影响。文章在理论计算和系统分析的基础上,对电机、电池以及传动系传动比进行了参数匹配,分析了纯电动汽车动力系统参数的选择对电动汽车性能的影响。GT-suite 仿真结果表明,所选动力总成部件与整车匹配后能够满足纯电动轿车动力性的要求。为纯电动汽车动力系统参数选择与匹配提供了参考。 关键词电动汽车动力系统参数匹配动力性仿真 中图分类号:U463. 23 文献标识码:A 电动汽车是解决当前能源短缺和环境污染问题可行的 技术之一。电动汽车是由车载动力电池作为能量源的零排放汽车。近些年来,电动汽车的研制热潮在全世界范围内兴起,尤其是在我国,逐步向小批量商业化生产的方向发展。电动汽车技术的发展依赖于多学科技术的进步,尤其需要解决的问题是进一步提高动力性能,增加续驶里程,降低成本。考虑开发经费和开发周期,建立计算机仿真模型对电动汽车的性能进行仿真分析是很有意义的。 1电动汽车动力系统参数要求电动汽车的动力性主要取决于动力及传动系统参数匹配,包括动力电池、驱动电机及传动系统控制器等部 件。 根据设计要求,本电动汽车设计参数为:最高车速 150km/h,最大爬坡度》30%,续驶里程》180km。0100km/h 的时间为: < 15s。相关的车辆参数为:汽车整备质量: 1600kg ;迎风面积:2.19m2;长?卓?赘呤滴?631?? 790?? 470 m m ;轴距为:2650;滚动阻力为:0.0015;风阻系数: 0.296 。 2电机参数匹配电机作为电动汽车主要动力源,电机的匹配对电动汽车

相关主题
文本预览
相关文档 最新文档