当前位置:文档之家› 材料成型理论_内高压成形

材料成型理论_内高压成形

材料成型理论_内高压成形
材料成型理论_内高压成形

特种塑性成形—高压成形

(塑性成形工艺大作业)

目录

1高压成形工艺简介及应用实例 (1)

1.1高压成形技术 (1)

1.2应用实例 (2)

1.2.1汽车工业 (2)

1.2.2航空航天 (3)

2应力、应变特点及变形规律分析 (3)

2.1 高压成形工艺流程 (3)

2.2应力、应变特点 (4)

2.2.1充形阶段 (5)

2.2.2成形阶段 (5)

2.2.3整形阶段 (6)

2.3 成形区间及加载路线 (6)

3成形设备 (8)

4常见缺陷形式及预防措施 (9)

4.1 屈曲 (9)

4.2 起皱 (9)

4.3 开裂 (10)

4.3.1弯曲管壁厚分布规律 (10)

4.3.2 过渡区开裂的应力分析 (11)

5高压成形的特点 (12)

6. 研究现状、发展趋势及主要研究机构 (13)

6.1 研究现状 (13)

6.2 发展趋势 (14)

6.3国主要研究机构 (14)

参考文献 (15)

1高压成形工艺简介及应用实例

在节能减排的大形势下,汽车和飞机等运输工具结构轻量化设计的概念应运而生。实现结构轻量化有两条主要途径,即材料和结构途径。材料途径:采用铝合金、镁合金、钛合金和复合材料等轻质材料;结构途径:采用空心变截面、变厚度薄壁壳体、整体等结构。根据统计,对于一定的减重目标,在航天航空领域,采用轻质材料减重的贡献大约为2/3,结构减重的贡献大约为1/3;而在汽车领域,则主要采用结构减重的途径。然而,高压成形是适应结构轻量化发展起来的一种先进制造技术。

1.1高压成形技术

高压成形(Internal High Pressure Forming)是以管材作坯料,通过管材部施加高压液体和轴向补料把管材压入到模具型腔使其成形为所需形状的工件。由于使用乳化液(在水中添加少量的防腐剂等组成)作为水传力介质,又称为管材液压成形(Tube Hydroforming)或水压成形。

按成形零件的种类,高压成形分为三类:(1)变径管高压成形;(2)弯曲轴线构件高压成形;(3)多通管高压成形。

(1)变径管高压成形:变径管是指管件中间一处或几处的管径或周长大于二端管径。其中,如图1.1所示的非对称大截面差管件成形困难,通过轴向进给和压匹配,以及贴模顺序控制,实现截面差120%构件高压成形,突破100%膨胀率的极限值。

图1.1 大膨胀率双锥管件

(2)弯曲轴线异型截面管件高压成形:图1.2所示管件具有18个不同形状和尺寸截面,轴线为三维曲线。

图1.2 轿车副车架高压件

(3)多通管高压成形:铝合金薄壁整体三通管高压成形,消除传统工艺纵向焊缝,大幅提高构件可靠性。

图1.3 整体三通管

1.2应用实例

1.2.1汽车工业

德国于20世纪70年代末开始高压液力成形基础研究,并于90年代初率先开始在工业生产中采用高压成形技术制造汽车轻体构件。目前在汽车上应用有①排气系统异型管件;②副车架总成;③底盘构件、车身框架、座椅框架及散热器支架;④前轴、后轴及驱动轴;⑤安全构件等。

1.2.2航空航天

用高压成形生产的飞机上的轻体构件有结构空心框梁、发动机上中空轴类件、进排气系统异型管和复杂管接件等。用高压成形制造的飞机发动机空心双拐曲轴,与原零件相比减重48%。

2应力、应变特点及变形规律分析

2.1 高压成形工艺流程

以变径管为例其成形工艺过程可以分为三个阶段,如图2.1所示。初始充填阶段(图2.1a)模具闭合后,将管的两端用水平冲头密封,使管坯充满液体,并排出气体,实现管端冲头密封;成形阶段(图2.1b),对管液体加压胀形的同时,两端的冲头按照设定的加载曲线向推进补料,在压和轴向补料的联合作用下使管坯基本贴靠模具,这时除了过渡区圆角以外的大部分区域已经成形;整形阶段(图2.1c),提高压力使过渡区圆角完全贴靠模具而成形为所需的工件。

a.充填阶段

b. 成形阶段

c. 整形阶段

图2.1 变径管件高压成形工艺过程

成形过程中涉及主要工艺参数:

初始屈服压力Ps :管材开始发生塑性变形时所需要的压;

开裂压力Pb :贴模前压应小于开裂压力;

整形压力(成形压力)Pc :用于成形截面过渡圆角,并保证尺寸精度; 轴向进给力Fa :实现轴向补料;

合模力Fc :使模具闭合不产生缝隙;

补料量△l :减少成形区壁厚减薄,并提高膨胀率;

2.2应力、应变特点

设管材为薄壁管,忽略管材壁上压力p ,只考虑轴向应力 (axial stress)和环向应力(hoop stress),则可认为管材处于平面应力状态。由Mises 屈服准则,可得高压成形的屈服条件:

222s z z σσσσσθθ=+- (1)

式中,σθ 为环向应力;σz 为轴向应力;σs 为材料屈服强度。

根据Levy-Mises 增量本构方程,厚度变化量与应力状态的关系如下:

)(2z i i t d d σσσεεθ+-= (2)

式中: d εt 为厚度瞬时增量,大于0 表示增厚,小于0表示减薄;dεi 为等效应变增量;σi 为等效应力。

变形过程中,某一时刻管材上不同点,以及同一点在不同时刻的应力状态都将有很大差别,而所有可能的应力状态应位于图2.2所示的平面应力屈服轨迹或屈服椭圆上点A →D →B →C 之间的曲线上。

图2.2高压成形应力应变状态在屈服轨迹上的位置

2.2.1充形阶段

在此阶段,冲头对管端作用有一定的轴向推力以实现密封,整个管材都处于轴向受压的单向应力状态(见点A),对应的应变状态为轴向压缩、环向伸长和厚度增加,但变形量都很小。

2.2.2成形阶段

在成形阶段,送料区和成形区的应力及应变状态均不同。对于送料区管材,虽然受到部液体压力的作用,但管材与模具的接触应力σN基本等于压p,环向应力σθ为零,送料区仅存在轴向应力σz的作用,因此送料区的应力状态对应于屈服椭圆上的点A。

由于受到模具的约束,环向应变εθ也为零,所以送料区处于平面应变状态,而且轴向缩短、厚度增加。因为管材与模具之间的摩擦作用,轴向应力σz的绝对值从管端向逐渐减少,因此管端处的增厚最为严重。

成形初期,管材还保持平直状态,其应力状态为环向受拉和轴向受压,即位于屈服轨迹中点A和点B之间,应变状态与环向应力σθ和轴向应力σz的数值大小有关:

当σθ>|σz|,位于屈服轨迹的点B和点D之间时,有dεt<0,壁厚减薄;

当σθ<|σz|,位于屈服轨迹的点D和点A之间时,有dεt >0,壁厚增加;

当σθ=|σz|,位于屈服轨迹的点D,此时dεθ=-dεz,dεt =0,壁厚不变,管材处于平面应变状态。

随着变形的进行,变形区管材不再保持平直状态,而将发生向外凸起的变形。此时,该区的管材处于双向拉应力状态,在图2.2中表现为从点B向点C移动。在此阶段,σθ>0,σz>0,且一般情况下σθ>σz,因此环向和轴向总是伸长,壁厚总是减薄,减薄的程度取决于轴向应力与环向应力数值的大小。须要指出的是,σθ与σz的比值还与变形区的相对长度有关。

在成形阶段还有一种特殊情况,管材只受压作用而没有轴向补料,即自由胀形。在自由胀形的初期管材保持直管状态时,管材只受压作用引起的环向应力,轴向应力σz=0,处于屈服轨迹曲线上的点B,随着压的增加,变形区管材将发生向外凸起的变形,这时的应力状态处于屈服轨迹上的点C附近。处在这种双向拉伸的应力状态,管材容易发生开裂,这也是自由胀形的极限膨胀率低于高压成形的主要原因。

2.2.3整形阶段

通过增加液体压力使过渡圆角贴靠模具,达到所要求的几何形状和尺寸。在整形阶段,成形区管材绝大部分已与模具接触,只有送料区与成形区的过渡圆角区域尚未完全与模具贴合。此时过渡区圆角受力相当于压作用下的圆环壳,在环向和切向都发生拉伸变形,壁厚减薄,相当于在屈服轨迹曲线上位于点B和点C 之间。

2.3 成形区间及加载路线

成形区间是指管材既不起皱又不破裂的轴向应力和压之间匹配的区间(见图2.3),通过图可以确定起皱临界轴向压力和开裂压力。

图2.3 轴向应力和压之间关系示意图

图2.3中,L a表示保持管材进入屈服开始塑性变形时轴向应力和压之间的关系,点a1代表初始屈服压力,L b表示开裂压力,点b1表示无轴向应力时的开裂压力;L c代表产生皱纹的轴向应力,c1为无压时的起皱轴向应力,而在压作用下的起皱临界应力。

L a、L b和L c等3条线划分出A、B、C和D等4个区间,其中区间A为弹性区,在该区间管材还处于弹性状态;区间B为开裂区,当压在该区间时管材将发生开裂;区间C为起皱区,当轴向应力在该区间时将发生起皱;区间D为成形区,只有当压和轴向应力的匹配关系在该围时,才能确保管材发生塑性变形时既不起皱又不破裂。

引入一个加载比例因子参数λ= σz/ σθ,η:缺陷因子;Fcr:临界屈曲轴向压应力。

图2.4 加载比例参数λ和缺陷因子η与临界轴向压Fcr应力关系

当0 < λ < 1: λ 增大, Fcr 增大; λ >1 : λ增大, Fcr 下降。

这说明λ= 1.0是一个分水岭值,即无论缺陷因子如何影响,按照λ = 1.0这个比例加载关系进行加载是最理想的加载路径。

3成形设备

高压成形的设备为高压成形压力机(如图3.1所示),高压成型机总体结构先进,紧凑,可靠,维护方便,操作简单。该高压成型机由管胚本体机构、液压系统、供水系统、控制台等组成。

图3.1 高压成形压力机 高

源计算机控制系统合模压力机

水压系统

液压系统模具

水平缸图3.2 高压成形压力机工作原理

高压成形压力机各单元工作原理:

合模压力机:闭合模具,防止发生分缝造成零件出现飞边或引起管端密封失败;水平缸:驱动冲头,实现管端密封和轴向进给;

高压源:增压器,为成形提供高压;

计算机控制系统:按设定曲线对管件进行加载;

液压系统:为增压器和水平缸提供动力;

水压系统:提供管液体。

4常见缺陷形式及预防措施

高压成形是在压和轴向进给联合作用下的复杂成形过程,主要缺陷形式有屈曲、起皱和开裂等三种(见图4.1)。如果轴向进给过大,会引起屈曲或起皱;压过高,会减薄过度甚至开裂。只有给出压力与轴向进给的合理匹配关系,才能获得合格的零件。

(a)屈曲(b)起皱(c)开裂

图4.1高压成形缺陷形式

4.1 屈曲

当管材成形区长度过长,在成形初期还没有在管材建立起足够大的压时,施加了过大的轴向力。

在合理选择管材长度、增加预成形工序、控制工艺参数。

4.2 起皱

在成形初期,轴向力过大,将产生压缩失稳,即起皱。

皱纹分为死皱和有益皱纹两种,死皱是在后续的充型过程中无法展平的皱

纹,而有益皱纹在后续成型过程中可以被展平,而且可以提高材料的成型极限。

有益皱纹产生必须满足两个条件,几何条件和力学条件。几何条件包括皱纹的数目、壁厚减薄率和补料量。经研究得出,随皱纹数目增多,需要的补料量增加,壁厚减薄变小,甚至增厚。通过起皱的方式可以将成形所需补料量预先聚集在成形区。关键是控制皱纹的数量,只要所起皱纹的数目合理,可以保证成形后壁厚基本不变,或将减薄控制在要求围;有益皱纹展平过程中不发生开裂的严格力学条件是皱峰不减薄。如图4.2所示

(a)有益皱纹(b)死皱

图4.2有益皱纹与死皱

4.3 开裂

开裂是膨胀率、摩擦因数、壁厚三个主要方面共同作用结果。

4.3.1弯曲管壁厚分布规律

弯曲轴线管高压成形后,最小壁厚位于弯曲段外侧,最大壁厚位于弯曲段侧。图 4.3是弯曲轴线管成形后的方形截面壁厚分布实验结果。直边中点最大厚度1.462mm,减薄率为2.5%;过渡区最小厚度1.255mm,减薄率为163%。矩形截面构件的壁厚分布与正方形截面类似。

图4.3正方形截面壁厚分布

表4-1给出了膨胀率对壁厚分布的影响规律。可以看出,随着膨胀率的增加,

直边中心处壁厚变化不大,而过渡区减薄严重,容易引起过渡区的开裂。

表4-1 膨胀率对壁厚分布的影响

边长/mm 膨胀率

/%

圆角半径

/mm

直边中心处壁厚

/mm

直边中心处减薄

率/%

过渡区壁厚

/mm

过渡区减薄率

/%

43.5 3.5 5.5 1.46 2.5 1.26 16.3

46 10 6 1.43 5 1.12 25.5

摩擦条件对壁厚分布也有重要影响,随着摩擦的增加,壁厚不均匀度增加,过渡区减薄越严重(见图4.4)。因此,在实际成形时使用适当的润滑剂减少摩擦是促进壁厚分布均匀的重要措施。

图4.4摩擦对壁厚分布的影响

4.3.2 过渡区开裂的应力分析

弯曲段外侧过渡区开裂的原因是由于弯曲时造成壁厚减薄过度和加工硬化使材料塑性不足,防止措施主要是弯曲时控制壁厚过度减薄。结合图4.5的过渡区曲率和受力情况说明产生过渡区开裂的机理。

图4.5 过渡区的曲率和环向应力

假设成形过程中的某一时刻圆角的半径r c为一常数,而多边形截面中心段与模具接触曲率半径r f为无穷大,由于曲率半径是连续的,过渡区曲率半径r t>r c。加压过程中管坯部的压力处处相同,由σ=p/rt可知过渡区的环向应力大于圆角处的环向应力。因此,过渡区先满足屈服条件开始塑性变形,引起环向应变增加和壁厚持续减薄而导致开裂。

5高压成形的特点

主要优点:

(1)减轻质量,节约材料。对于框、梁类结构件,高压成形件比冲压件减轻20%~40%;对于空心轴类件可以减轻40%~50%。

(2)减少零件和模具数量,降低模具费用。高压成形件通常仅需要一套模具,而冲压件大多需要多套模具。副车架零件由6个减少到1个;散热器支架零件由17个减少到10个。

(3)减少后续机械加工和组装焊接量。以散热器支架为例,散热面积增加43%,焊点由174 个减少到20个,装配工序由13道减少到6道,生产率提高66%。(4)提高强度、刚度、疲劳强度。以散热器支架为例,垂直方向提高39%;水平方向提高50%。

(5)提高材料利用率。高压成形件的材料利用率为90%~95%,而冲压件材料利用率仅为60%~70%。

(6)降低生产成本。高压成形件比冲压件平均降低生产成本15%~20%,模具费用降低20%~30%。

主要缺点:

(1)压高,需要大吨位液压机作为合模压力机;

(2)高压源及闭环实时控制系统复杂,造价高;

(3)零件研发试制费用高。

6. 研究现状、发展趋势及主要研究机构

6.1 研究现状

目前,国外对高压成型的研究主要集中在以下三个方面,并取得了相应的成果。

1. 失效形式:高压成形是在压和轴向进给联合作用下的复杂成形过程,主要失效形式有起皱和开裂。如果压过高,减薄过度会引起开裂;如果轴向进给过大,会引起管子屈曲或起皱。通过塑性稳定性理论可以确定压力与轴向进给的合理匹配区间,给出临界开裂压力和引起失稳起皱的最大轴向力。

2. 实验研究:目前通过大量的实验研究和理论分析确定了高压成形区间成形极限图(FLD)的围,研究表明高压成形的不产生缺陷的成形区间仅在FLD 图左侧的一个很窄的围。在实验研究方面进行的主要工作还有:薄管的失效形式及防止措施;压与轴向位移的合理关系及控制方法;成形过程中工件的应力应变和几何形状的测量;管材的成形极限;高压成形的摩擦特性;管材性能的测试方法。

3. 数值模拟:数值模拟能准确地反映高压成形过程,预报成形缺陷,显示工件贴模与成形情况,给出壁厚分布。而且可以方便地调整压与轴向位移的匹配关系,研究其对成形缺陷和壁厚分布的影响,以获得最佳的加载曲线。在此基础上,再进行实验验证与调整。因此高压成形的数值模拟受到各国研究者和工业界的重视。数值模拟采用的软件主要是动力显示有限元程序如LS-DYNA、PAM-STAMP 等。影响模拟精度的因素有:管材力学性能的选取,因为从板料加工成管材的过程会引起力学性能的改变;摩擦类型与摩擦系数的确定;工件与模具的接触算法。

6.2 发展趋势

高压成形技术近10 年来在汽车工业得到广泛应用,汽车减轻质量和降低成本的需求又促进了高压成形技术的不断改进。但与锻造和冲压等成形工艺相比,高压成形还是一项相对“年轻”的技术,在设备、模具、工艺和成形机理等方面还有许多问题需要深入研究,待开展研究的课题主要有以下几方面:

(1) 管材力学性能测试方法。包括屈服极限和延伸率等常规力学性能,n值和r值等成形性能指数。目前在有限元模拟中使用的n值和r值多为相应板材的数值,而由板材加工为管材性能要发生改变,使用板材n值和r值会带来误差。

(2) 高压成形极限图(FLD)。目前在实验和数值模拟中使用FLD均为相应板材的FLD,如何确定适用于管材高压成形极限图,用于指导实际生产,是高压成形领域的一个重要课题。

(3)高压成形摩擦测定。需要开发出合理装置测定高压成形送料区、成形区和过渡区的摩擦系数,为制定工艺和数值模拟提供依据。

(4) 高压成形件设计准则。通过实验和生产实践的总结,应逐步形成高压成形件准则,包括截面形状、最小圆角、最大膨胀量,最大减薄量、管材弯曲形状、预成形以及如何确定初始管材直径和厚度等。

(5) 模具设计关键技术。与冲压模具不同,高压成形模具在成形后期模腔承受高达400-600MPa 的压力,在模块引起很大应力,在送料区管材与模腔产生强烈的摩擦,因此高压成形模具结构、材料及热处理与冲压模具有较大不同。

6.3国主要研究机构

①工业大学——液压成形工程研究中心

国专门从事液压成形(又称为液力成形、水压成形)科研和技术开发的研究机构,是液压成形领域世界三大研究基地之一。奠基人-王仲仁教授,20 世纪80 年代中期,首创球形容器无模液力成形工艺,为大型壳体制造提供了一种成本低周期短的新技术[1]。目前,以苑世剑为代表的团队在高压成形方面取得了一系列的成果[2,3,4]

图6.1 无模液压胀形法制造球形容器的主要工序流程

②燕山大学和大学——汽车桥壳高压成型

礽和王连东[5]是国对这方面着手研究最早的学者,并初步研制成功了载重0.75t的轻型汽车桥壳。并对成型过程进行了系统的实验研究和数值模拟。并未实用。

③工业大学

工业大学在高压成形研究方面起步较晚,但起点较高。该校材料学院的精密成形课题组在薛克敏教授的带领下也正在对高压成形技术进行理论和试验方面的研究。通过与锻压设备公司的积极合作,现已成功开发国最大吨位的高压成形设备。

参考文献

[1]王仲仁,苑世剑,等. 省力液压成形的原理与途径[J]. 机械工程学

报,2013,49(18):99-105.

[2]苑世剑,何祝斌,等. 高压成形理论与技术的新进展[J]. 中国有色金属学

报,2011,21(10):2523-2533.

[3]苑世剑,钢,等. 高压成形机理与关键技术[J]. 数字制造科学,2008,6(4):1-34.

[4]苑世剑.高压成形技术现状与发展趋势[J].金属成形工艺, 2003, (3):1-3.

[5]王连东,等. 液压胀形汽车桥壳成形理论及其试验研究[J].农业机械学

报,2003,34(1):124-138.

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成形原理课后习题解答汇总

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型基础复习考试题

复习题 一、填空题 1.材料力学性能的主要指标有、、、、疲劳强度等 2.在静载荷作用下,设计在工作中不允许产生明显塑性变形的零件时,应使其承受的最大应力小于,若使零件在工作中不产生断裂,应使其承受的最大应力小于。 3.ReL(σs)表示,(σ)表示,其数值越大,材料抵抗能力越强。 4.材料常用的塑性指标有和两种。其中用表示塑性更接近材料的真实变形。 5.当材料中存在裂纹时,在外力的作用下,裂纹尖端附近会形成一个应力场,用来表述该应力场的强度。构件脆断时所对应的应力强度因子称为,当K I >K I c 时,材料发生。 6.金属晶格的基本类型有、、三种。 7.亚共析钢的室温组织是铁素体+珠光体(F+P),随着碳的质量分数的增加,珠光体的比例越来越,强度和硬度越来越,塑性和韧性越来越。 8.金属要完成自发结晶的必要条件是,冷却速度越大,越大,晶粒越,综合力学性能越。 9.合金相图表示的是合金的____ 、、和之间的关系。 11.影响再结晶后晶粒大小的因素有、、、。12.热加工的特点是;冷加工的特点是。 13.马氏体是的固溶体,其转变温度范围(共析刚)为。 14.退火的冷却方式是,常用的退火方法有、、、、和。 15.正火的冷却方式是,正火的主要目的是、、。 16.调质处理是指加的热处理工艺,钢件经调质处理后,可以获得良好的性能。 17.W18Cr4V钢是钢,其平均碳含量(Wc)为:%。最终热处理工艺是,三次高温回火的目的是。

18.ZL102是合金,其基本元素为、主加元素为。19.滑动轴承合金的组织特征是或者。 20.对于热处理可强化的铝合金,其热处理方法为。 21.铸造可分为和两大类;铸造具有和成本低廉等优点,但铸件的组织,力学性能;因此,铸造常用于制造形状或在应力下工作的零件或毛坯。 22.金属液的流动性,收缩率,则铸造性能好;若金属的流动性差,铸件易出现等的铸造缺陷;若收缩率大,则易出现的铸造缺陷。 23.常用铸造合金中,灰铸铁的铸造性能,而铸钢的铸造性能。 24.铸型的型腔用于形成铸件的外形,而主要形成铸件的内腔和孔。25.一般铸件浇注时,其上部质量较,而下部的质量较,因此在确定浇注位置时,应尽量将铸件的朝下、朝上。 26.冒口的主要作用是,一般冒口厘设置在铸件的部位。 27.设计铸件时,铸件的壁厚应尽量,并且壁厚不宜太厚或太薄;若壁厚太小,则铸件易出现的缺陷;若壁厚太大,则铸件的。 28.衡量金属可锻性的两个主要指标是塑性与变形抗力、 塑性愈高,变形抗力愈小,金属的可锻性就愈好。 29.随着金属冷变形程度的增加,材料的强度和硬度,塑性和韧性 ,使金属的可锻性。 30.自由锻零件应尽量避免、、等结构。 31.弯曲件的弯曲半径应大于,以免弯裂。 32.冲压材料应具有良好的。 33.细晶粒组织的可锻性粗晶粒组织。 34.非合金钢中碳的质量分数愈低,可锻性就愈。 35.焊接方法按焊接过程的特点分、、三大类。 36.影响焊接电流的主要因素是焊条直径和焊缝位置。焊接时,应在保证焊接质量的前提下,尽量选用大的电流,以提高生产率。 37.电焊机分为和两大类。 38.焊缝的空间位置有、、、。39.焊接接头的基本形式有、、、。40.气体保护焊根据保护气体的不同,分为焊和焊等。41.点焊的主要焊接参数是、和。压力过大、电流过小,焊点强度;压力过小、电流过大,易、。 二、判断题 ( - )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形。( - )2.硬度值相同的在同一环境中工作的同一种材料制作的轴,工作寿命是相同的。( - )3.所有的金属材料均有明显的屈服现象。 ( - )4.选择冲击吸收功高的材料制作零构件可保证工作中不发生脆断。

材料成型原理复习题

综合测试题一 模具寿命与材料成形加工及材料学 一、填空题(每小题2分,共20分) 1. 目前铸造成形技术的方法种类繁多按生产方法分类,可分为砂型铸造和特种铸造。 2. 在铸造生产中,细化铸件晶粒可采用的途径有增加过冷度、采用孕育处理和附加振动。 3. 铸铁按碳存在形式分灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁等。 4. 合金在铸造时的难易程度的衡量指标合金的流动性和收缩。 5. 合金的流动性主要取决于它本身的化学成分。 6. 压力加工的加工方法主要有:冲压、锻造、轧制、拉拔和 挤压等。 7. 合金的流动性常采用浇注螺旋型标准试样的方法来衡量, 8. 流动性不好的合金容易产生浇不足、冷隔、气孔、夹渣等缺陷。 9. 液态金属的充型能力主要取决于金属的流动性,还受外部条件如浇注温度、充型压力、铸型结构和铸型材料等因素的影响,是各种因素的综合反映。 10.金属由浇注温度冷却到室温经历了液态收缩、凝固收缩和固态收缩三个相互关联的收缩阶段。 11.液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。固态收缩对铸件的形状和尺寸精度影响很大,是内应力、变形和裂纹等缺陷产生的基本原因。 12.铸造中常产生的铸造缺陷有缩孔、缩松、浇不足、裂纹、内应力、夹渣和夹砂等

13. 特种铸造相对于砂型铸造的两类特点:型模的革新和充型方式的变更。 14.常用特种铸造方法金属型铸造、压力铸造、离心铸造、消失模铸造和熔模铸造、壳型铸造等。 15.衡量金属锻造性能的两个指标塑性和变形抗力。 16.自由锻造常用设备空气锤和水压机。 17.自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割、扭转和错移等。 18.镦粗的变形特点横截面积变大,长度变短普通拔长的变形特点横截面积变小,长度变长芯轴拔长的变形特点内孔直径不变,长度变长,壁厚变薄。 19.锻造温度范围是指始锻温度与终锻温度之差。后者过低易产生加工硬化现象。 20. 锤上模锻的实质金属在模膛内成形和变形阻力大,变形不均匀。 21. 模膛的分类制坯模膛和模锻模膛。 22. 板料冲压中分离工序有冲孔、落料、剪切和修整等。变形工序有拉深、弯曲、翻边和成形等。 23. 电弧燃烧实质是指电弧的产生、运动和消失的动态平衡。 24. 电弧分为阴极区、阳极区和弧柱区三个区。 25. 直流电焊机正接极是指焊件接正极,焊条接负极。 26. 焊接冶金过程的特点反应温度高、接触面积大、冷却速度快。 27. 焊接接头是指焊缝和热影响区。焊接热影响区包括熔合区、过热区、正火区、部分相变区和再结晶区。 28. 焊接应力和变形产生的原因对焊缝区不均匀的加热和冷却。

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

材料成型基础复习题

一、名词解释 1、铸造:将液态金属浇注到与零件的形状相适应的铸型型腔中冷却后获得铸件的方法。 2、热应力:在凝固冷却过程中,不同部位由于不均衡的收缩而引起的应力。 3、收缩:铸件在液态、凝固态和固态的冷却过程中所发生的体积缩小的现象,合金的收缩 一般用体收缩率和线收缩率表示。 4、金属型铸造:用重力浇注将熔融金属注入金属铸型而获得铸件的方法。 5、流动性:熔融金属的流动能力,近于金属本身的化学成分、温度、杂质含量及物理性质 有关,是熔融金属本身固有的性质。 二、填空题 1、手工造型的主要特点是(适应性强)(设备简单)(生产准备时间短)和(成本低),在 (成批)和(大量)生产中采用机械造型。 2、常用的特种铸造方法有(熔模铸造)(金属型铸造)(压力铸造)(低压铸造)和(离心 铸造)。 3、铸件的凝固方式是按(凝固区域宽度大小)来划分的,有(逐层凝固)(中间凝固)和 (糊状凝固)三种凝固方式。纯金属和共晶成分的合金是按(逐层)方式凝固。 4、铸造合金在凝固过程中的收缩分三个阶段,其中(液态收缩和凝固收缩)是铸件产生缩 孔和缩松的根本原因,而(固态)收缩是铸件产生变形、裂纹的根本原因。 5、铸钢铸造性能差的原因主要是(熔点高,流动性差)和(收缩大)。 6、影响合金流动性的内因有(液态合金的化学成分),外因包括(液态合金的导热系数) 和(黏度和液态合金的温度)。 7、铸造生产的优点是(成形方便)(适应性强)和(成本低),缺点是(铸件力学性能较低) (铸件质量不够稳定)和(废品率高)。 三、是非题 1、铸造热应力最终的结论是薄壁或表层受拉。错 2、铸件的主要加工面和重要的工作面浇注时应朝上。错 3、冒口的作用是保证铸件的同时冷却。错 4、铸件上宽大的水平面浇注时应朝下。对 5、铸造生产特别适合于制造受力较大或受力复杂零件的毛坯。错 6、收缩较小的灰铸铁可以采用定向(顺序)凝固原则来减少或消除铸造内应力。错 7、相同的铸件在金属型铸造时,合金的浇注温度应比砂型浇注时低。错 8、压铸由于熔融金属是在高压下快速充型,合金的流动性很强。对 9、铸件的分型面应尽量使重要的加工面和加工基准面在同一砂箱内,以保证铸件精度。对 10、采用震击紧实法紧实砂型时,砂型下层的紧实度小于上层的紧实度。错 11、由于压力铸造具有质量好、效率高、效益好等优点,目前大量应用于黑色金属的 铸造。错 12、熔模铸造所得铸件的尺寸精度高,而表面光洁度较低。错 13、金属型铸造主要用于形状复杂的高熔点难切削加工合金铸件的生产。错 四、选择题 1、形状复杂的高熔点难切削合金精密铸件的铸造应采用(B) A 金属型铸造 B 熔模铸造 C 压力铸造 2、铸造时冒口的主要作用是(B) A 增加局部冷却速度 B 补偿热态金属,排气及集渣 C 提高流动性 3、下列易产生集中缩孔的合金成分是(C) A 0.77%C B 球墨铸铁 C 4.3%C

材料成型原理试卷一B试题及答案

. 重庆工学院考试试卷(B) 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的、和等决定。2.液态金属或合金凝固的驱动力由提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为,当温度梯度为负时,晶体的宏观生长方式为。 5.液态金属凝固过程中的液体流动主要包括和。6.液态金属凝固时由热扩散引起的过冷称为。 7.铸件宏观凝固组织一般包括、和 三个不同形态的晶区。 8.内应力按其产生的原因可分为、和三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历、和三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为和二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响工件表面的粗糙度对 摩擦系数的影响。

. A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称 为。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加; 5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 m中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。()

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

材料成型原理试题

1.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为 。 2.韧性金属材料屈服时, 准则较符合实际的。 3.塑性变形时不产生硬化的材料叫做 。 4.塑性变形时不产生硬化的材料叫做 。 A、理想塑性材料; B、理想弹性材料; C、硬化材料; 5.在塑料变形时要产生硬化的材料叫理想刚塑性材料。 ( ) 6.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。 ( ) 7.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做 。 A、理想弹性材料; B、理想刚塑性材料; C、塑性材料 8.何谓屈服准则?常用屈服准则有哪两种?试比较它们的同异点? 9.密席斯Mises 屈服准则的物理意义?屈雷斯加Tresca 屈服准则的物理意义? 10 应力张量为100 00101001020ij σ????=-????-?? MPa ①画出应力平面图(3分),作出其应力莫尔圆(1分),标出x 面、y 面、z 面。(3 分)②求主应力。(3分) ③求切应力、八面体应力。(5分) ④求应力偏张量的三个不变量。(3分) ⑤假设物体由自由状态简单加载到该应力状态,求321εεε::。(3分) 态(4分) 11.应力张量为202050001525 0???? - ???? ?? , ① 作出其应力莫尔圆(1分),标出x 面、y 面、z 面。(3分) ②求主应力。(6分) ③求切应力、八面体应力。(5分) ④求应力偏张量的三个不变量。(6分)

材料成形工艺基础复习题

1.三种凝固方式(逐层、糊状、中间)及其影响因素(结晶温度范围、温度梯度) 2.合金的流动性及其影响因素(合金成分) a)为什么共晶合金的流动性好? 3.合金的充型能力对铸件质量的影响(浇不足、冷隔) 4.影响充型能力的主要因素(合金的流动性、浇注条件、铸型条件) 5.合金收缩的三个阶段(液态、凝固、固态) 6.缩孔、缩松产生的原因、规律(逐层:缩孔;糊状:缩松;位置:最后凝固部位) 7.缩孔与缩松防止(定向凝固原则;措施:加冒口、冷铁) 8.铸造应力产生的原因和种类(热应力、机械应力或收缩应力) 9.热应力的分布规律(厚:拉;薄:压)及防止(同时凝固原则) 10.铸造残余应力产生的原因(热应力)及消除措施(时效处理) 11.铸件变形与裂纹产生的原因(故态收缩,残余应力) 12.变形防止办法(同时凝固;反变形;去应力退火) 13.热裂纹与冷裂纹的特征 第二节液态成形方法 1.常用手工造型方法(五种最基本的方法:整模、分模、活块、挖砂、三箱)的特点和应 用(重在应用) 2.机器造型:实现造型机械化的两个主要方面(紧砂、起模) 3.熔模铸造的原理(理解)、特点(理解)和应用。 a)为什么熔模铸件精度高,表面光洁? b)为什么熔模铸造适合于形状复杂的铸件? c)为什么熔模铸造适合于难于加工的合金铸件? 4.金属型铸造的原理(理解)、特点(理解)和应用。 a)为什么金属型铸件精度高,表面光洁? b)为什么金属型铸造更适合于非铁合金铸件的生产? 5.压力铸造的原理(理解)、特点(理解)和应用。 6.低压铸造的原理(理解)、特点(理解)和应用。 7.离心铸造的原理(理解)、特点(理解)和应用。 第三节液态成形件的工艺设计 1.浇注位置的概念及其选择原则(重在理解和应用)

工程材料及其成形技术基础课作业参考答案

工程材料及其成形技术基础课作业参考答案 1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。 2-9 从铁-碳相图的分析中回答: ⑴随碳质量百分数的增加,硬度、塑性是增加还是减小? ⑵过共析钢中网状渗碳体对强度、塑性的影响怎样? ⑶为何钢有塑性而白口铁几乎无塑性? ⑷哪个区域熔点最低?哪个区域塑性最好? ⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大? 答:⑴随碳质量百分数的增加,硬度、增加塑性减小。 ⑵过共析钢中网状渗碳体对强度、塑性均降低。 ⑶塑性主要与铁-碳合金中的铁素体相含量多少有关,铁素体相含量越多塑性越好。钢含碳量低(ωc<2.11%)铁素体相含量多为基体而有塑性,白口铁含碳量高(ωc>2.11%),渗碳体相含量高为基体而几乎没有塑性。 ⑷共晶点熔点最低,奥氏体区塑性最好。 ⑸ C点共晶成分(ωc=4.3%)结晶间隔最小(为零),E点(ωc=2.11%)成分结晶间隔最大。 3-1 什么是珠光体、贝氏体、马氏体?它们的组织及性能有何特点? 答:珠光体(P)—铁碳合金平衡状态下,在PSK线(727℃)发生共析转变的转变产物,即铁素体片和渗碳体片交替排列的机械混合物组织。强度比铁素体和渗碳体都高,塑性、韧性和硬度介于铁素体和渗碳体之间。热处理后可得到在铁素体基体上分布着粒状渗碳体的粒状珠光体,综合性能更好。 贝氏体(B)—从550℃到Ms范围内中温转变、半扩散型转变的非平衡组织,即含过饱和碳的铁素体和渗碳体的非片层状混合物组织。按组织形态不同分羽毛状的上贝氏体(B上)和针片状的下贝氏体(B下)。上贝氏体脆性大无实用价值,下贝氏体的铁素体针细小,过饱和度大,碳化物弥散度大,综合性能好。 马氏体(M)—Ms-Mf之间低温转变、非扩散型转变的非平衡组织,即过饱和碳的α固溶体。体心正方晶格,分板条马氏体(低碳马氏体ωc<0.20%,位错马氏体),强韧性较好;针状马氏体(高碳马氏体ωc>1.0%,孪晶马氏体),大多硬而脆;ωc在0.2%~1.0%之间为两者的混合组织。马氏体的含碳量越多,硬度越高,马氏体有弱磁性。A→M,体积要膨胀,产生较大的内应力。 3-12 钢淬火后为什么一定要回火?说明回火的种类及主要应用范围。 答:钢淬火后一般不能直接使用,因为:①零件处于高应力状态(>300~500MPa),放置或使用时很容易变形和开裂;②淬火态的组织(M+A)是极端非平衡的亚稳定状态,有向稳

材料成型基础复习考试题

复习题 一、填空题 1.材料力学性能的主要指标有、、、、疲劳强度等 2.在静载荷作用下,设计在工作中不允许产生明显塑性变形的零件时,应使其承受的最 大应力小于 ,若使零件在工作中不产生断裂,应使其承受的最大应力小于。 3.ReL(σs)表示 ,Rr0、2(σr0、2)表示 ,其数值越大,材料抵抗能力越强。 4.材料常用的塑性指标有与两种。其中用表示塑性更接近材料的真实变形。 5.当材料中存在裂纹时,在外力的作用下,裂纹尖端附近会形成一个应力场,用来表述该应力场的强度。构件脆断时所对应的应力强度因子称为 ,当K I >K I c时,材料发生。 6.金属晶格的基本类型有、、三种。 7.亚共析钢的室温组织就是铁素体+珠光体(F+P),随着碳的质量分数的增加,珠光体的比例越来越 ,强度与硬度越来越 ,塑性与韧性越来越。 8.金属要完成自发结晶的必要条件就是 ,冷却速度越大, 越大,晶粒越 ,综合力学性能越。 9.合金相图表示的就是合金的____ 、、与之间的关系。 11.影响再结晶后晶粒大小的因素有、、、。 12.热加工的特点就是 ;冷加工的特点就是。 13.马氏体就是的固溶体,其转变温度范围(共析刚)为。 14.退火的冷却方式就是 ,常用的退火方法有、、 、、与。 15.正火的冷却方式就是 ,正火的主要目的就是、 、。 16.调质处理就是指加的热处理工艺,钢件经调质处理后,可以获得良好的性能。 17.W18Cr4V钢就是钢,其平均碳含量(Wc)为: %。最终热处理工艺就是,三次高温回火的目的就是。

18.ZL102就是合金,其基本元素为、主加元素为。 19.滑动轴承合金的组织特征就是或者。 20.对于热处理可强化的铝合金,其热处理方法为。 21.铸造可分为与两大类;铸造具有与成本低廉等优点,但铸件的组织 ,力学性能 ;因此,铸造常用于制造形状或在应力下工作的零件或毛坯。 22.金属液的流动性 ,收缩率 ,则铸造性能好;若金属的流动性差,铸件易出现等的铸造缺陷;若收缩率大,则易出现的铸造缺陷。 23、常用铸造合金中,灰铸铁的铸造性能 ,而铸钢的铸造性能。 24.铸型的型腔用于形成铸件的外形,而主要形成铸件的内腔与孔。 25.一般铸件浇注时,其上部质量较 ,而下部的质量较 ,因此在确定浇注位置时,应尽量将铸件的朝下、朝上。 26.冒口的主要作用就是 ,一般冒口厘设置在铸件的部位。 27.设计铸件时,铸件的壁厚应尽量 ,并且壁厚不宜太厚或太薄;若壁厚太小,则铸件易出现的缺陷;若壁厚太大,则铸件的。 28.衡量金属可锻性的两个主要指标就是塑性与变形抗力、 塑性愈高, 变形抗力愈小,金属的可锻性就愈好。 29.随着金属冷变形程度的增加,材料的强度与硬度 ,塑性与韧性 ,使金属的可锻性。 30.自由锻零件应尽量避免、、等结构。 31.弯曲件的弯曲半径应大于 ,以免弯裂。 32.冲压材料应具有良好的。 33.细晶粒组织的可锻性粗晶粒组织。 34.非合金钢中碳的质量分数愈低,可锻性就愈。 35.焊接方法按焊接过程的特点分、、三大类。 36.影响焊接电流的主要因素就是焊条直径与焊缝位置。焊接时,应在保证焊接质量的前提下,尽量选用大的电流,以提高生产率。 37.电焊机分为与两大类。 38.焊缝的空间位置有、、、。 39.焊接接头的基本形式有、、、。 40.气体保护焊根据保护气体的不同,分为焊与焊等。 41.点焊的主要焊接参数就是、与。压力过大、电流过小,焊点强度 ;压力过小、电流过大,易、。 二、判断题 ( - )1.机器中的零件在工作时,材料强度高的不会变形,材料强度低的一定会产生变形。( - )2.硬度值相同的在同一环境中工作的同一种材料制作的轴,工作寿命就是相同的。( - )3.所有的金属材料均有明显的屈服现象。 ( - )4.选择冲击吸收功高的材料制作零构件可保证工作中不发生脆断。

材料成型工艺基础部分(中英文词汇对照)

材料成型工艺基础部分0 绪论 金属材料:metal material (MR) 高分子材料:high-molecular material 陶瓷材料:ceramic material 复合材料:composition material 成形工艺:formation technology 1 铸造 铸造工艺:casting technique 铸件:foundry goods (casting) 机器零件:machine part 毛坯:blank 力学性能:mechanical property 砂型铸造:sand casting process 型砂:foundry sand 1.1 铸件成形理论基础 合金:alloy 铸造性能:casting property 工艺性能:processing property 收缩性:constringency 偏析性:aliquation 氧化性:oxidizability

吸气性:inspiratory 铸件结构:casting structure 使用性能:service performance 浇不足:misrun 冷隔:cold shut 夹渣:cinder inclusion 粘砂:sand fusion 缺陷:flaw, defect, falling 流动性:flowing power 铸型:cast (foundry mold) 蓄热系数:thermal storage capacity 浇注:pouring 凝固:freezing 收缩性:constringency 逐层凝固:layer-by-layer freezing 糊状凝固:mushy freezing 结晶:crystal 缩孔:shrinkage void 缩松:shrinkage porosity 顺序凝固:progressive solidification 冷铁:iron chill 补缩:feeding

1-材料成形理论基础

材料成形工艺基础
1
第一章 材料成形理论基础
液态成形--铸造 固态成形--锻造 固态连接--焊接
2
1

第一节 液态成形基础
1、液态金属的结构
液态金属在结构上更象固态而不是汽态,原子之间 仍然具有很高的结合能。
液态金属的结构特征 液态金属内存在近程有序的原子集团。这种原子集团是不稳定 的,瞬时出现又瞬时消失。所以,液态金属结构具有如下特 点: l)液态金属是由游动的原子团构成。 2)液态金属中的原子热运动强烈,原子所具有的能量各不相 同,且瞬息万变,这种原子间能量的不均匀性,称为能量起 伏。 3)由于液态原子处于能量起伏之中,原子团是时聚时散,时 大时小,此起彼伏的,称为结构起伏。
3
第一节 液态成形基础
1、液态金属的性质
液态金属是有粘性的流体。粘度的物理本质是原子间作 相对运动时产生的阻力。 表面张力:在液体表面内产生的平行于液体表面、且各 向均等的张力
4
2

1.2铸件的凝固组织
合金从液态转变成固态的过程,称为一次结晶 或凝固。
当液态金属冷却至熔点以下,经过一定时间的孕 育,就会涌现一批小晶核,随后这些晶核按原子规则 排列的各自取向长大,与此同时又有另一批小晶核生 成和长大,直至液体全部耗尽为止。
5
1.2铸件的凝固组织
合金从液态转变成固态的过程,称为一次结晶 或凝固。
一次结晶从物理化学观点出发,研究液态金属的 生核Formation of stable nuclei 、长大Growth of crystals、结晶组织的形成规律。 凝固从传热学观点出发,研究铸件和铸型的传热过 程、铸件断面上凝固区域的变化规律、凝固方式与 铸件质量的关系、凝固缺陷形成机制等。
6
3

相关主题
文本预览
相关文档 最新文档