当前位置:文档之家› 分子生物学电子教案第十一章

分子生物学电子教案第十一章

分子生物学电子教案第十一章
分子生物学电子教案第十一章

?第十一章真核基因表达调控

1.课程教学内容

(1) 真核基因表达调控的特点

(2) 真核基因表达调控的不同层次

(3) 染色体水平的调控

(4) DNA水平的调控

(5) 真核基因转录水平的调节调控

2.课程重点、难点

真核生物基因表调控的特点、组蛋白乙酰化和DNA甲基化对基因表达的影响及机理、真核基因转录水平调控的机理。

3.课程教学要求

(1)掌握真核生物基因表达调控的特点和方式;

(2)掌握真核生物的多层次对基因的表达调控的机理和特点,理解真核生物与运河生物的基因调控的异同;

(3)了解真核生物的其他表达调控方式。

一、真核基因组的复杂性

与原核生物比较,真核生物的基因组更为复杂,可列举如下。

▲真核基因组比原核基因组大得多,大肠杆菌基因组约 4×106bp ,哺乳类基因组在109bp 数量级,比细菌大千倍;大肠杆菌约有 4000 个基因,人则约有 10 万个基因。

▲真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传成分 ( 如线粒体 DNA 等 ) ,这就增加了基因表达调控的层次和复杂性。

▲原核生物的基因组基本上是单倍体,而真核基因组是二倍体。

▲如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元,共同开启或关闭,转录出多顺反子(polycistron) 的 mRNA ;真核生物则是一个结构基因转录生成一条 mRNA ,即 mRNA 是单顺反子 (monocistron) ,基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。

▲原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中仅约 10% 的序列为蛋白质、 rRNA 、 tRNA 等编码,其余约 90% 的序列功能至今还不清楚。

▲原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码的基因绝大多数是不连续的,即有外显子 (exon) 和内含子 (intron) ,转录后需经剪接(splicing) 去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节▲原核基因组中除 rRNA 、 tRNA 基因有多个拷贝外,重复序列不多。哺乳动物基因组中则存在大量重复序列 (repetitive sequences) 。用复性动力学等实验表明有三类重复序列:

①高度重复序列 (highly repetitive sequences) ,这类序列一般较短,长 10 -300bp ,在哺乳类基因组中重复 106 次左右,占基因组 DNA 序列总量的10 - 60% ,人的基因组中这类序列约占 20% ,功能还不明了。

②中度重复序列 (moderately repetitive sequences) ,这类序列多数长 100 -500bp ,重复 101 - 105 次,占基因组 10-40% 。例如哺乳类中含量最多的一种称为Alu 的序列,长约 300bp ,在哺乳类不同种属间相似,在基因组中重复 3-×105 次,在人的基因组中约占 7% ,功能也还不很清楚。在人的基因组中 18S/28SrRNA 基因重复280 次, 5SrRNA 基因重复 2000 次, tRNA 基因重复 1300 次, 5 种组蛋白的基因串连成簇重复 30-40 次,这些基因都可归入中度重复序列范围。

③单拷贝序列 (single copy sequences) 。这类序列基本上不重复,占哺乳类基因组的 50-80% ,在人基因组中约占 65% 。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。

从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划 (human gene project) 完成,绘出人全部基因的染色体定位图,测出人基因组 109bp 全部 DNA 序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。

二、真核基因表达调控的特点

尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

(一) 真核基因表达调控的环节更多

如前所述,基因表达是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。同原核生物一样,转录依然是真核生物基因表达调控的主要环节。但真核基因转录发生在细胞核 ( 线粒体基因的转录在线粒体内 ) ,翻译则多在胞浆,两个过程是分开的,因此其调控增加了更多的环节和复杂性,转录后的调控占有了更多的分量。

真核细胞在分化过程中会发生基因重排 (gene rearrangement) ,即胚原性基因组中某些基因会再组合变化形成第二级基因。例如编码完整抗体蛋白的基因是在淋巴细胞分化发育过程中,由原来分开的几百个不同的可变区基因经选择、组合、变化,与恒定区基因一起构成稳定的、为特定的完整抗体蛋白编码的可表达的基因。这种基因重排使细胞可能利用几百个抗体基因的片段,组合变化而产生能编码达 108 种不同抗体的基因,其中就有复杂的基因表达调控机理。

此外,真核细胞中还会发生基因扩增 (gene amplification) ,即基因组中的特定段落在某些情况下会复制产生许多拷贝。最早发现的是蛙的成熟卵细胞在受精后的发育过程中其rRNA 基因 ( 可称为 rDNA) 可扩增 2000 倍,以后发现其他动物的卵细胞也有同样的情况,这很显然适合了受精后迅速发育分裂要合成大量蛋白质,需要有大量核糖体。又如 MTX(methotrexate) 是叶酸的结构类似物,一些哺乳类细胞会对含有利用叶酸所必需的二氢叶酸还原酶 (dihydrofolate reductase, DHFR) 基因的 DNA 区段扩增40?00 倍,使 DHFR 的表达量显著增加,从而提高对 MTX 的抗性。基因的扩增无疑能够大幅度提高基因表达产物的量,但这种调控机理至今还不清楚。

(二) 真核基因的转录与染色质的结构变化相关

真核基因组 DNA 绝大部分都在细胞核内与组蛋白等结合成染色质,染色质的结构、染色质中 NA 和组蛋白的结构状态都影响转录,至少有以下现象:

1. 染色质结构影响基因转录细胞分裂时染色体的大部分到间期时松开分散在核内,称为常染色质 (euchromatin) ,松散的染色质中的基因可以转录。染色体中的某些区段到分裂期后不像其他部分解旋松开,仍保持紧凑折叠的结构,在间期核中可以看到其浓集

的斑块,称为异染色质 (heterochromatin) ,其中从未见有基因转录表达;原本在常染色质中表达的基因如移到异染色质内也会停止表达;哺乳类雌体细胞 2 条 X 染色体,到间期一条变成异染色质者,这条 X 染色体上的基因就全部失活。可见紧密的染色质结构阻止基因表达。

2. 组蛋白的作用早期体外实验观察到组蛋白与 DNA 结合阻止 DNA 上基因的转录,去除组蛋基因又能够转录。组蛋白是碱性蛋白质,带正电荷,可与 DNA 链上带负电荷的磷酸基相结合,从而遮蔽了 DNA 分子,妨碍了转录,可能扮演了非特异性阻遏蛋白的作用;染色质中的非组蛋白成分具有组织细胞特异性,可能消除组蛋白的阻遏,起到特异性的去阻遏促转录作用。

发现核小体后,进一步观察核小体结构与基因转录的关系,发现活跃转录的染色质区段,有富含赖氨酸的组蛋白 (H1 组蛋白 ) 水平降低, H 2A ·H2B 组蛋白二聚体不稳定性增加、组蛋白乙酰化 (acetylation) 和泛素化 (ubiquitination) ,以及 H3 组蛋白巯基化等现象,这些都是核小体不稳定或解体的因素或指征。转录活跃的区域也常缺乏核小体的结构。这些都表明核小体结构影响基因转录。

3. 转录活跃区域对核酸酶作用敏感度增加

染色质 DNA 受 DNaseⅠ作用通常会被降解成 00 、 400……bp 的片段,反映了完整的核小体规则的重复结构。但活跃进行转录的染色质区域受 DNaseⅠ消化常出现 100 -200bp 的 DNA 片段,且长短不均一,说明其 DNA 受组蛋白掩盖的结构有变化,出现了对DNaseⅠ高敏感点 (hypersensitive site) 。这种高敏感点常出现在转录基因的 5′侧区 (5′flanking region) 、 3′末端或在基因上,多在调控蛋白结合位点的附近,分析该区域核小体的结构发生变化,可能有利于调控蛋白结合而促进转录。

4.DNA 拓扑结构变化天然双链 DNA 的构象大多是负性超螺旋。当基因活跃转录时,RNA 聚合酶转录方向前方 DNA 的构象是正性超螺旋,其后面的 DNA 为负性超螺旋。正性超螺旋会拆散核小体,有利于 RNA 聚合酶向前移动转录;而负性超螺旋则有利于核小体的再形成。

5.DNA 碱基修饰变化真核 DNA 中的胞嘧啶约有 5% 被甲基化为 5 甲基胞嘧啶 (5 - methylcytidine, m 5C ) ,而活跃转录的 DNA 段落中胞嘧啶甲基化程度常较低。这种甲基化最常发生在某些基因 5′侧区的 CpG 序列中,实验表明这段序列甲基化可使其后的基因不能转录,甲基化可能阻碍转录因子与 DNA 特定部位的结合从而影响转录。如果用基因打靶的方法除去主要的 DNA 甲基化酶,小鼠的胚胎就不能正常发育而死亡,可见 DNA 的甲基化对基因表达调控是重要的。

由此可见,染色质中的基因转录前先要有一个被激活的过程,但目前对激活机制还缺乏认识。

(三) 真核基因表达以正性调控为主

真核 RNA 聚合酶对启动子的亲和力很低,基本上不依靠自身来起始转录,需要依赖多种激活蛋白的协同作用。真核基因调控中虽然也发现有负性调控元件,但其存在并不普遍;真核基因转录表达的调控蛋白也有起阻遏和激活作用或兼有两种作用者,但总的是以激活蛋白的作用为主。即多数真核基因在没有调控蛋白作用时是不转录的,需要表达时就要有激活的蛋白质来促进转录。换言之:真核基因表达以正性调控为主导。

三、真核基因转录水平的调控

真核细胞的三种 RNA 聚合酶 (Ⅰ、Ⅱ和Ⅲ) 中,只有 RNA 聚合酶Ⅱ能转录生成mRNA ,以下主要讨论 RNA 聚合酶Ⅱ的转录调控。

(一) 顺式作用元件 (cis acting elements)

真核基因的顺式调控元件是基因周围能与特异转录因子结合而影响转录的 DNA 序列。其中主要是起正性调控作用的顺式作用元件,包括启动子 (promoter) 、增强子(enhancer) ;近年又发现起负性调控作用的元件棗沉寂子 (silencer) 。

1. 启动子与原核启动子的含义相同,是指 RNA 聚合酶结合并起动转录的 DNA 序列。但真核同启动子间不像原核那样有明显共同一致的序列,而且单靠 RNA 聚合酶难以结合DNA 而起动转录,而是需要多种蛋白质因子的相互协调作用,不同蛋白质因子又能与不同 DNA 序列相互作用,不同基因转录起始及其调控所需的蛋白因子也不完全相同,因而不同启动子序列也很不相同,要比原核更复杂、序列也更长。真核启动子一般包括转录起始点及其上游约 100 - 200bp 序列,包含有若干具有独立功能的 DNA 序列元件,每个元件约长 7 - 30bp 。

启动子中的元件可以分为两种:

①核心启动子元件 (core promoter element) 指 RNA 聚合酶起始转录所必需的最小的 DNA 序列,包括转录起始点及其上游- 25/ - 30bp 处的 TATA 盒。核心元件单独起作用时只能确定转录起始位点和产生基础水平的转录。

②上游启动子元件 (upstream promoter element) 包括通常位于- 70bp 附近的CAAT 盒和 GC 盒、以及距转录起始点更远的上游元件。这些元件与相应的蛋白因子结合能提高或改变转录效率。不同基因具有不同的上游启动子元件,其位置也不相同,这使得不同的基因表达分别有不同的调控。图 19-14 以人金属硫蛋白基因为例子,说明真核基因上游启动子元件的组织情况和各元件相应结合的转录因子。

2. 增强子是一种能够提高转录效率的顺式调控元件,最早是在 SV40 病毒中发现的长约 200bp 的一段 DNA ,可使旁侧的基因转录提高 100 倍,其后在多种真核生物,甚至在原核生物中都发现了增强子。增强子通常占 100 - 200bp 长度,也和启动子一样由若干组件构成,基本核心组件常为 8 - 12bp ,可以单拷贝或多拷贝串连形式存在。增强子的作用有以下特点:

①增强子提高同一条 DNA 链上基因转录效率,可以远距离作用,通常可距离 1 -

4kb 、个别情况下离开所调控的基因 30kb 仍能发挥作用,而且在基因的上游或下游都能起作用。

②增强子作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。而将启动子倒就不能起作用,可见增强子与启动子是很不相同的。

③增强子要有启动子才能发挥作用,没有启动子存在,增强子不能表现活性。但增强子对动子没有严格的专一性,同一增强子可以影响不同类型启动子的转录。例如当含有增强子的病毒基因组整合入宿主细胞基因组时,能够增强整合区附近宿主某些基因的转录;当增强子随某些染色体段落移位时,也能提高移到的新位置周围基因的转录。使某些癌基因转录表达增强,可能是肿瘤发生的因素之一。

④增强子的作用机理虽然还不明确,但与其他顺式调控元件一样,必须与特定的蛋白质因结合后才能发挥增强转录的作用。增强子一般具有组织或细胞特异性,许多增强子只在某些细胞或组织中表现活性,是由这些细胞或组织中具有的特异性蛋白质因子所决定的。

3. 沉寂子最早在酵母中发现,以后在 T 淋巴细胞的 T 抗原受体基因的转录和重排中证实这种负调控顺式元件的存在。目前对这种在基因转录降低或关闭中起作用的序列研究还不多,但从已有的例子看到:沉寂子的作用可不受序列方向的影响,也能远距离发挥作用,并可对异源基因的表达起作用。

(二) 反式作用因子 (trans acting factors)

以反式作用影响转录的因子可统称为转录因子 (transcription factors, TF) 。RNA 聚合酶是一种反式作用于转录的蛋白因子。在真核细胞中 RNA 聚合酶通常不能单独发挥转录作用,而需要与其他转录因子共同协作。与 RNA 聚合酶Ⅰ、Ⅱ、Ⅲ相应的转录因子分别称为 TFⅠ、 TFⅡ、 TFⅢ,对 TFⅡ研究最多。表 19-2 列出真核基因转录需要基本的 TFⅡ。

以前认为与 TATA 盒结合的蛋白因子是 TFⅡ- D ,后来发现 TFⅡ- D 实际包括两类成分:与 TATA 盒结合的蛋白是 TBP(TATAbox binding protein) ,是唯一能识别TATA 盒并与其结合的转录因子,是三种 RNA 聚合酶转录时都需要的;其他称为 TBP相关因子 (TBP associated factors TAF) ,至少包括 8 种能与 TBP 紧密结合的因子。转录前先是 TFⅡ- D 与 TATA 盒结合;继而 TFⅡ- B 以其 C 端与 TBP - DNA 复合体结合,其 N 端则能与 RNA 聚合酶Ⅱ亲和结合,接着由两个亚基组成的 TFⅡ-F 加入装配, TFⅡ- F 能与 RNA 聚合酶形成复合体,还具有依赖于 ATP 供给能量的DNA 解旋酶活性,能解开前方的 DNA 双螺旋,在转录链延伸中起作用。这样,启动子序列就与 TFⅡ- D 、 B 、 F 及 RNA 聚合酶Ⅱ结合形成一个“最低限度”能有转录功能基础的转录前起始复合物 (pre intitiation complex, PIC) ,能转录mRNA 。 TFⅡ- H 是多亚基蛋图 19-15 RNA 聚合酶Ⅱ转录复合体的形成示意图白复合体,具有依赖于 ATP 供给能量的 DNA 解旋酶活性,在转录链延伸中发挥作用; TF Ⅱ- E 是两个亚基组成的四聚体,不直接与 DNA 结合而可能是与 TFⅡ- B 联系,能提高 ATP 酶的活性; TFⅡ- E 和 TFⅡ- H 的加入就形成完整的转录复合体

( 图 19?5) ,能转录延伸生成长链 RNA , TFⅡ- A 能稳定 TFⅡ- D 与 TATA 盒的结合,提高转录效率,但不是转录复合体一定需要的。以上所述是典型的启动子上转录复合体的形成,但有的真核启动子不含 TATA 盒或不通过 TATA 盒开始转录。例如有的无 TATA 盒的启动子是靠 TFⅡ- I 和 TFⅡ- D 共同组成稳定的转录起始复合体开始转录的。由此可以看到真核转录起始的复杂性。

不同基因由不同的上游启动子元件组成,能与不同的转录因子结合,这些转录因子通过与基础的转录复合体作用而影响转录的效率。

现在已经发现有许多不同的转录因子,看到的现象是:同一 DNA 序列可被不同的蛋白因子所识别;能直接结合 DNA 序列的蛋白因子是少数,但不同的蛋白因子间可以相互作用,因而多数转录因子是通过蛋白质-蛋白质间作用与 DNA 序列联系并影响转录效率的。转录因子之间或转录因子与 DNA 的结合都会引起构象的变化,从而影响转录的效率。

作为蛋白质的转录因子从功能上分析其结构可包含有不同区域,①DNA 结合域(DNA binding domain) ,多由 60 - 100 个氨基酸残基组织的几个亚区组成;②转录激活域 (activating domain) ,常由 30 - 100 氨基酸残基组成,这结构域有富含酸性氨基酸、富含谷氨酰胺、富含脯氨酸等不同种类,以酸性结构域最多见;③连接区,即连接上两个结构域的部分。不与 DNA 直接结合的转录因子没有 DNA 结合域,但能通过转录激活域直接或间接作用于转录复合体而影响转录效率。

与 DNA 结合的转录因子大多以二聚体形式起作用,与 DNA 结合的功能域常见有以下几种:

①螺旋-转角-螺旋 (helix turn helix, HTH) 及螺旋 - 环 - 螺旋 (helix loop helix,HLH) 这类结构至少有两个α螺旋,其间由短肽段形成的转角或环连接,两个这样的 motif 结构以二聚体形式相连,距离正好相当于 DNA 一个螺距

(3.4nm) ,两个α螺旋刚好分别嵌入 DNA 的深沟。

②锌指 (zinc finger) 其结构如图 19 - 18 所示,每个重复的“指”状结构约含 23 个氨基酸残基,锌以 4 个配价键与4 个半胱氨酸、或 2 个半胱氨酸和 2 个组

氨酸相结合。整个蛋白质分子可有 2? 个这样的锌指重复单位。每一个单位可以其指部伸入 DNA 双螺旋的深沟,接触 5 个核苷酸。例如与 GC 盒结合的转录因子 SP1 中就有连续的 3 个锌指重复结构。图 19 - 19 碱性亮氨酸拉链结构及其与 DNA 的结合

③碱性-亮氨酸拉链 (basic leucine zipper, bZIP) ,该结构的特点是蛋白质分子的肽链上每隔 6 个氨基酸就有一个亮氨酸残基,结果就导致这些亮氨酸残基都在α螺旋的同一个方向出现。两个相同结构的两排亮氨酸残基就能以疏水键结合成二聚体,该二聚体的另一端的肽段富含碱性氨基酸残基,借其正电荷与 DNA 双螺旋链上带负电荷的磷酸基团结合。若不形成二聚体则对 DNA 的亲和结合力明显降低。在肝脏、小肠上皮、脂肪细胞和某些脑细胞中有称为 C/EBP 家族的一大类蛋白质能够与 CAAT 盒和病毒增

强子结合,其特征就是能形成 bZIP 二聚体结构。

从上述可见:转录调控的实质在于蛋白质与 DNA 、蛋白质与蛋白质之间的相互作用,构象的变化正是蛋白质和核酸“活”的表现。但对生物大分子间的辨认、相互作用、结构上的变化及其在生命活动中的意义,人们的认识和研究还只在起步阶段,其中许多内容甚至重要的规律我们可能至今还一无所知,有待于努力探索。

本章提要

基因表达是基因经过一系列步骤表现出其生物功能的整个过程,是受着严密、精确调控的。基因组含有生物体生存、发育、活动和繁殖所需要的全部遗传信息,但这些遗传信息并不同时全部都表达出来。不同的组织细胞、细胞分化发育不同时期,基因表达的种类和强度各不相同,决定着细胞的形态和功能;生物体能适应环境变化改变自身的基因表达以利生存,因而基因表达调控也是生命本质之所在。某些基因表达不大受环境影响,称为组成性表达;其中某些基因表达产物是细胞或生物体整个生命过程中都持续需要而必不可少的,这类基因称为看家基因。另一类基因表达易随环境信号而变化,称为适应性表达。环境变化,使基因表达水平提高者称为诱导,使基因表达水平降低者称为阻遏。

基因表达调控可以在复制、扩增、基因激活、转录、转录后、翻译和翻译后等多级水平上行,但 mRNA 转录起始是基因表达调控的基本控制点。转录起始调控的实质是 DNA -蛋白质 / 蛋白质蛋白质间的相互作用对 RNA 聚合酶活性的影响。调控结果使基因表达水平提高的称为正性调控 ( 上调 ) ,使基因表达水平降低者为负性调控 ( 下

调 ) 。在同一条核酸链上起调控基因表达作用的核酸序列称为顺式作用元件;能对不同核酸链上的基因表达起调控作用的蛋白质称反式作用因子或转录因子。核酸链上的顺式作用元件与反式作用蛋白因子相互作用而调控基因表达。

多数原核生物的基因按功能相关性串连排列共同组成一个转录调控单位棗操纵元。第一个阐明的操纵元是 1ac 操纵元。操纵元最基本的组成元件有:受调控的结构基因群、启动子、操纵子、调控基因和终止子。有的操纵元还含有衰减子。在同一启动子控制下,从结构基因群转录合成多顺反子 mRNA ,实现协调表达。由调控基因编码合成的调控蛋白作用于操纵子序列,起到阻遏基因表达作用的称阻遏蛋白,起促进基因表达者为激活蛋白。调控蛋白可受特定的小分子作用发生变构而改变其对操纵子的作用,这是许多原核基因适应内外环境变化,改变表达水平的机理所在。

真核基因组比原核大得多,结构更复杂,含有许多重复序列,基因组的大部分序列不是为蛋白质编码的,而为蛋白质编码的基因绝大多数是不连续的。真核生物基本上是采取逐个基因调控表达的形式。真核基因表达调控的环节更多,转录前可以有基因的扩增或重排,并涉及染色质结构的改变、基因激活过程。转录后调控的方式也很多,但仍

以转录起始调控为主。正性调控是真核基因调控的主导方面, RNA 聚合酶的转录活性依赖于基本转录因子,在转录前先形成转录复合体,其转录效率受许多蛋白因子的影响,协调表达更为复杂。目前对真核基因表达调控的认识和研究还只处在初级阶段。

复习思考题

1. 什么是基因表达 ? 试述基因表达变化的特点及其调控对生物体的重要性。

2. 为什么说转录起始的调控是基因表达调控的中心环节 ?

3. 举实际例子说明操纵元的组成元件及其作用,并分析可阻遏的操纵元和可诱导的操纵元的调控方式。

4. 比较真核和原核生物的基因表达和基因表达调控相似和不同之处。

5. 论述启动子、增强子和转录因子的概念、结构、功能及其相互关系。

分子生物学课程教学大纲(精)

分子生物学课程教学大纲 课程简介 一、课程简介 分子生物学主要研究核酸蛋白质等所有生物大分子的结构、功能及基因结构、基因表达,以及生物大分子互相作用以及生理功能,以此了解不同生命形式特殊规律的化学和物理的基础。分子生物化学是在分子水平上研究生命奥秘的学科,代表当前生命科学的主流和发展的趋势。医学分子生物学是分子生物学的重要分支,本课程包括三方面的内容:一是介绍分子生物学基本原理;二是阐述某些疾病发生和发展的分子机制;三是介绍分子生物学技术在临床上的应用。 本大纲适用于夜大专升本等专业学生。 二、总体要求 通过本课程学习,要求学生做到: 1. 掌握、熟悉分子生物学的基本原理以及与相关临床知识的联系。 2. 学会应用基本分子生物学技术进行生物大分子的检测,并能应用于临床。 3. 树立良好的学习态度,培养创新能力与实践能力,注重知识、能力、素质的协调发展。 三、时数分配

绪论 学习目的和要求 通过本章学习,掌握医学分子生物学的定义、内容。 课程内容 一、介绍医学分子生物学的定义。 二、介绍医学分子生物学的发展历史。 三、医学分子生物学的现状与未来。 考核知识点 一、医学分子生物学的定义。 二、医学分子生物学的内容。 三、医学分子生物学发展过程中的一些重要历史事件。 四、医学分子生物学的现状与未来。 考核要求 一、掌握 医学分子生物学的定义。 二、熟悉 医学分子生物学主要解决的问题。 三、了解 1. 医学分子生物学发展过程中的一些重要历史事件。 2. 医学分子生物学的未来发展方向。 第一章基因 学习目的和要求 通过本章学习,掌握基因的基本概念、基因的结构特点及基因的遗传功能,了解基因突变的机制及其与疾病的关系。 课程内容 一、基因的基本概念及基因的结构特点 1.核酸是遗传信息的载体 大部分生物中构成基因的核酸物质是DNA, 少数生物(如RNA病毒)中是RNA。 2.基因的基本概念 基因的现代分子生物学概念。 3.基因的结构特点 基因的基本结构包括结构基因和转录调控序列。原核生物的结构基因是连续的,而真核生物的结构基因是不连续的,由内含子和外显子组成。原核生物基因的转录调控序列包括启动子、终止子、操纵元件、正调控蛋白结合位点等。真核生物基因的转录调控序列称为顺式调控元件或顺式作用元件,包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 二、结构基因中贮存的遗传信息

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

分子生物学课程教学大纲

《分子生物学》课程教学大纲 课程编号:233201 课程名称:《分子生物学》 总学时数:64 实验学时:0 先修课及后续课:先修课为《生物化学》,《遗传学》;后续课为《基因工程》 一、说明部分 1. 课程性质:生物技术专业课,必修 2. 教学目标及意义 本课程是高等院校生物专业的专业课。旨在使学生掌握分子生物学的基本知识、基本概念,并了解分子生物学的发展趋势及应用前景。 3. 教学内容和要求 本课程安排在学生完成《生物化学》、《遗传学》等有关基础和专业基础课程之后的第六学期。内容上注意与以上课程的衔接,并避免不必要的重复。同时注意与后续课程《基因工程》等课程的衔接。课堂教学应力求使学生掌握基本概念,了解分子生物学的发展历史以及最新研究成果;熟练掌握DNA的结构与功能、DNA的复制、RNA的转录、蛋白质的合成、RNA在蛋白质合成中的功能、遗传密码、基因表达与调控的本质、基因组与比较基因组学;由于该课程内容繁多,发展迅速,故授课教师在吃透教材基础上,应广泛阅读相关参考资料,紧跟本学科发展,随时补充新内容,使学生及时了解本学科的重要进展及发展动态。分子生物学的发展依赖于现代分析和研究技术,因此,配合分子生物学实验课程,讲解一些分子生物学的重要研究方法。 4. 教学重点,难点 重点:DNA的结构与功能;DNA的转座;基因的表达与调控 难点:基因表达的调控 5. 教学方法与手段 在教学方法上采取课堂讲授为主,辅以多媒体课件、提问、综述、实验、作业、教学辅助材料等,以加强学生对理论知识的消化和理解,在教学过程应注意积极启发学生的思维,培养学生发现问题和解决问题的能力。 6. 教材及主要参考书 教材:朱玉贤,李毅.《现代分子生物学》,第三版;北京:高等教育出版社.2007. 主要参考书: (1)杨岐生.《分子生物学基础》,杭州:浙江大学出版社.1998. (2)郜金荣等.《分子生物学》,武汉:武汉大学出版社.1999. (3)阎隆飞,张玉麟.《分子生物学》,北京:中国农业大学出版社.1997. (4)魏群,分子生物学实验指导.北京:高等教育出版社,2003. (5)李振刚.《分子遗传学》,北京:科学出版社,2000. (6)Weaver R. Molecular Biology. 2nd Edition.北京:科学出版社,2001.

现代分子生物学课后习题及答案(朱玉贤 第3版)

现代分子生物学课后习题及答案(共10章) 第一章绪论 1.你对现代分子生物学的含义和包括的研究范围是怎么理解的? 答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 2.分子生物学研究内容有哪些方面? 答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。B.蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子——蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.分子生物学发展前景如何? 答:21世纪是生命科学世纪,生物经济时代,分子生物学将取得突飞猛进的发展,结构基因组学、功能基因组学、蛋白质组学、生物信息学、信号跨膜转导成为新的热门领域,将在农业、工业、医药卫生领域带来新的变革。 4.人类基因组计划完成的社会意义和科学意义是什么? 答:社会意义:人类基因组计划与曼哈顿原子计划、阿波罗登月计划并称为人类科学史上的三大工程,具有重大科学意义、经济效益和社会效益。1)极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,为人类自身疾病的诊断和治疗提供依据,为医药产业带来翻天覆地的变化;2)促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业;3)基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业(转基因动、植物)、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。 科学意义:1)确定人类基因组中约5万个编码基因的序列基因在基因组中的物理位置,研究基因的产物及其功能;2)了解转录和剪接调控元件的结构和位置,从整个基因组结构

分子生物学课程(现代生物学精要速览中文版)

《分子生物学课程》教案 2007~2008学年第 1 学期 授课专业:生物技术 课程名称:分子生物学 主讲教师:何宁佳 查幸福 赵爱春

课程说明 一、课程名称:分子生物学 二、总课时数:45 三、先修课程:基因工程原理 四、使用教材: PC Turner, AG McLennan, AD Bates&MRH White, 《Instant notes in Molecular Biology》, 科学出版社,2004年1月第八次印刷 五、教学参考书: 1 PC特纳、AG麦克伦南、AD贝茨、MRH怀特,《分子生物学-现代生物学精要速览中文版》,科学出版社,2004年8月第七次印刷。 2 朱玉贤,李毅编著《现代分子生物学》,第二版,高等教育出版社,2004年1月第3次印刷。 六、考核方式:理论课采用闭卷考试的方法,总成绩,平时成绩30%,中期考试10%,期末考试60% 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标, 以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个 章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明 如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

现代分子生物学作业

现代分子生物学与基因工程作业 姓名________________班级_____________学号________________ 1、绝大多数的真核生物染色体中均含有HI、H2A、H2B、H3和H4五种组蛋白,在不同物种之间它们的保守性表现在() A.H3和H4具有较高的保守性,而H2A和H2B的保守性比较低 B. H2A和H2B具有较高的保守性,而H3和H4的保守性比较低 C. H1和H4具有较高的保守性,而H3和H2B的保守性比较低 D. H1和H3具有较高的保守性,而H4和H2B的保守性比较低 2、下列叙述哪个是正确的() A. C值与生物体的形态学复杂性成正相关 B. C值与生物体的形态学复杂性成负相关 C. 每个门的最小C值与生物体的形态学复杂性是大致相关的 C值指一种生物单倍体基因组DNA的总量。不同物种的C值差异很大,随着生物体的进化 3、真核DNA存在于() A. 线粒体与微粒体内 B. 线粒体与高尔基体内 C. 线粒体与细胞核内 D.细胞核与高尔基体内 E. 细胞核与溶酶体内 4、在核酸分子中核苷酸之间的连接方式是() A. 2‵-3‵磷酸二酯键 B. 2‵-5‵磷酸二酯键 C. 3‵-5‵磷酸二酯键 D.糖苷键 5、所有生物基因组DNA复制的相同之处是() A. 半保留复制 B. 全保留复制 C. 嵌合型复制 D. 偶联型复制 6、复制子是() A. 细胞分离期间复制产物被分离之后的DNA片段 B. 复制的DNA片段和在此过程中所需的酶和蛋白 C. 任何自发复制的DNA序列(它与复制起始点相连) D. 复制起点和复制叉之间的DNA片段 7、在原核生物复制子中,下列哪种酶除去RNA引发体并加入脱氧核糖核酸() A.DNA聚合酶I B.DNA聚合酶II C.DNA聚合酶III D. 连接酶

分子生物学电子教案

操纵子:原核生物中由一个或多个相关基因以及转录、翻译、调控原件组成的基因表达单元。内含子:一个基因中非编码DNA片段,它分开相邻的外显子,内含子是阻断基因线性表达的序列。 外显子:是真核生物基因的一部分,它在剪接后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 弱化子:原核生物操纵子中能显著减弱甚至终止转录作用的一段核苷酸序列,该区域能形成不同的二级结构,利用原核微生物转录与翻译的偶联机制对转录进行调节。 顺式作用元件:是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率,顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。 顺式作用:顺式作用元件对基因表达起调控作用的过程。 增强子:增加同它连锁的基因转录频率的DNA序列,因为它能强化转录的起始,又称强化子。 反义RNA:为大肠杆菌编码许多小分子mRNA,它们能也不同的mRNA结合,从而在翻译水平上正调控和负调控,可能关闭SD序列和释放SD序列,由于这些小分子通过与反义RNA 进行碱基配对结合来行使功能。 重叠基因:是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分;重叠基因有多种重叠方式。常见于细菌和噬菌体的基因组中。核糖开关:mRNA一些非编码区的序列折叠成一定的构象,这些构象的改变应答于体内的一些代谢分子,从而通过这些构象的改变达到调节mRNA转录的目的 回文序列:双链DNA中的一段倒置重复序列;两条链从5 ‘到3 ‘方向阅读序列一致,从3 ‘到5 ‘方向的序列一致 转座子:插入序列,复合型转座子。效应:引起突变,产生新的基因,产生染色体畸变,引起生物进化 魔斑核苷酸:细菌生长过程中在缺乏氨基酸供应时产生的一个应急产物。主要是三磷酸鸟苷合成的四磷酸鸟苷和五磷酸鸟苷。主要功能是干扰RNA聚合酶与启动子结合的专一性,诱发细菌的应急反应,帮助细菌在不良环境条件下得以存活。 反式作用因子:是指能结合在各类顺式作用元件核心序列上参与调控基因转录效率的蛋白质或RNA。RNA聚合酶是催化基因转录最主要的酶。 基因沉默:真核生物中由双链RNA诱导的识别和清除细胞中非正常RNA的一种机制;分为转录水平基因沉默和转录后基因沉默。 RNA干扰:是指双链RNA诱发的、同源mRNA高效特异性降解技术,而使相应基因表达沉默。 单顺反子mRNA:只编码一种蛋白质的mRNA。 原核生物染色体的特征:结构简单,存在转录单元,有重叠基因。 DNA的修复:错配修复,切除修复,重组修复,DNA的直接修复,SOS反应。 玉米中的转座子:自主性,具有自主剪接和转座的功能;非自主性,单独存在时是稳定的,当基因组中存在与非自主性转座子同家族的自主性转座子时,才具备转座功能。 RNA的转录:是按5'→3'方向合成的,以DNA双链中的反义链为模板,根据碱基配对原则,合成的RNA带有与DNA编码链相同的序列。包括模板识别、转录起始、转录延伸、转录终止。真核生物mRNA的特征:1.5'端存在帽子结构,常常被甲基化,使mRNA免遭核酸酶的破坏2.具有多(A)尾巴。 蛋白质的生物学合成:氨基酸活化、肽链的起始、伸长、终止,新合成多肽链的折叠和加工。

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

分子生物学与基因工程结课论文-Real-TimePCR在分子生物学中的应用讲义

《分子生物学与基因工程》 结课论文 Real-Time PCR在分子生物学中的应用 姓名: 学号: 院系: 班级: 任课教师: 二零一二年十二月

Real-Time PCR在分子生物学中的应用 东北农业大学生命科学学院黑龙江哈尔滨150030 摘要:聚合酶链式反应(polymerase chain reaction,PCR)可对特定基因进行扩增,因此被广泛应用于分子生物学领域中获取特定基因或基因片段。定量PCR已经从基于凝胶的低通量分析发展到高通量的荧光分析技术,即实时定量PCR(real-time quantitative PCR)。该技术实现了PCR从定性到定量的飞跃,且与常规PCR相比,它具有特异性强、灵敏度高、重复性好、定量准确、速度快、全封闭反应等特点,目前实时定量PCR作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域,成为了分子生物学研究中的重要工具。 关键词:实时定量PCR;基因扩增;分子生物学 1971年Khorana等最早提出PCR理论:―DNA变性解链后与相应引物杂交,用DNA聚合酶延伸引物,重复该过程便可克隆tRNA 基因‖。因当时基因序列分析方法尚未成熟、热稳定DNA聚合酶还未发现及寡聚核苷酸引物合成仍处于手工和半自动阶段,核酸体外扩增设想似乎不切实际,且Smith等已发现了DNA限制性内切酶,使体外克隆基因成为可能,Khorana 等的早期设想被忽视。1985年Mullis等用大肠杆菌DNA聚合酶ⅠKlenow片段体外扩增哺乳动物单拷贝基因成功以及1988年Saiki等将耐热DNA聚合酶(Taq酶)引入PCR ,使扩增反应的特异性和效率大大提高,并简化了操作程序,最终实现了DNA扩增的自动化,迅速推动了PCR的应用和普及。 自从PCR技术问世便很快成为科研、临床诊断的热点技术。但是传统PCR技术在应用中一是不能准确定量,二是容易交叉污染,产生假阳性。直到1996年由美国Applied Biosystems公司推出的实时荧光定量PCR技术,上述问题才得到较好的解决[1]。实时荧光定量PCR(real-time fluoro-genetic quantitative PCR,FQ-PCR)是通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR反应中,引入了一种荧光化学物质,随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。该技术不仅实现了对DNA模板的定量,而且具有灵敏度高、特异性和可靠性强、能实现多重反应、自动化程度高、无污染性、具实时性和准确性等特点,目前已广泛应用于分子生物学研究和医学研究等领域[2]。

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

教学大纲分子生物学

教学大纲分子生物学 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《分子生物学》教学大纲 供药学专业(药物化学方向)(本科)使用 一、课程性质、目的和任务 分子生物学是从分子水平来研究生命现象的科学,是现代生命科学的“共同语言”,其核心内容是通过生物的物质基础——核酸、蛋白质、酶等生物大分子的结构,功能及其相互作用等运动规律的研究来阐明生命现象的分子基础,从而探索生命的奥秘。 本课程侧重于核酸的分子生物学,从基因展开,围绕DNA复制,转录,表达和调控等方面给予论述。通过本课程的学习,可以使学生系统而深入地掌握核酸分子生物学的基本概念和基本理论,帮助学生扩大知识面,拓宽专业口径,为学生以后应用分子生物学的手段研究新药以及在分子水平上研究药物代谢规律,阐明药物作用的机理奠定基础。 二、课程基本要求 本课程分为掌握、熟悉、了解三种层次要求。掌握的内容要求理解透彻,能在本学科和相关学科的学习工作中熟练、灵活运用其基本理论和基本概念。熟悉的内容要求能熟知其相关内容的概念及有关理论,并能适当应用。了解的内容要求对其中的概念和相关内容有所了解。 考试内容中掌握的内容约占70%左右,熟悉、了解的内容约占30%左右,了解及大纲外内容不超过5%。 本大纲主要的参考教材为《药学分子生物学(第4版)》(张景海主编。人民卫生出版社,2011年7月),该教材属于“卫生部‘十二五’规划教材、全国高等医药教材建设研讨会‘十二五’规划教材、全国高等学校药学专业第七轮规划教材”。 三、课程基本内容及学时安排 本课程36学时,主要分为两部分内容:第一部分为药学分子生物学基础,主要介绍了基因的结构、DNA复制、RNA转录、蛋白质翻译、细胞信号转导、常用分子生物学技术等分子生物学的基本理论、基本知识;第二篇药学分子生物学应用,主要介绍了药物基因组学、药物基因组学、药物蛋白质组学、基因工程药物制备原理等分子生物学在药学领域应用的相关知识。 第一篇药学分子生物学基础 第一章基因与基因组(3学时) 【掌握】 1. 基因的分子生物学定义。 2. 基因的分子结构。 3. 基因组的概念。 4. 原核生物基因组的特点。 5. 真核生物基因组的特点。 6. 基因组学的概念。 7. 遗传图、物理图、基因图、转录图的概念及意义。 8. 一些重要的概念:结构基因,操纵子,断裂基因,内含子,外显子。【熟悉】

智慧树知到《分子生物学》章节测试答案

智慧树知到《分子生物学》章节测试答案 第一章 1、目前生物遗传信息传递规律中还没有实验证据的是(). A:A. DNA→RNA B:B. RNA→蛋白质 C:C. RNA→DNA D:D. 蛋白质→DNA 正确答案: D. 蛋白质→DNA 2、从小鼠的一种有夹膜的致病性肺炎球菌中提取出的DNA,可使另一种无荚膜、不具有致病性的肺炎球菌转变为有夹膜并具有致病性的肺炎球菌,而蛋白质、RNA无此作用,由此可以证明()。 A:DNA是遗传物质,蛋白质是遗传信息的体现者。 B:蛋白质是遗传物质,DNA是遗传信息的体现者。 C:DNA和蛋白质均是遗传物质。 D:RNA是遗传物质,DNA和蛋白质是遗传信息的体现者。 正确答案:DNA是遗传物质,蛋白质是遗传信息的体现者。 3、自然界中以DNA为遗传物质的大多数生物DNA的复制方式为()。 A:环式 B:半保留 C:D-环式 D:全保留 正确答案:半保留 4、1997年诺贝尔生理医学奖授予美国加州旧金山大学Stanley B.Prusien,表彰他发现朊病毒及其致病机理,请问朊病毒是一种()?

A:DNA B:葡萄糖 C:蛋白质 D:RNA 正确答案:蛋白质 5、证明DNA复制为半保留复制的科学家为()。 A:Meselson&stahl B:F. Miesher C:o. Avery D:Chargaff 正确答案:Meselson&stahl 第二章 1、证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。这两个实验中主要的论点证据是()。 A:从被感染的生物体内重新分离得到DNA作为疾病的致病剂 B:DNA突变导致毒性丧失 C:生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D:DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 正确答案:生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 2、物种的C值与其进化复杂性之间无严格对应关系。 A:对 B:错

分子生物学与基因工程试题库(19)

分子生物学与基因工程试题库(19) 一、选择题(单选或多选)(每题2分,共计20分) 1.核糖体肽链的合成因( )终止 (a)可读框内编码C末端氨基酸的密码子 (b)可读框内存在不对应氨酰tRNA的密码子 (c)浓度太低或缺少特定的氨酰tRNA (d)释放因子(RF)的GTP依赖性作用,防止A位点中终止密码子与氨酰tRNA的错配结合 (e)末端氨酰转移酶的活性,这个酶蛋白通过将一个赖氨酸或精氨酸残基加到新生多肽 C 末端将肽酰tRNA脱乙酰化 2. 因研究λ噬菌体的限制与修饰现象的本质而获得诺贝尔奖的科学家是:( ) (a)J.Lederberg (b)W.Arber (c)H.Smith (d)F.Sanger 3. EDTA是一种螯合剂,可以抑制大多数酶的活性,但在下列酶中,( )不受它的 影响 (a)外切酶Ⅲ (b)EcoRI (c)Bal31核酸酶 (d)Pstl 4. 关于质粒的相容性,下面哪一种说法不正确? ( ) (a)不同相容群的质粒能够共存于同一个细胞 (b)质粒可以分成若干个不相容群,但不能分成若干个相容群 (c)如果a、b两种质粒不相容,说明它们的复制机制相同 (d)属于同一个不相容群中的质粒,不仅复制机制相同,而且拷贝数和分子量也相同 5. 用SDS-酚来抽提DNA时,SDS的浓度是十分重要的,当SDS的浓度为0.1%时,( ) (a)只能将DNA抽提到水相 (b)只能将RNA抽提到水相 (c)可将DNA、RNA一起抽提到水相 (d)DNA和RNA都不能进入水相 6. 在下列表型中,( )是基因工程上理想的受体菌表型 (a)r+m+rec’ (b)r-m-rec- (C)r-m-rec+ (d)r+m+rec- 7. 微细胞是一种大肠杆菌突变体,( ) (a)它不带任何DNA (b)它的体积为正常细胞的1/10 (c)它带有染色体DNA,但不能表达 (d)它带有质粒DNA,可以表达 8. DNA在中期染色体中压缩多少倍?( ) (a)6倍 (b)10倍 (c)40倍 (d)240倍 (e)1000倍 10000倍 9. 在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸?( ) (a)DNA聚合酶Ⅲ (b)DNA聚合酶Ⅱ (c)DNA聚合酶I (d)外切核酸酶MFl (e)DNA连接酶

第十一章电极极化练习题电子教案

第十一章 电极极化练习题 一、判断题: 1.用Pt 电极电解CuCl 2水溶液,阳极上放出Cl 2 。 2.电化学中用电流密度i 来表示电极反应速率。 3.分解电压就是能够使电解质在两极上持续不断进行分解所需要的最小外加电压。 4.凡是可以阻止局部电池放电,降低腐蚀电流的因素都能使腐蚀加剧。 5.测量阳极过电位用恒电流法。 6.恒电流法采用三电极体系。 7.交换电流密度越大的电极,可逆性越好。 8.用Pt 电极电解CuSO 4水溶液时,溶液的pH 值升高。 9.极化和过电位是同一个概念。 10.双电层方程式不适用有特性吸附的体系。 11.实际电解时,在阴极上首先发生还原作用的是按能斯特方程计算的还原电势最大者。 二、单选题: 1.298K ,p 下,试图电解HCl 溶液(a = 1)制备H 2和Cl 2,若以Pt 作电极,当电极上 有气泡产生时,外加电压与电极电位关系: (A) V (外) = φ(Cl -/Cl 2) -φ(H +/H 2) ; (B) V (外) > φ(Cl -/Cl 2) -φ(H +/H 2) ; (C) V (外)≥φ(Cl 2,析) -φ(H 2,析) ; (D) V (外)≥φ(Cl -/Cl 2) -φ(H +/H 2) 。 2.25℃时,用Pt 作电极电解a (H +) = 1的H 2SO 4溶液,当i = 52 × 10-4A·cm -2时,2H η= 0, 2O η= 0.487V. 已知 φ(O 2/H 2O) = 1.229V ,那么分解电压是: (A) 0.742 V ; (B) 1.315 V ; (C) 1.216 V ; (D) 1.716 V 。 3.下列两图的四条极化曲线中分别代表原电池的阴 极极化曲线和电解池的阳极极化曲线的是: (A) 1、4; (B) 1、3; (C) 2、3; (D) 2、4。 4.已知反应H 2(g) + ?O 2(g)H 2O(l) 的m r G ?= -237.19 kJ·mol -1,则在25℃时极稀 硫酸的分解电压(V)为: (A) 2.458 ; (B) 1.229 ; (C) > 2.458 ; (D) > 1.229 。 5.电池在下列三种情况下放电,电压分别为:(a)电流i →0,(V 0);(b)一定大小电流,(V i ); (c)短路i →∞,(V ∞)。这三种电压的关系: (A) V 0 < V i < V ∞ ; (B) V 0 > V i > V ∞ ; (C) V 0 = V i < V ∞ ; (D) V 0 = V i > V ∞ 。 6.电极极化时,随着电流密度由小到大增加,说法(1):正极电位越来越大,负极的 电位越来越小;说法(2):阳极电位越来越正,阴极电位越来越负。分析以上两种 说法时,以下解释中不正确的是: (A) 无论对原电池或电解池,说法(2)都正确; (B) 对电解池,说法(1)与(2)都正确; (C) 对原电池,说法(1)与(2)都正确; (D) 对原电池,说法(2)正确。 7.随着电流密度由小到大增加,电解池的实际分解电压V (分) 与原电池的端

生物选修3电子教案模板

(1)了解基因工程的基本概念。(2)基因操作的工具和基本操作程序。(3) 运用所学的DNA重组技术,模拟制作DNA重组模型。 (1)用类比的方法比较基因工程的三种基本工具及其作用。(2)通过模拟 制作充足DNA分子模型理解基因工程的原理 (1)通过对基本概念基本原理科学方法的正确理解和掌握,逐步形成比较 判断推理分析综合等思维能力具备能利用学到的生物知 识评价和解决某些实际问题的能力。 基因操作的工具和基本程序及应用。 1.限制酶和运载体的作用。2.提取目的基因的方法和目的基因导入受体 细胞的途径。3.基因工程的应用。 [第一课时]:DNA重组技术的基本工具 一.复习导入新课 1.遗传的物质基础是什么?2.生物体遗传的基本单位是什么?3.为什么生物界的各种生物间的性状有如此大的差别呢?4.生物的性状是怎样表达的?5.各种生物的性状都是基因特异性表达的结果,那么,人类能不能改造基因呢?使原来本身没有某一性状的生物而具有某个特定的性状呢?6.各种生物间的性状千差万别,这是为什么呢? 引导学生回答:生物体的不同性状是基因特异性表达的结果。 教师举例:1.青霉菌能产生对人类有用的抗生素——青霉素2.豆科植物的根瘤菌能够固定空气中的氮气3.人的胰岛B细胞能分泌胰岛素调节血糖的浓度 教师提问:以上几种生物各有其特定的性状,这些性状都是基因特异性表达的结果。 但是人类能不能改造基因呢? 二、讲授新课 1.基因工程的概念:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

相关主题
文本预览
相关文档 最新文档