当前位置:文档之家› 基于pca方法的热泵空调系统传感器故障诊断

基于pca方法的热泵空调系统传感器故障诊断

基于pca方法的热泵空调系统传感器故障诊断
基于pca方法的热泵空调系统传感器故障诊断

基于p c a方法的热泵空调系统传感器故障诊断

WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基于P C A方法的热泵空调系统传感器故障诊断湖南大学兰丽丽陈友明

摘要

本文介绍了一种空气源热泵空调系统传感器故障检测与诊断方法。用主成分分析法(Principal Component Analysis,PCA)来提取系统的相关性和降低分析数据的维数。在系统正常运行条件下,测得一组数据建立PCA模型。PCA模型建立后,在各传感器上分别载入偏差、漂移和完全失效故障,进行故障检测与诊断。在每次的测试实验中,只有一个传感器发生故障。SPE统计量用于故障检测,SVI指数用来进行故障识别,最后在假定其他传感器数据无误的基础上根据它们之间的相互关系对故障传感器进行重构。现场实验得到了令人满意的效果,实验结果表明,基于PCA的传感器故障检测与诊断方法是正确、有效的。

关键字:传感器,故障检测与诊断,主成分分析法,空气源热泵空调系统

1.前言

在建筑的整个生命周期内,包括设计阶段到运行阶段,故障层出不穷,导致大部分建筑通常都无法满足设计阶段的预期要求[1]。同时,这些故障通常在短时间内难以察觉。此外,在建筑能源管理与控制系统(Energy Management and Control System,EMCS)中,安装有大量的传感器,包括温度传感器、流量传感器、流速传感器、压力传感器、功率传感器等。这些传感器有两种用途:一种是用作控制,控制设备的运行;另一种是用作监测,供设备管理者及时了解和掌握设备的运行状况。对于第一种用途的传感器,出现故障会直接影响设备的运行状态,增加设备能耗,影响室内人员的舒适性。第二种用途的传感器故障的危害,人们往往认识不足。用于监测的传感器出现故障虽然不直接造成能耗的明显增加,但它会带来潜在的损失。因为监测传感器出现故障时,设备故障不能被及时发现,设备长期在故障状态下运行,会大大减少设备的使用寿命,甚至造成设备事故。由于控制系统正变得越来越复杂,对传感器故障的诊断难以通过人工检测的方法进行,因此,对传感器故障诊断的研究是十分必要的。

根据系统误差的不同形式,把传感器故障大致分为四类:偏差(bias)、漂移(drifting)、精度等级下降(precision degradation)和完全失效故障(complete failure)。其中,前三种属于软故障(soft failure),后一种属于硬故障(hard failure)。目前,对传感器故障的诊断方法主要有两类:基于模型的诊断方法和基于模式识别的方法。基于模型的诊断方法首先通过模型获得系统特征量的标准值,然后通过比较实际运行时的特征量与标准特征量的大小,根据特征量偏差的特性来判断是否出现故障。该方法的前提是需要一个相对比较精确的数学模型。基于模式识别的诊断方法首先对系统的各种运行状况进行学习(不管是否有故障),然后针对某一实际的运行状况,应用各种启发式的推理对故障是否存在做一个判断。

主成分分析法[2,3]是最常用的SPC(Statistical Process Control)方法之一,它是一种极其

有用的多元分析技术,可用于数据压缩、降低数据维数、图像压缩和特征提取。在许多领域都大有用处,比如数据传输、模式识别和图像处理方面[4]。PCA使用单纯的数学模型,也就是黑箱模型。使用PCA方法的好处在于它能提取系统的相关性和降低分析数据的维数。利用少数几个相互独立的变量来对系统进行分析,而这几个相互独立变量能在很大程度上反映原变量所包含的信息[5]。本文提出基于PCA的空气源热泵空调系统传感器故障诊断方法,在检测出有故障发生后,故

障诊断与重构用于确定故障传感器,并在假定其他传感器数据无误的基础上根据它们之间的相互关系对故障传感器进行重构。

2.主成分方法

主成分分析法主要是通过对系统变量的协方差矩阵进行特征分解,构造出由原变量线性组合而成的新的综合变量,即主成分。然后,在保证系统信息尽可能损失少的前提下,选取一定数量的主成分,来对原系统进行近似,实现既提取原变量之间的基本关系,又降低系统的维数的作用。

设x ∈m R 代表包含m 个测量变量的向量,X ∈m n ?R 代表由x 的n 个测量样本所组成的一个测量矩阵。根据PCA 方法,矩阵X 可以分解为:

E X X +=? (1) T P T X ???= (2) T P T E ~~= (3)

式中,X

?-可模变量,即测量向量的主成分子空间(Principal Component Subspace ,PCS ),代表了测量向量的真实值方向。E -不可模变量或者残差,即测量向量的残差子空间或称故障空间(Residual Subspace ,RS),代表了测量的故障方向。在无故障时的正常情况下,E 主要是测量

噪声和不确定干扰。T

?-得分矩阵(Score Matrices ),T ?∈l n ?R ,P X T ??=。P ?-载荷矩阵(Loading Matrices ),P

?∈l m ?R 。l -模型所包含的主成分数。其中,P ?的列向量分别是测量变量的协方差阵的前l 个最大特征值i λ所对应的特征向量。P ~的列向量则分别是剩下的l m -个特征

向量。因此,矩阵[P ? P ~]是一个正交矩阵。同样, 矩阵[T ? T ~]也是一个正交矩阵。本文所用的PCA

方法只用到载荷矩阵P

?。 建立PCA 模型

主成分分析法的建模过程大致分为以下几步[6]:

1) 原始数据进行筛选整理及标准化处理预处理。

2) 计算变量的协方差阵∑。

进行主成分分析时,首先要知道测量变量x 的协方差阵∑。然而,在实际问题中,∑并不知道,要根据事先收集到的测量样本数据对其进行估计。假设X ∈m n ?R 代表系统在正常运行条件下所采集到的m 个测量变量x 的n 次测量样本所组成的数据矩阵,即:

[]????????????==nm n n m m T x x x x x x x x x 2122221

11211 n 21

x x x X (4)

根据统计学的知识,计算∑的一个无偏估计:

()()T i

n i i n x x x x ---=∑=111∑ (5)

为了便于计算,我们对X 进行零平均化处理,即X 的每一列都减去该列的平均值,这样,零平均化后的x 的均值为零,即0=x 。则上式可化简为:

X X x x T n i T i i n n 1

11

11-=-=∑=∑ (6)

这样,只要收集到一定数量的正常运行条件下的测量数据,就可以利用上式估计出测量变量的协方差矩阵∑。

3) 对∑进行特征分解,求得m 个特征值m λλλ≥≥≥ 21及特征值所对应的单位特征向量矩阵

P 。

4) 确定最优的主成分数l 。

5) 根据主成分数l ,选取载荷矩阵P ?。 6) 由载荷矩阵P ?计算投影矩阵C 和C ~,则原来m 维数据空间被l 维的主成分空间和l m -维残差空间代替,变量间的相关性被消除。可分别通过下式计算出投影矩阵C 和C ~:

T P P

C ??= (7) ()C I P P C -==T ~~~ (8) PCA 模型建立之后,当新的监测数据被采集到时,就可利用该模型对其进行检测与诊断。 故障检测

根据主成分分析法,一个新的测量数据样本向量就可以分解成为两个部分:

x x x ~?+= (9) Cx x

=? (10) x C x ~~= (11) x ?是x 在主成分子空间PCS 内的投影,而x ~是x 在残差子空间RS 内的投影。在正常情况下,

PCS 内投影x ?主要包含的是测量数据的正常值,而 RS 内投影x ~主要是测量噪声。而当故障发生

时,由于故障的影响,RS 内投影x ~将会显着增加,依据此原理,我们可以进行故障检测。SPE (Squared Prediction Error ,平方预测误差)统计量表示的是此时刻测量值x 对主元模型的偏离程度,是衡量模型外部数据变化的测度。SPE 统计量也称Q 统计量。它由下式定义:

x C I x x C x x SPE )(||~||||~||)(22-===T (12)

式中: || .||表示向量的欧氏范数,是一种距离的度量。从上式可以看出,SPE 统计量主要检测的是RS 。可以直接利用测量变量x 计算出其SPE 值。SPE (x )的置信限2δ的值可由下式确定[7]:

01

2100

2120212)1(12h h h h c ????-++???

?=θθθθθδαα (13) 式中:αc —标准正态分布的(α-1)置信限。 ∑+==

m l j j 11λθ ∑+==m l j j 122λθ ∑+==m l j j 133λθ (14) 22310321θθθ-=h (15)

其中:l —模型的主成分个数,λ—协方差阵∑的特征值。

有了SPE 值和其置信限2δ的值,就可以按照下面的规则来进行故障检测:SPE (x )≤2δ,系统运行正常; SPE (x )>2δ,系统出现故障。

故障传感器重构

设样本x 的第i 个测量分量有故障,利用式(10)计算出i x

?,i x ?是正确值*i x 的一个估计值,但i x

?也包含有一定的故障,相对于i x 来说,i x ?的故障要小一些,因此,i x ?比i x 更靠近*i x 。若利用i x

?代替i x ,用式(10)继续求*i x 的估计,则重新计算的估计值会更靠近*i x ,如此反复经过多次迭代后,求得的估计值就趋近于*i x 。迭代过程可写为:

[]old i ii i i new i x

c x ??+=+-x c 0c T T (16) 式中:[]

T i T i

+-c c 0为矩阵C 的第i 列用0代替ii c 值之后的向量。可以证明该迭代总是收敛于[8]: []

ii i i i c x -=+-1*x c 0c T T (17) 式中1≠ii c ,若1=ii

c ,说明该变量与其它变量之间不具有相关性,属于孤立变量,不能被其

它变量所重构。

故障识别 当故障出现时,样本向量可以表示成为:

i f ξ+=*x x (18)

式中:*x —表示测量值的正常部分,f —故障大小,i ξ —故障方向,故障方向用一个单位向量表示。

通过重构后SPE(*j x )的变化来识别故障[9]。对于测量值x ,当故障发生时,SPE(x )也会显着增加。故障重构就是沿着故障方向逐步逼近主成分子空间的过程。因此,若故障重构的方向正好是故障发生的方向,其重构后的SPE(*j x )必定会显着地减少;若重构的方向不是故障发生的方向,则SPE(*j x )不会发生显着地变化。本文假设只有一个故障发生,可以用识别指数SVI (Sensor Validity Index )进行识别。显然,由于SPE(x )≥SPE(*j x )≥0,所以,SVI []10∈。Obviously, because of SPE(x )≥SPE(*j x )≥0, so SVI []10∈.?一般来说,如果SVI j 小于,则i ξ为故障发生的方向;否则,如果SVI j 大于,则i ξ不是故障发生的方向。

)()

(*x x SPE SPE SVI j j = (19)

式中:*j x —是测量向量x 沿第j 个方向重构后的数据向量。

主成分数的确定

主成分个数的选取是PCA 模型中最重要的步骤之一,主元个数选取的好坏直接影响到PCA 在

过程监测中的性能[10-12],影响到故障检测与诊断效果。如果主成分数选得过小,则残差子空间所

包含的方差太多,使得故障检测限2δ偏大,从而导致小故障难于被检测出。而若主成分数选得太大,又会使残差子空间包含的信息太少,使得故障对残差影响不大,故障难于被检测出。本文采用最小化不可重构方差(unreconstructed variance ,URV )[13]确定主成分数。

2*])([)()())((j T j j

C I C I C I x x ξξξξξ---=-=∑T j j T j j Var u (20)

式中:j ξ-故障方向向量,x -测量向量,*j x -x 沿着故障方向j ξ的重构值,j u -故障方向j ξ上的不可重构方差。j u 是对故障重构的可靠性的一种度量,j u 越小,说明重构越好。为了寻找最好的重构,就必须最小化j u 。

)(1∑=m

j j

l u Min (21) m 为测量变量个数。通过选择不同的主成分数l ,分别计算出∑j u ,最后选取最小的∑j u 所对应的主成分数为最优的主成分数。

3.系统描述及试验设计

图1 空气源热泵水系统示意图

本研究在湖南大学环境研究中心的空气源热泵空调系统上进行。该系统有一台制冷量为63000W 的空气源热泵冷热水机组,一台单级离心水泵,同时为了保证冬季供热的要求还配备了一台电辅助加热器,都安装在室外。全部采用空气—水系统,夏季制冷,冬季供热。室内采用风机盘管,不单独设计新风系统,新风由室外渗透。冷水系统采用闭式机械循环。该系统既作研究中心的实验研究用,又作中心的空调用。该空调系统安装了EMCS 对空调系统进行计费与监控。在建筑供、回水总管,一层供水干管、一层大空间实验室、大厅、二层走廊处供水干管、三层走廊处供水干管和三层的三间实验室供水支管上分别安装了能量表;在建筑供、回水总管上安装一个压差传感器;在空气源热泵机组左侧约4米处安装有一个室外温度传感器;同时各房间风机盘管回风口处均安装有室内温度传感器;电脑主机设置在二层监控室。EMCS 根据热泵机组的供水温度来控制热泵与水泵的自动启停。本次实验使用的传感器有3个流量传感器:建筑回水流量传感器、二层供水流量传感器、三层供水流量传感器,4个温度传感器:建筑供水温度传感器、建筑回水温度传感器、室外温度传感器、206室室内温度传感器,以及1个建筑供回水管压差传感器。空气源热泵系统实验台如图1所示。

4 基于PCA 的传感器故障诊断方法

本研究采用PCA 方法对空气源热泵系统的传感器故障进行检测与诊断。在传感器上分别被载入偏差、漂移和完全失效故障,并用基于PCA 的传感器故障检测与诊断方法分别成功地检测出故障、诊断出发生故障的传感器,并对故障数据进行了恢复。在每次的测试实验中,只有一个传感器发生故障。

实验楼空调系统在工作日从上午9点运行至下午19点。由于本次实验采用现场实地测试,一些运行条件难以控制不变。为获取稳态运行数据,实验时间为2007年7月持续一周,每天上午11点至下午四点。非稳态条件下运行数据,例如启动和关闭期间的数据被剔除。测量数据采样间隔为30秒,并用指数加权滑动平均(Exponential Weighted Moving Average ,EWMA )滤波法进行过滤。前3天正常运行数据用于建立PCA 模型,第4天正常运行数据(前300个样本)和建筑供水温度传感器加入5℃偏差故障后数据(后300个样本)用于验证PCA 模型的正确性。接下来几天的实验数据用于检验PCA 模型检测、识别和重构故障的能力。第5、6、7天在建筑回水流量传感器上分别载入50%、10%、35%的偏差故障,第8天和第9天在二层供水流量传感器上载入10%(400l/h )的漂移故障,第10天在压差传感器上载入完全失效故障,令其数值为。

建立PCA 模型

图2 不可重构方差与主成分数之间的关系 图3 建筑供水温度传感器的故障检测SPE 值 首先计算协方差矩阵∑,然后,对∑进行特征分解,求得其单位特征向量矩阵P 。按照最小化不可重构方差的方法,确定最优的主成分数,其计算结果见图2。当主成分数为1时,不可重构方

差最小。因此,此时的最优主成分数为1。主成分数一旦确定,就可计算载荷矩阵P ?,由载荷矩阵P

?就可以计算出投影矩阵C 和C ~。这样,系统的主成分分析模型就被建立起来。利用已建的PCA

模型计算SPE统计量的2δ置信限。经计算得到此时95%的2δ置信限为。

第4天正常运行数据和加入偏差故障数据被用来检验已建立的PCA模型的正确性,其结果如图3所示。结果表明,在正常运行状态下,所有测量数据的SPE值都在2δ控制限以下,很显然系统运行正常,没有故障发生。但当建筑供水温度传感器被加入5℃偏差故障后,从第301个样本开始,SPE值明显增加,超过了2δ置信限。显然系统运行不正常,出现了故障。验证了建立的PCA 模型的正确性和故障检测的能力。

传感器故障诊断测试

4.2.1 测试i-偏差故障

第5天,在建筑回水流量传感器上载入50%的偏差故障,故障开始时间为第301个样本。利用已建PCA模型对该故障数据进行检测,其检测结果见图4。结果表明,当加入故障后,SPE值明显增加,超过了2δ控制限。显然系统运行不正常,出现了故障。同时分析各传感器的SVI指数的变化情况后发现,当故障发生后,从第301个样本开始,建筑回水流量传感器的SVI指数变得很小,几乎为0。这说明,该传感器出现故障。与此同时,其它传感器,如建筑回水温度传感器的SVI指数都接近1(如图5(a)所示,其它传感器SVI图略),说明这些传感器是正常的。这种诊断结果与我们所加入的故障情况完全吻合,说明方法的正确性。故障识别之后,就可以对故障数据进行恢复。从图4(a)中可以看到,数据恢复后的SPE值都降到了控制限以下,这说明,恢复之后的数据中不再包含故障,证明前面所提出的方法具有很好的数据恢复能力,故障重构达到了我们预期的效果。

(a) (b)

图4 建筑回水温度传感器50%偏差故障FDD指标:(a) 故障检测与重构SPE值,(b) 故障传感器识

别SVI值

第6天,在建筑回水流量传感器上载入10%的偏差故障,故障开始时间同样为第301个样本。利用已建PCA模型对该故障数据进行检测,其检测结果见图5(b)。然而,在加入故障后,所有样本的SPE值仍然在2δ置信限下,无法检测出故障。表明已建PCA模型对传感器小故障无法检测。

图5 (a) 建筑回水流量传感器SVI值,(b) 建筑回水温度传感器10%偏差故障的SPE值

第7天,在建筑回水流量传感器上载入35%的偏差故障,故障开始时间仍为第300个样本。利用已建PCA模型对该故障数据进行检测,其检测结果见图6(a)。在故障发生后,样本的SPE值在置信限2δ上下波动,表明建筑回水流量传感器35%的偏差故障处于被检测的边缘。

(a) (b)

图6 故障检测与重构SPE值:(a) 建筑回水温度传感器35%偏差,(b) 压差传感器完全失效故障4.2.1 测试ii-漂移故障

(a)(b)

图7 二层供水流量传感器10%漂移故障FDD指标:(a) 故障检测与重构SPE值,(b) 故障传感器识

别SVI值

第8天,在二层供水流量传感器上载入10%(400l/h)的漂移故障,故障开始时间为第1个样本,其检测结果见图7。结果表明,当加入故障后,刚开始SPE值并未超过2δ控制限,直到第8天末(约第480个样本)才逐渐增加,在第9天最终渐渐超过了2δ控制限。这表明系统运行不正常,出现了故障。同时也进一步验证了已建PCA模型对小故障无法检测,且证实了漂移故障的发生是一个长期积累的过程,在一定时间内可以作为偏差故障来看待。同时分析各传感器的SVI指数的变化情况后发现,当故障发生后,从第480个样本开始,二层热量表供水流量传感器的SVI 指数明显减低,且低于,向0靠拢。这说明,该传感器出现故障。与此同时,其它传感器的SVI 指数都接近1(其它传感器SVI图略),说明这些传感器是正常的。这种诊断结果与我们所加入的故障情况完全吻合,说明方法的正确性。从图7(a)中可以看到,数据恢复后的SPE值都降到了控制限以下,这说明,恢复之后的数据中不再包含故障,故障重构达到了我们预期的效果。

4.2.1 测试iii-完全失效故障

(a) (b)

(c) (d)

图8 压差传感器完全失效故障SVI 值:(a) 建筑供回水管压差传感器,(b) 室外温度传感器,(c) 206

室内温度传感器,(d) 建筑回水流量传感器

第10天,在压差传感器上载入完全失效故障,令其数值为。故障开始时间为第401个样本,其检测结果见图6(b)。结果表明,当加入故障后,SPE 值直线上升,远远超过了2 控制限,并近似为一条直线。这表明系统运行不正常,出现了故障。同时分析各传感器的SVI 指数的变化情况后发现,虽然在故障发生前,建筑供回水管压差传感器的SVI 指数在之下,但当故障发生后,从第401个样本开始,建筑供回水管压差传感器的SVI 指数明显变小,接近于0。与此同时,206室内温度传感器SVI 个别值在附近波动,室外温度传感器SVI 值都在之上,其它传感器的SVI 指数都接近1,说明这些传感器是正常的,如图8所示(部分传感器SVI 图略)。在这种情况下,我们能做出判断,是建筑供回水管压差传感器出现故障。这种诊断结果与我们所加入的故障情况完全吻合,说明方法的正确性。故障识别之后,就可以对故障数据进行恢复。从图8(b)中可以看到,数据恢复后的SPE 值都降到了控制限以下,这说明,恢复之后的数据中不再包含故障,证明前面所提出的方法具有很好的数据恢复能力,故障重构达到了我们预期的效果。

5. 结论

在空调控制系统中,传感器的故障检测非常重要。主成分分析法将测量数据空间分解成主成分子空间PCS 和残差子空间RS 。在正常情况下,数据主要落在主成分子空间内。而当故障发生时,数据就会偏离主成分子空间,残差子空间RS 内投影x ~

将会显着增加。本文提出基于PCA 的传感器故障检测与诊断方法。在PCA 模型建立后,SPE 统计量用于故障检测,在检测出系统故障后,SVI 指数用来进行故障识别,最后在假定其他传感器数据无误的基础上根据它们之间的相互关系对故障传感器进行重构。本文在EMCS 的空气源热泵系统中,分别载入偏差、漂移和完全失效故障,并用基于PCA 的传感器故障检测与诊断方法分别成功地检测出故障、诊断出发生故障的传感器,并对故障数据进行了恢复。结果表明,基于PCA 的传感器故障检测与诊断方法是正确、有效的。 参考文献

[1] Haves P. Overview of diagnostic methods. Proceedings of Diagnostics for Commercial Buildings: From

Research to Practice, San Francisco, CA,1999

[2] Jackson JE. A User’s Guide to Principal Components . John Wiley & Sons INC,1991

[3] Jolliffe IT. Principal Component Analysis, Springer-Verlag New York Inc,1986

[4] Lindsay I Smith. A tutorial on Principal Components Analysis. 2002,February 26,

[5] Russell EL, Chiang LH, Richard DB. Data-driven techniques for fault detection and diagnosis in chemical

process. London: Hong Kong, Springer,2000

[6] Qin JY . A fault detection and diagnosis strategy for VA V air distribution system:[dissertation].Hong

Kong:The Hong Kong Polytechnic University,2006

[7] Lee WY , House JM, Shin DR. Fault diagnosis and temperature sensor recovery for an air-handling unit.

ASHARE Trans,1997,103(I):621-633

[8] Qin SJ, Yue Hongyu, Dunia R. Self-Validating inferential sensors with application to air emission

monitoring. Ind. Eng. Chem. Res.,1997,36(5):1675-1685

[9] Dunia R, Qin SJ. Join diagnosis of process and sensor faults using principal component analysis. Control

Engineering Practice,1998,6(1):457-469

[10] Valle S, Li W, Qin SJ. Select of the number of principal components: the variance of the reconstruction

error criterion with a comparison to other methods. Ind. Eng. Chem. Res.,1999,38(11):4389-4401 [11] Dunia R, Qin SJ. Subspace approach to multidimensional fault identification and reconstruction. AIChE

Joural,1998,44(8):1813-1831

[12] Qin SJ. Determining the number of principal components for best reconstruction. Journal of Process

Control,2000,10(2):25-28

[13] Qin SJ, Dunia R. Determining the number of principal components for best reconstruction. Proc. IFAC

Dynamic and Control of Process Systems,1998,357-362

2017年暖通空调专业案例上午真题及答案解析

2017年暖通空调专业案例上午真题及答案解析 (1/25)单项选择题 第1题 某逆流水-水热交换器热交换过程如图所示,一次侧水流量为120t/h,二次侧水流量为100t/h,设计工况下一次侧供回水温度为80℃/60℃、二次水供回水温度为64℃/40℃。实际运行时由于污垢影响,热交换器传热系数下降了20%。问:在一、二次侧水流量、一次水供水温度、二次水回水温度不变的情况下,热交换器传热量与设计工况下传热量的比值(%),最接近下列何项?(传热计算采用算数平均温差)( )。 图片 A.75 B.80 C.85 D.90 下一题 (2/25)单项选择题 第2题 有一供暖房间的外墙由3层材料组成,其厚度与导热系数从外到内依次为:240mm砖墙,导热系数0.49W/(m·K); 200mm泡沫混凝土砌块,导热系数0.19W/( m·K); 20mm石灰粉刷,导热系数0.76W/(m·K),则该外墙的传热系数[W/(m2·K)]最接近下列哪一项?()。 A.0.58 B.0.66 C.1.51 D.1.73 上一题下一题 (3/25)单项选择题 第3题 某严寒地区(室外供暖计算温度-18℃)住宅小区,既有住宅楼均为6层,设计为分户热计量散热器供暖系统,户内为单管跨越式、楼内的户外系统是异程双管下供下回式。原设计供暖热媒为95℃/70℃,设计室温为18℃,采用铸铁四柱660型散热器(该散热器传热系数计算公式K =2.s1at°"216)。后来政府对小区住宅楼进行了墙体外保温节能改造,现在供暖热媒体降至60℃/40℃即可使住宅楼的室内温度达到20℃(在室外温度仍然为…18℃时)。如果按室内温度18℃计算,该住宅小区节能率(%)(即:供暖热负荷改造后比改造前节省百分比)最接近下列哪一项?()。 A.35.7 B.37.6 C.62.3 D.64.3 上一题下一题 (4/25)单项选择题 第4题 某严寒地区(室外供暖计算温度-11℃)工业厂房,原设计功能为货物存放,厂房内温度按5℃设计,计算热负荷为600kW,采用暖风机供暖系统,热媒为95℃/70℃热水。现欲将货物存放功能改为生产厂房,在原供暖系统及热媒不变的条件下,使厂房内温度达到18℃,需要对厂房的围护结构进行节能改造。问:改造后厂房的热负荷限值(kW)最接近下列

水源热泵控制系统

水源热泵控制系统 水源热泵作为一种用地下恒温水源代替冷却塔的高效节能空调,在实际应用中,为了进一步提高节能效果,还应尽可能减少主机、冷冻水泵和冷却水泵等主要耗能设备的用能。传统的空调水系统使用定流量的运行方式,水源热泵主机本身具有能量调节机构,根据负载变化输出的能量可以在额定值的25% -100%的范围内调整。但是,冷冻水泵和冷却水泵却不随着负载变化做出相应的调节,流量保持不变,导致水系统经常在大流量、小温差的工况下运行,电能浪费很大。采用定温差变流量的水系统控制,可以避免这种浪费。 采用这种控制方式,可以把进回水的温差固定在一个较大的给定值上,在用户负荷较小时,通过减少流量来满足用户要求,这样水泵的能耗可以大大减少。随着冷机技术的进步,蒸发器的流量可以在额定流量的60%-100%范围内变化,这样就为采用交流变频调速器对水源热泵系统中的水泵进行变流量节能控制提供了技术保证。本文将利用PLC、触摸屏和变频器对水源热泵进行变频节能控制。 2变频节能控制方案 采用变频器配合可编程控制器组成控制单元,其中冷却水泵、冷冻水泵均采用温度自动闭环调节,即用温度传感器对冷却水、冷冻水的水温进行采样,并转换成电信号(一般为4-20 mA,0-10 V等)后送至PLC,通过PLC将该信号与设定值进行比较再作PID运算后,决定变频器输出频率,以达到改变冷冻水泵、冷却水泵转速,从而达到节能目的。 2.1冷冻水系统

系统采用定温差变流量的方式运行,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻水泵变频器工作的最小工作频率作为水泵运行的下限频率并锁定;将电动机工频设定为上限频率,改变变频器频率就可以调节系统的流量。另一方面,在系统运行时,由于低温冷冻水温度取决于蒸发器的运行参数,一般冷冻水出水温度设定为8-10℃,因此,只需控制高温冷冻水(回水)的温度,即可控制温差。为了确保冷冻水的出水回水温差在设定的范围内,方案采用温度传感器在冷冻水入口测量水温T,并与PLC、变频器及水泵组成闭环控制系统,将冷冻水回水温度控制在△T(一般取5-7℃)。当负荷发生变化,回水温度跟着变化,控制系统跟着温差的变化调节水泵的转速从而调节系统冷冻水的流量,直到满足新的负荷对冷冻水流量和温差要求。 图1冷冻水系统闭环控制框图 当水源热泵系统首次起动时,电机在工频下全速运行,冷冻水系统充分循环一段时间,然后再根据冷冻回水温度对频率进行无级调速。其目的是促进冷冻水的流动,保证换热效果。 2.2冷却水系统

空调净化系统验证方案

###空调系统验证方案 (Systems Validation Protocol) 文件编号: 系统编号: 系统名称: 所在部门/车间: 起草人:日期: 审核人:日期: 批准人:日期: 1. 目的: 规范###空调系统验证工作的实施,确保###空调系统验证工作依据本方案执行。 2. 范围: 适用于###空调系统的验证工作。 3. 责任: 设备工程部负责起草及部门审核,质量管理部负责审核,总经理负责批准。 4. 内容: 目录 1. 设备基本情况

1.2 基本情况 1.3 维修服务 2. 验证目的 3. 验证范围 4.验证机构组成 4.1 验证委员会组成 4.2 验证小组成员 5. 职责 5.1 验证委员会 5.2 验证小组 5.3 生产部 5.4 设备工程部 5.5 质量管理部 6. 验证方案的起草与审批 6.1 验证方案的起草 6.2 验证方案的审批 7. 进度计划 8. 验证 8.1 安装确认 8.1.1 安装确认的目的 8.1.2 安装确认的原理 8.1.3 文件资料 8.1.4 关键性仪表 8.1.5 设备、系统评价 8.1.6 安装确认的内容 8.1.6.1 安装确认的内容 8.1.6.2 高效过滤器完整性检测 8.1.6.3 管道分配系统的确认内容 8.1.6.4 管道(风管、水管)、阀门材质及加工质量确认

8.1.6.6 风管漏风检测 8.1.7 安装确认的方案 8.1.8 可接受标准 8.1.9 异常情况的处理 8.1.10 起草标准操作程序 8.1.11 结果与评定 8.2 运行确认 8.2.1 运行确认的目的 8.2.2 运行确认的原理 8.2.3 验证所需的仪器仪表 8.2.4 运行确认的内容 8.2.5 运行确认的内容 8.2.6 可接受标准 8.2.7 异常情况的处理 8.2.8 结果与评定 8.3 性能确认 8.3.1 性能确认的目的 8.3.2 性能确认的原理 8.3.3 性能确认的内容 8.3.4 性能确认的内容 8.3.5 监测频率 8.3.6 监测方法 8.3.7 性能确认的方法 8.3.8 可接受标准 8.3.9 异常情况的处理 8.3.10 拟订日常监测程序及验证周期 8.3.11 结果与评定 9. 验证结果及分析 10. 附件

风冷热泵中央空调系统

风冷热泵中央空调系统一般情况分四部分:主机部分、管路部分、末端部分、配电及控制部分。 主机部分:主机及相应管路的附件;管路部分:系统管路及系统排气装置;末端部分:末端设备及相应管路的附件;配电及控制部分:配电箱、电路、主机及末端控制装置。 风冷热泵型中央空调是以室外空气为“热源”,通过机械做功,输出热量,解决中央空调的冷热水供应,调节室内空气温度。凡是可以在低温环境下吸收热量,并将其位能提高后,向高温环境输出热量的装置机械,都可称作“热泵”。其优点是不用水冷,可省略冷却塔,水泵组成的冷却水循环系统,节能、节水还可降低总投资。 空调负荷包括空调冷负荷和空调热负荷。空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。 选择末端设备 夏季工况条件下,热泵机组额定供回水温度分别为7℃和10℃,这与一般空调器的额定工况相一致,空调器的选择计算与其他空调系统相一致。冬季工况条件,热泵空调系统在额定条件下(室外空气6℃),热泵机组的额定供回水温度分别在47℃、42℃。而当室外温度较低时,热泵空调系统的供水温度一般维持在35~40℃。如果热泵空调系统有5个以上的制冷回路,化霜对水温不会造成明显的波动,故不会影响室内温度的波动。但当热泵系统只有1~3个回路时,为减少化霜对室内温度的影响,有条件时,可将空调器启停控制与水温同步,如当水温低于36℃时,空调器风机停止运转,当水温高于36℃时风机恢复运转。这样可有效提高室内的舒适性。 末端设备选择原则 (1)房间的冷、热负荷的大小; (2)房间的噪音要求;(3)装饰布置要求; (4)末端设备的参数(制冷或制热能力、噪音等); 末端设备选择步骤 (1)计算房间的冷热负荷:冷负荷:房间空调面积×房间冷指标=房间冷负荷;热负荷:房间空调面积×房间热指标=房间热负荷; (2)根据冷负荷,以风机盘管中档冷量来选择风机盘管型号; (3)用热负荷校核该型号的风机盘管是否满足房间房间冬季供热要求; 风冷热泵型空调系统的应用条件为: ①冬季室外空调计算温度应在-10℃以上,机组蒸发温度<-8℃,连续运作时间<110h.②冬季空气温度较低,即每年累计除霜时间500~1000h,每kg干空气累计除霜量7~20kg.风冷热泵型中央空调系统的主机是风冷式冷(热)水机组.

空气净化系统验证方案

目的:通过对空气净化系统进行验证,验证该系统的各种控制系统功能与性能符合设计要求;确认在规定的范围内操作,系统能稳定地运行 且保证各项指标能达到设计标准。 适用范围:适用于生产车间(三)提取生产线的空气净化系统运行消毒的验证过程及评估。 依据:《药品生产质量管理规范(2010年修订)》、《药品生产验证指南(2003)》、设备说明书、空气净化系统相应标准操作文件。 内容: 1. 验证组织及职责 1.1验证组织见《验证总规划》。 1.2由设备验证小组执行本验证方案。 2. 概述 2.1空气净化系统概述 生产环境的洁净度是保证产品质量的前提,空气净化系统主要包括:空调机组、风管、除尘系统等几个主要部分。本空气净化系统采用组合式空调箱及风道送风系统,新风经初效过滤器与回风混合再经表冷器、加热器、风机、中效过滤器、臭氧发生器、高效过滤器送至洁净区,气流组织顶送下侧回风或排风。药品生产中使用空气洁净技术,是要控制室内空气悬浮粒子数、沉降菌数、温湿度及压差等,使室内生产环境的空气洁净度符合GMP及工艺要求,从而确保产品质量,为达到上述目的,采取了以下措施: 2.1.1空气滤过:利用初效、中效、高效滤过器将空气中的微粒和微生物滤除, 第 1 页共41 页

得到洁净空气。 2.1.2正压控制:使室内空气维持一定正压,防止污染物侵入洁净室内。 2.1.3温度控制:通过蒸汽加热器升温或通过表冷段降温,使洁净区温度符合要求。 2.1.4相对湿度控制:通过表冷段除湿或通过加湿器进行加湿使洁净区相对湿度符合要求。 2.2空气净化系统示意图 第 2 页共41 页

2.3空调机组简介 2.4为确保空气净化质量达到生产要求,待厂房设施安装结束,使用的仪器仪表校验合格,且在校验有效期范围内,对空气净化系统进行验证,验证项目包括空气净化系统的预确认、安装确认、运行确认和性能确认及空调系统的监控和空气净化系统的日常监测。 3. 预确认 3.1目的:通过对空气净化系统设计资料及空调机组的设备技术指标适用性的审查,确认空气净化系统工艺布局及空调机组能否满足GMP及工艺要求。 3.2确认的内容 3.2.1空调机组技术适用性确认,结果记录于附表1。 3.2.2洁净区工艺布局确认,结果记录于附表2。 3.2.2空调机组风机选型确认,结果记录于附表3。 4. 风险评估 4.1风险确认、分析与评价 通过对空气净化系统进行风险评估,确定系统可能存在的危害并预估已确认危害的相关风险。 4.2风险评价 对验证可能存在的风险进行评价,确定风险等级,针对评价中确定的风险点制定控制措施。 第 3 页共41 页

地下水源热泵空调系统变频控制案例介绍

地下水源热泵空调系统变频控制案例介绍 作者:戴晓丽杨昌智日期:2009-2-12 14:57:00 本文针对湖南某宾馆采用的地下水源热泵中央空调系统的运行现状,根据其自身特点提出对该系统空调水泵进行变频控制节能改造的建议和方案,并采用当量峰值小时数法从节能性和静态回收期两方面详细论证了该改造方案的可行性。 简介:本文针对湖南某宾馆采用的地下水源热泵中央空调系统的运行现状,根据其自身特点提出对该系统空调水泵进行变频控制节能改造的建议和方案,并采用当量峰值小时数法从节能性和静态回收期两方面详细论证了该改造方案的可行性。结果证明,该改造方案在保证不低于热泵机组对水量的最低要求的同时,根据负荷的变化自动调节水泵的流量,节能效果显著,静态回收期短,是切实可行的。 1 引言 集中式中央空调系统在为人们营造舒适环境的同时也带来了能耗问题,如何既满足空调舒适度,又最大限度的节约能源,已日益为人们所关注。目前空调系统设计和水泵等设备选型均是按最不利工况进行的,且留有一定的裕量。由于季节、昼夜和用户负荷的变化,实际空调热负载在绝大部分时间内远比设计负载低,空调系统多数时间是在部分负荷下运行。而运行情况是空调水泵一年四季长期在额定工况下工作,只能通过节流来降低水流量满足负荷的要求,使得水泵大部分功耗消耗在克服节流阀阻力上,浪费了水泵运行的输送能量。一般空调水泵的耗电量约占总空调系统耗电量的20-30%,故节约低负载时水系统的输送能量,对降低整个空调系统能耗具有重要的意义。 本文针对湖南某宾馆采用的地下水源热泵系统,根据其运行现状提出对该系统的空调水泵进行闭环自动变频控制节能改造,从节能性和静态回收期等方面论证了该改造方案是切实可行的。

风冷热泵空调系统的设计方法(一)

风冷热泵空调系统的设计方法(一) 空调负荷与容量的确定 空调负荷包括空调冷负荷和空调热负荷。空调冷(热)负荷指为将室内的空气参数维持在设计参数状态,单位时间内需向建筑提供的冷(热)量。这是一个受室内设计参数,室内人员、设备等散热和散湿量,围护结构性质,室外空气环境参数(包括温度、湿度、气流速度等),太阳辐射强度等诸多因素影响的变量。让空调系统恰如其分地提供冷(热)量,以满足设计计算状态下建筑物的需求,并随时适应建筑物空调冷(热)负荷及其变化的需要是空调设计的根本目的。 在空调系统设计过程中,空调负荷计算是第一步。空调负荷的计算应包括空调设计计算负荷的确定和各时段负荷的分析;其次,设备的容量必须满足空调设计计算冷(热)负荷的要求;另外设备的配置应适应空调负荷变化的特点。在以空气源热泵型冷热水机组为冷源的空调系统设计中,热泵机组的容量既要考虑到大楼各部分的同时使用系数,还应考虑到热泵的实际制冷量和实际供热量会因设备间距限制等原因造成通风不畅,部分气流短路(这部分的出力损失约占5%左右)而受到影响,和室外换热器表面积灰和表面结垢、设备衰减等因素的影响,故所选择的热泵机组应考虑安全系数。 由公式来表示:Q=β1?β2?QD. 式中:Q——热泵机组在设计工况下的制冷(供热)量,KW QD——设计计算负荷,KW β1——同时使用系数,由具体工程定,一般为0.75~1.0 β2——安全系数,一般取1.05~1.10 另外,热泵机组既要满足系统夏季的供冷要求,又要满足系统冬季的供暖要求。不同供应商的热泵机组的额定制冷量、额定供热量的参数不尽相同,与各地区空调室外设计参数不一定一致。对南京而言,一般供应商所提供的热泵机组额定制冷工况条件与实际一致或相近,一般空气干球温度为35℃,空调冷冻水进出水温度分别为12℃、7℃左右。而冬季制热的额定工况条件为室外空气温度7~8℃,进出水水温为50-55℃。这一条件与南京地区冬季空调设计计算温度相差甚远。南京气候特征为冬冷夏热。对于一般办公、酒店为主的综合楼,冬季空调供暖设计计算热负荷约为夏季空调设计计算冷负荷的70-85%.在热泵机组选择时,应查看热泵机组对应于当地设计计算气象参数条件的真实出力。如果热泵机组在设计计算室外参数条件下的制冷量大于设计计算冷负荷,而制热量等于热负荷,则应以热负荷为准选择热泵。反之,如果制冷量满足设计计算冷负荷要求,而供热量大于所需热量,则可考虑部分选用风冷型冷水机组,部分选用风冷型热泵机组,以减少投资。一般情况下,按夏季冷负荷选定的热泵,能满足冬季供暖的要求。 机组类型与台数的确定 风冷热泵型冷热水机组根据压缩机的不同可分为涡旋式热泵机组、活塞式热泵机组和螺杆式热泵机组;按机组结构大小、组合规模不同,热泵机组可分为整体式热泵机组和模块式热泵机组。整体式热泵机组与模块式热泵机组没有本质的区别,所谓模块式热泵就是指一台热泵机组由若干台热泵单元(有独立的制冷回路,独立的蒸发、冷凝,独立的框架,甚至有独立的控制板)并联而成,各单元增减组合灵活方便,任意一单元的故障不影响其余各单元的工作。 国内的热泵机组生产企业以生产模块式热泵机组为多,而整体式热泵机组从外观上看是一组合单元、一整体框架,虽然内部可有多台压缩机,甚至有两个以上的制冷回路,但它们之间一般不可再分解。模块式热泵机组的主要优点是噪音低、振动小,由于系统总的制冷回路多,冬季化霜时对系统水温影响小。系统互备性也好。另外,热泵机组一般置于屋顶,模块式热泵机组由于各单元组合灵活,各单元尺寸小、重量轻,故具有运输、吊装、安装方便等优点。

空调净化系统再验证与方案

系统再验证方案 项目编号:YZ- DS(6)01-1-2010 系统名称: 所在车间: 日期:起草人:

日期:审核人: 日期:批准人: 专业资料. 目录 1概述1………………………………………………………………………………………… 1.1概述1………………………………………………………………………………………2验证目的1…………………………………………………………………………………… 3验证范围1…………………………………………………………………………………4验证机构组成1……………………………………………………………………………… 4.1验证领导小组组成1………………………………………………………………………5职责1………………………………………………………………………………………… 5.1验证小组2………………………………………………………………………………… 5.2制造部2……………………………………………………………………………………

5.3质量保证部2……………………………………………………………………………… 6进度计划2…………………………………………………………………………………… 7验证步骤与方法3……………………………………………………………………………7.1洁净空气质量标准3……………………………………………………………………… 7.1.1标准依 据3………………………………………………………………………………… 7.1.2洁净室(区)空气洁净度级别表3…………………………………………………… 7.1.3相关检测项目合格标准 2……………………………………………………………… 7.2安装再确认3………………………………………………………………………………… 7.2.1安装再确认目的3………………………………………………………………………… 7.2.2安装再确认内容3………………………………………………………………………… 7.2.2.厂房设施的检 查3………………………………………………………………………… 方确7.2.3的安装再认 法3……………………………………………………………………… 7.3运行确认3…………………………………………………………………………………… 7.3.1运行确认的目的4………………………………………………………………………… 7.3.2运行确认的内容4………………………………………………………………………… 7.3.3运行确认的项目4………………………………………………………………………… 7.3.3.1仪器仪表的校验情况的确 认4……………………………………………………… 确组空7.3.3.2调机的 认4……………………………………………………………………… 他辅助7.3.3.3系统的确其

地源热泵系统的实例应用论文.

地源热泵系统的实例应用论文 2019-06-02 摘要:在我国导致建筑能耗较大的一大“罪魁祸首”就是暖通空调,其能耗占建筑能耗的60%-70%,主要以电力和化石能源消耗为主。其中,煤炭消耗占的比例较大,能源利用率低,环境污染严重。文章将详细阐述地表水地源热泵取水系统施工监理要点与实际上可取得的经济效益。 关键词:地源热泵;地表水地源热泵取水系统;监理 地表水地源热泵取水系统施工属于地表水地源热泵空调系统施工,区别于传统中央空调施工,是地表水地源热泵系统施工的关键,其施工质量也是地表水地源能否节能运行的关键。地表水地源热泵取水系统施工主要内容包括管路、取水泵、地源热泵机组、换热器安装等。地表水地源热泵系统施工应严格按照GB50366-2006《地源热泵系统工程技术规范》、GB50243-2002《通风与空调工程施工质量验收规范》及GB50242-2002《建筑给水排水及采暖工程施工质量验收规范》进行施工。 1.地表水地源热泵取水系统施工监理 1.1管路安装监理工作要点 1.1.1吸入管路安装 吸人管路一般都有一段水平直管,这段管路的长度一般不要小于10倍的管直径,但最少不能小于0.5米,以免水流经过弯头时产生的旋涡进入泵内。吸入管路必须尽量做到短而直。为了使管道中的空气在灌引水时能完全排空,水平段管道最好安装成泵高、弯头低的倾斜方向。泵进口法兰前不能安装扩散管,但可以安装收缩管,收缩管要做成偏心收缩管,以利排气,弯头的弯曲半径要大于3-5倍的管道直径。此外,底阀在水中的淹没深度不小于0.3米,与池底及四周的距离大于管道直径。 1.1.2吐出管路安装 为了控制泵的工况点,吐出管道上必须装闸阀。为了避免泵在突然停电时倒转和受水锤冲击,吐出管路安装逆止阀,并安装在闸阀的后面。如果有必要安装压力表,必须安装在泵出水口2倍直径以上长的距离上,并且注意不要装在弯头和阀的附近,以免产生误差。进、出水管路都必须要有支撑装置,禁止将管路的重量加在泵身上。管路安装好后,最好用高压水通入作泄漏检查试验,要求不漏水。 1.2地源热泵机组安装监理工作要点

空气源热泵空调系统设计方案

空气源热泵空调系统设计 方案 第1章绪论 改革开放以来,随着国民经济的迅速发展和人民生活水平的大幅度提高,能源的消耗越来越大,其中建筑能源占相当大的比例。据统计,我国历年建筑能耗在总能耗的比例是19%~20%左右,平均值为19.8%。其中,暖通空调的能耗约占建筑总能耗的85%。在发达城市,夏季空调、冬季采暖与供热所消耗的能能量已占建筑物总能耗的40%~50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。热泵空调高效节能、不污染环境,真正做到了“一机两用”(夏季降温、冬季采暖),进入20世纪90年代以来在我国得到了长足的发展,特别是空气源热泵冷热水机组平均每年以20%的速度增长,成为我国空调行业又一个引人注目的快速增长点。 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP(性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺

空调系统验证方案

海南金芦荟生物工程有限公司 口服液洁净区空调净化系统验证方案文件编号:VF-VP-006-00

1、目的 1.1检查并确认空调净化系统安装符合设计要求,资料文件符合GMP管理要求。1.2 检查并确认空调净化系统在运行正常的状态下,其性能指标如房间换气次数、洁净度、温湿度、压差等参数符合标准。 2、范围 适用于洁净区空调净化系统的验证。 3、职责 3.1 验证委员会 3.1.1 负责验证方案的审批。 3.1.2 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 3.1.3 负责验证数据及结果的审核。 3.1.4 负责验证报告的审批。 3.1.5 负责发放验证证书。 3.2 验证小组 3.2.1负责验证方案起草和实施。 3.2.2负责验证数据及结果的审查。 3.2.3负责验证报告的审查。 3.3 设备部 3.3.1 负责验证方案的起草、设计及实施。 3.3.2 负责提供本系统的详细资料及相关SOP。 3.4 品管部 3.4.1 负责验证方案相关的检验及结果分析报告。 3.4.2 负责数据的选择与评价。 3.5 生产部

负责验证方案的实施时人员的配合。 3.6验证小组成员 组长:符萍 组员:蔡造军、伍智宏、梁军、陈雅玲、黄小婷、陈太弟 4、验证 4.1概述 采用空调空气处理系统,包括风冷机、空气输送部分、初效、高效过滤器,新风经初效、高效过滤器过滤,达到洁净空气要求送入各洁净区,以使检验场所保持一定的洁净度、换气次数、压差、温度和相对湿度,保证保健品检验的良好环境。 4.2安装确认 4.2.1净化空气流程示意图: 4.2.2设备生产厂家及型号

空调净化系统验证方案及报告

空调净化系统验证方案 及报告 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

XXXX药业有限公司GMP文件系统 验证管理 空调净化系统(HVAC) 再验证方案 XXXX药业有限公司 年月

XXXX药业有限公司GMP文件系统 验证管理 文件编码:YZ-GX-STD-001-03 页码:1/18 目录 验证方案会签与批准表 1、引言 概述 验证目的 验证小组成员和工作安排 验证计划 2、HVAC系统的安装确认 HAVC系统安装确认所需的文件 仪器和仪表的检定 HAVC系统的设备性能 2.3.1设备(构件)材质 2.3.2设备的安装确认 2.3.3风速测量 2.3.4高效过滤器的检漏 HAVC系统的安装确认小结 3、HAVC系统运行确认 设备测试 空调调试及空气平衡 3.2.1风量测试以及换气次数的计算 3.2.2房间压差测定 3.2.3房间温度测定 洁净度测定 3.3.1 悬浮粒子测定 3.3.2 沉降菌测定 4.自净时间测试 自净反向测试小结 自净状态测试小结 5.验证结论与评价 附件1:送风口风速测量记录 附件2:高效过滤器检漏测试纪录 附件3:送风口风量测量记录 附件4:压差测试纪录 附件5:温湿度测试纪录 附件6:洁净度测试纪录 附件7:自净反向测试记录 附件8:自净正向测试记录

XXXX药业有限公司GMP文件系统 验证管理 文件编码:YZ-GX-STD-001-03 页码: 2/18 验证方案会签与批准表

XXXX药业有限公司GMP文件系统验证管理 文件编码:YZ-GX-STD-001-03 页码: 3/18 1、引言 概述:我公司的口服固体制剂车间位于楼,车间总面积为 m2 ,其中300000级区域 m2 ,本车间的净化空调系统(HAVC)主要由 净化空调机组、风管系统以及高效过滤器组成,其空气的处理过程为: 除尘 本验证方案同时涉及到自循环层流罩的验证。 验证目的: HVAC系统是实现洁净区域的根本保证。本次验证的目的,就是为了确认口服固体制剂一车间的净化系统能达到GMP要求的条件,在未来的生产中能够提供一个洁净的生产环境,满足工艺要求。 验证小组成员及职责

低温空气源热泵系统在北方地区的应用案例

长期以来空气源热泵空调系统,主要应用于长江流域及其以南地区。本文主要介绍低温空气源热泵系统在北方地区的应用案例,并对系统设计的注意 事项进行了阐述,对系统初投资和运行费用进行了分析。实际运行证明,低温空气源热泵空调系统在北方制热是可行的,并且运行费用很低。 1、工程简介阿里斯顿电器(德国)集团有限公司出版 秦皇岛市百信图书广场位于秦皇岛市开发区,目前是秦皇岛市最大的综合类图书市场。本建筑长49.2m,宽35.1m,总建筑面积6900m2;建筑共计4 层,总高度为15.9m。一层、二层、三层是图书市场,四层为办公室。本建筑自2001年6月开始施工,2002年10月完工,2002年11月空调开始调试运行 。 3、冷热源选择 3.1 冷热源选择依据 秦皇岛市是全国闻名的度假旅游城市,市政府对环境污染问题特别重视,尤其是冬季供暖产生的污染问题。秦皇岛市供暖期较长,约为5个月。供 暖资源也很丰富:煤、油、城市集中煤气、电和城市集中供热,由于本项目在开发区,没有城市集中供热,燃煤也被禁止使用,可利用的资源仅为油 、城市集中煤气和电。秦皇岛市没有电增容,城市煤气有市政费用。同时在与开发商接触过程中,开发商提出以下几点要求: ①安全、环保、没有污染;②运行费用低;③系统运行可靠;④维护方便。 3.2 冷热源初投资比较 根据开发商提出的要求,提供以下比较方案:方案1,空气源热泵空调系统;方案2,螺杆冷水机组+电锅炉;方案3,螺杆冷水机组+煤气锅炉;方 案4,螺杆冷水机组+油锅炉。各种方案初投资,见表3。

3.3 运行费用分析比较 夏季,各种方案的系统制冷系数接近,又由于秦皇岛市夏季制冷期较短,这里不做比较,仅对冬季供热时的运行费用进行分析比较,结果见表4。 3.4 结果分析 通过以上分析可以看出,空气源热泵空调系统不仅初投资较低,其冬季运行费用也优于其他三种方案,所以,本工程选用低温空气源热泵机组作 为空调系统冷热源。 4、机房设计 4.1 空气源热泵机组选型 图1设备布置图 1 低温空气源热泵空调机组 2 冷热水循环水泵 3 电加热器 4 电子水处理器 5 膨胀水箱 6 电器及控制装置 根据空调负荷,选用清华同方低温空气源热泵机组FS-U-R-360型2台。单台制冷量408 kW,供回水温度7-12℃,输入功率122.4 Kw;单台制热量 420 kW,供回水温度45-40℃,输入功率122.4 Kw。低温空气源热泵机组设置在四层屋顶,冷热循环水泵、电加热器和电气控制设置在水泵房内。设备

热泵型电动汽车空调系统性能试验研究上课讲义

热泵型电动汽车空调系统性能试验研究 1.1 研究背景及意义 目前,随着人类越来越多的使用燃油汽车,汽车尾气排放出的二氧化碳加剧了全球 气候极端变化。我国的石油资源的探明储量极其有限,早在2009 年,石油消费进口依 存度就突破了“国际警戒线”(50%),高达52%。汽车保有量却是逐年增加,如果 汽车几乎完全依赖于化石燃料,很容易受到国际石油价格的冲击,甚至导致燃料的供应 中断。再者,燃油汽车的尾气排放出大量的污染物如PM10(可吸入颗粒物)、NOx(氮 氧化物)、SO2(二氧化硫)和VOCs(挥发性有机化合物)等,已经成为我国城市大 气污染的主要污染源,严重危害了人们的健康。纯电动汽车是以电能驱动的,具有燃 油汽车无法比拟的优点,主要表现在:一、污染少、噪声低。其本身不排放污染大气 的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著 减少,且电动汽车电动机的发出的噪声较燃油汽车发动机小得多;二、能源的利用具有 多元化,电力可以从多种一次能源如煤、核能、水力、太阳能、风能、潮汐能等获得, 能源利用更加安全;三、可在夜间利用电网的廉价“谷电”进行充电,起到平抑电网的 峰谷差的作用;四、效率更高和控制更容易实现智能化。 作为一种具有环保和节能优势的先进交通工具,电动汽车受到了越来越广泛的关注。美、日、欧等发达国家不惜投入巨资进行电动汽车的研究开发,取得了丰硕的研究成果,纯电动汽车目前在许多发达国家已得到商业化的应用。我国电动汽车发展起步 较晚,但国家从维护能源安全,改善大气环境,提高汽车工业竞争力和实现我国汽车工 业的跨越式发展的战略高度考虑,从“八五”开始到现在,电动汽车研究一直是国家计 划项目,并在2001 年设立了“电动汽车重大科技专项”,通过组织企业、高校和科研 机构,集中各方面力量进行技术攻关。与此同时,上海、广州和深圳等地的地方政 府也出台了相应的扶持新能源汽车的发展政策,计划实现电动汽车在本地的产业化。 电动汽车代表未来汽车发展的方向,各国政策的扶持为电动汽车的发展铺平了道 路,近年来,它们在全世界范围内呈现出欣欣向荣的的发展态势,据国外著名金融杂志 JP Morgan 报道,预计到2020 年全球将有1100 万辆电动汽车上市销售,这意味着到那时电动汽车将分别占有北美20%和全球13%的市场份额,但目前电动汽车的发展遇到 很多技术问题,特别动力电池技术,续驶里程的提高和充电网络的建设等问题。 空调系统作为改善驾驶员工作条件、提高工作效率、提高汽车安全性及为乘员营造 健康舒适的乘车环境的重要手段,对燃油汽车和电动汽车而言,都是必不可少的。电 动汽车用空调系统与普通的汽车(内燃机驱动)空调相比,由于原动机不同而引发一系 列新变化。主要体现在:1)普通的汽车空调系统的压缩机依靠发动机通过一个电磁离 合器驱动,而电动汽车空调压缩机自带电动机独立驱动;2)电动汽车没有用来采暖的 发动机余热,不能提供作为汽车空调冬天采暖用的热源,必须自身具有供暖的功能,即 要求制冷、制热双向运行的热泵型空调系统。 纯电动汽车空调系统制冷、供暖和除霜所需能量均来自于整车动力电池。作为电动 汽车功耗最大的辅助子系统,空调系统的使用将极大的降低其续驶里程。因而,通过优 化电动汽车空调系统的设计以提高其性能对提高电动汽车续驶里程,推广电动汽车的应 用有着重要意义。 1.2.2 热泵式汽车空调研究现状 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。随着 汽车的日益普及以及人们对汽车的舒适性、安全性要求的提高,汽车空调系统已经成为 现代汽车上必不可少的装置。汽车空调工作环境的特殊性如需要承受频繁的震动和冲

地源热泵系统操作手册

新龙生态林工程项目指挥部(办公楼) 地源热泵空调系统操作手册

工程概况 工程名称:新龙生态林工程项目指挥部(办公楼)地源热泵空调系统工程地点:常州市新北区长江北路 建设单位:常州龙城生态建设有限公司 施工单位:江苏凯源机电设备安装工程有限公司 设备描述 1、本工程系统为地源热泵系统,主机品牌为上海美意,配置热泵机组4台;室内风机盘管品牌为浙江盾安,室内配置风机盘管57台;中厅配置风管式机组2台,配置室内新风机4台。 地源侧配备循环水泵两台,一用一备;空调侧配备循环水泵两台,一用一备。 地源侧与空调侧各配置定压稳压装置一套。 2、美意主机液晶控制面板使用说明:

○1开关 ○2模式 ○3热水 ○4温度加键/风速 ○5确认 ○6温度减键/睡眠 ○7设置 ○8清除 ○9节能 ○10室温 3、室内风机盘管液晶控制面板使用说明: ○1开/关机按键 ○2模式按键,冷/热转换 ○3风量调节键 ○4/○5温度设置键 ○6红外接收窗 ○7/○8冷/热符号 ○9通风符号 ○10自动风速符号 ○11手动风速符号 ○12室温符号 ○14/○15温度显示

4、新风机组液晶控制面板使用说明 ○1开关键 ○2模式键 ○3风速键 ○4/○6上下键 ○5空格 开机步骤 开启地源侧水泵和空调侧水泵 按主机液晶控制面板开关,依次开1#、2#机 开启室内液晶控制面板开关(设置温度及风量) 关机步骤 关闭室内液晶控制面板开关

关闭主机液晶控制面板开关 关闭地源侧水泵和空调侧水泵 五、中厅风管机组操作步骤 中厅部分空调机组控制箱 1、按开机键,运行灯亮,机组启动运转 2、按停机键,停止灯亮,机组停止运转

洁净区空调净化系统验证验证方案

深圳市天能药业有限公司页码:第 1 页共 19 页 编码:TS·题目:洁净区空调净化系统验证方案 VP·FV·009-00 洁净区空调净化系统验证方案 1. 引言1.1 概述本公司洁净区空调净化系统由1台恒温恒湿空调机、风管、高效过滤系统组成,十万级洁净区总面积2。为130m本系统由广东政和石油化工建筑设计有限公司设计,广州广药建筑工程有限公司施工,于2010年06月完成。 1.2 标准 1.2.1 空气温度为18~26℃。 1.2.2 空气相对湿度为45~65%。 1.2.5 光照度要求:。主要操作间大于300LX 1.2.6 噪音要求:65dB小于。1.2.7 空气洁净度要求。 文件GMP深圳市天能药业有限公司. 深圳市天能药业有限公司页码:第 2 页共 19 页 编码:TS·VP·FV题目:洁净区空调净化系统验证方案·009-00 20,000 ≤≤100,000 3,000,000

验证目的1.3 要求。AC系统是否符合设计要求,资料文件是否符合GMP检查并确认生产车间内的HV 文件1.4 结论:检查人:日期:复核人: 安装确认2. 空气处理设备基本情况2.1 2.1.1 本系统使用东莞瑞士宝恒温恒湿净化空调机组。2.1.2 空气净化流程 空调中效过滤器风机新风初级过滤器 高效过滤器使用点回风 文件GMP深圳市天能药业有限公司. 深圳市天能药业有限公司页码:第 3 页共 19 页 编码:TS·VP·FV·题目:洁净区空调净化系统验证方案009-00 2.1.3 空调设备主要组件确认 AHU-1

结论:复核人:日期:检查人: 结论:复核人:检查人:日期: 2.2 风管制造及安装风管制作及安装的确认主要是对照设计图纸、流程图纸检查风管的材料、保温材料、安装紧密程度、管道走向等。 结论:复核人:检查人:日期: 文件GMP深圳市天能药业有限公司. 深圳市天能药业有限公司页码:第 4 页共 19 页 编码:TS·VP·FV题目:洁净区空调净化系统验证方案·009-00 2.3 风管及空调设备清洁确认 2.3.1风管及空调设备清洁确认应在安装过程中完成。HVAC系统通风管道吊装前,先用清洁剂或酒精将内壁擦洗干净,并在风管两端用纸或PVC封住,等待吊装。 2.3.2空调机组拼装结束后,内部先要清洗,在去除杂物和灰尘后再安装初效及中效过滤器。在安装高效过滤器前,应开启风机,运行12小时后,把洁净室四壁、顶棚、地面和静压箱四壁擦

电动汽车热泵空调系统的实验研究

电动汽车用热泵空调系统的实验研究 轩小波1,2陈斐1,2 1.上海新能源汽车空调工程技术研究中心 2.上海加冷松芝汽车空调股份有限公司制冷研究院 摘要:基于一款电动汽车空调设计了热泵空调系统试验台架,研究了不同压缩机转速和环境温度条件下双换热器和三换热器系统对热泵空调换热性能、总成出风口平均温度及系统COP的影响。结果表明,环境温度越高双换热器系统和三换热器系统的换热性能越高,且三换热器系统的性能优势越明显;压缩机转速为5500rpm、室外环境温度为7℃、1℃、-5℃工况下,三换热器系统较双换热器系统总成出风口平均温度分别高8.0℃、7.2℃和6.1℃,系统COP分别提高15.0%、16.5%和18.2%,提高了电动汽车乘员舱的舒适性和能效比。 关键词:电动汽车热泵空调实验研究三换热器系统系统COP Experimental Research of Heat Pump Air-conditioning System for Electric Vehicle Songz automobile air conditioning co.,ltd Shanghai 201108 Abstract: Designed a test bench of heat pump air conditioning system based on an electric car air-conditioning. The impact of heat pump air conditioning system transfer performance, average temperature of the outlet assembly and the system coefficient of performance were studied base on two exchangers system and three exchangers system, under different compressor speeds and different ambient temperatures. The test results indicate that, higher the ambient temperature, higher the heat transfer performance of the two exchangers system and three exchangers system, transfer performance advantages more obvious of the three exchangers system. Under compressor speed is 5500rpm, ambient temperature is 7℃,1℃,-5℃conditions, average temperature of outlet assembly of the three exchangers system higher 8.0℃, 7.2℃and 6.1℃than the two exchangers system, the coefficient of performance increased 15.0%, 16.5% and 18.2% respectively, and the electric vehicle passenger compartment comfort and energy efficiency is also improved. Key words: electric vehicle heat pump air-conditioning experimental research three heat exchangers system system coefficient of performance 1前言

相关主题
文本预览
相关文档 最新文档