当前位置:文档之家› 2011年华南理工大学高分子物理考研试题

2011年华南理工大学高分子物理考研试题

2011年华南理工大学高分子物理考研试题
2011年华南理工大学高分子物理考研试题

华南理工大学考研复试流程及评分方案

2012年硕士研究生招生复试内容及评分方案 复试程序: 1.考生凭复试通知书报到,领取复试流程表; 2.进行复试资格审查:应届生须持学生证、身份证、准考证、本科阶段成绩单的原件及所有复印件;往届考生须持毕业证、学位证、身份证、准考证原件及复印件接受审查,并收取所有复印件; 3.通过复试的考生发放《体检表》并通知考生体检地点:校医院; 4.双向选择,确定导师; 5.对通过体检拟录取的考生发放以下材料: (1)政审表 (2)考生人事档案调档函(不含委培和定向考生) (3)协议书 6.各专业复试时间及地点: 0832食品科学与工程一级学科(含食品科学,粮食、油脂及植物蛋白工程,食品质量与安全,农产品、水产品加工与贮藏工程,食品工程专业共6个专业):3月26日上午8:00到院办报到,8:30到13号楼东糖厅进行笔试; 0822轻工技术与工程一级学科(含制糖工程,淀粉资源科学与工程,制糖工程专业学位共3

个专业):3月27日上午8:00到院办报到,8:30到13号楼东糖厅进行笔试; 0822轻工技术与工程一级学科(含制浆造纸工程专业):3月28日上午8;00到院办13号楼111室报到,9:00到造纸楼7楼会议室进行笔试。 复试方式: 1.专业课笔试(按2012硕士招生专业目录公布的考核科目执行); 2.进行英语听力和口语面试(10%); 3.进行专业知识与综合素质面试; 录取原则: 1.本着公平、公开、公正的原则进行研究生录取工作,并严格遵守学校招生办公室制定的硕士研究生录取的原则和要求。 2.对通过全国统一考试考入我院的研究生,严格按各专业学生的初试和复试加权总成绩排名顺序从高分到低分确定全日制硕士研究生录取名单以及奖学金资助名额。 3.复试不及格(小于60分)者,不录取。 4.录取总成绩=初试总分×50%+复试成绩×50%×5。 5.按照食品科学与工程一级学科(含食品科学,粮食、油脂及植物蛋白工程,食品质量与安全,农产品、水产品加工与贮藏工程专业共5个专业)、轻工技术与工程一级学科(含制糖工程,淀粉资源科学与工程共2个专业)组织面试,按录取总成绩从高到低分一级学科录取考生,确定拟录取名单后,“双向选择”导师。 6.实施差额复试,食品科学与工程一级学科(含食品科学,粮食、油脂及植物蛋白工程,食品质量与安全,农产品、水产品加工与贮藏工程,食品工程专业共6个专业)比例为130%(不含推免生);轻工技术与工程一级学科(含制糖工程,淀粉资源科学与工程,制糖工程专业学位共3个专业)比例为110%(不含推免生)。

高分子物理考研复试题及答案

判断题 1 结晶性聚合物不一定总就是形成结晶聚合物(√) 交联前的线性聚合物就是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 5、不能通过改变高分子的构象提高高分子的等规度。(√) 高分子的等规度就是由分子的化学结构决定的,要改变改变高分子的等规度必须改变高分子的构型。 06年判断题: 1、双酚A型聚碳酸酯就是结晶性聚合物,所以一定形成结晶聚合物(×) 原因:交联前的双酚A型聚碳酸酯聚合物就是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 8、尼龙1010,尼龙66,尼龙610这三种尼龙熔点最高的就是尼龙66(√) 氢键密度 1影响高分子柔顺性的因素有哪些?聚乙烯单个分子的柔顺性很好,为什么高聚物不能作为橡胶使用而作塑料用? 答: (1) 影响高分子的柔顺性有那些因素: ○1高分子主链结构中键长越长,键角越大或含有孤立双键,单键内旋转

越容易,高分子的共轭双键,芳杂环,典型刚性键,高分子的柔顺性较差(体积) ○2侧基的极性越大,柔顺性越差,若含有氢键时,柔顺性更差,侧基的刚性越大,柔顺性越差,但沿主链刚性侧基密度增大,柔顺性更差(体积) ○3分子量越大分子链的柔顺性越好 ○4高分子发生交联,交联度不大时,对柔顺性影响不大,交联度太大时,分子链失去柔顺性 ○5高分子的聚集态结构决定高分子的柔顺性能否表现出来 ○6温度越高,外力越大,分子链的柔顺性越好;外力作用速度越大,分子链的柔顺性越难表现出来,加入溶剂,分子链的柔顺性较好,但还与外界条件有关 (2)对称,柔性越大,分子结构越规整,但同时结晶能力越强,高分子一旦结晶,链的柔顺性就表现不出来,聚合物呈现刚性,聚乙烯的分子链就是柔顺的,但由于结构规整,很容易结晶,失去弹性,所以聚乙烯聚合物能够作塑料用不能作橡胶用。 2、作出下列高聚物的温度—形变曲线,标出各特征温度,并简要说明。 (1)自由基聚合 的聚苯乙烯:试样B的分子量适中,试样A的分子量较小。 (2)聚乙烯:试样A的分子量适中,试样B的分子量很大。 PS为非晶高聚物,分子量小的高弹平台很短或没有高弹态。PE 为结晶高聚物,分子量小的没有Tf,分子量大的有 3、分子结构,分子量与外力作用时间如何影响高聚物的粘流温度?

高分子物理名词解释

第二章名词解释 1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。 2.单分子链凝聚态:大分子特有现象,高分子最小单位。 3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功) 4.晶胞:晶体结构中具有周期性排列的最小单位。 5.晶系:晶体按其几何形态的对称程度。 https://www.doczj.com/doc/fc16369666.html,ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。 7.单晶:晶体的整体在三维方向上由同一空间格子组成。 8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。 9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。 10.结晶度:试样中结晶部分所占的质量分数或体积分数。 11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。 12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。 13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。 14.热致液晶:加热液晶物质时,形成的各向异性熔体。 15.液晶晶型:向列相(N相):完全没有平移有序 手征性液晶(胆甾相,手征性近晶相) 层状液晶(近晶A,近晶C )一维平移有序 盘状液晶相(向列相ND) 16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构 取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角) 17.双折射:一条入射光线产生两条折射光线的现象。 18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。 19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。 20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。 21.海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。 22.核壳结构:由一种材料通过化学键或其他作用力将另一种材料包覆起来形成的有序组装结构。 23.包藏结构:海岛结构的粒子内部包藏着其他聚合物的结构。 24.电子显微镜:简称EM,电子显微镜由镜筒、真空装置和电源柜三部分组成。 25.X射线衍射:当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。 26.偏光显微镜:用于研究所谓透明与不透明各向异性材料的一种显微镜。 27.差示扫描量热法(DSC):在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。

高分子物理考研习题整理07聚合物地黏弹性

1 黏弹性现象 1.1 黏弹性与松弛 ①什么是聚合物的力学松弛现象?什么是松弛(弛豫)时间? 聚合物的力学性质随时间变化的现象称为力学松弛现象。在一定的外力和温度下,聚合物受外力场作用的瞬间开始,经过一系列非平衡态(中间状态)而过渡到与外力性质相适应的平衡态(终态)所需要的时间称为松弛时间,这个时间通常不是很短。 ②有什么物理量表示松弛过程的快慢?聚合物为什么具有松弛时间谱? 用松弛时间τ。聚合物是有多重结构单元组成的,其运动是相当复杂的。它的力学松弛过程不止一个松弛时间,而是一个分布很宽的连续的谱,称为松弛时间谱。 ③什么是黏弹性? 聚合物的形变的发展具有时间依赖性,这种性质介于理想弹性体和理想黏性体之间,称为黏弹性。黏弹性是一种力学松弛行为。 ④(1)分别列举两例说明聚合物弹性中伴有黏性(称为黏弹性)和黏性中伴有高弹性(称为弹黏性)的现象。(2)分别说明橡胶弹性中带黏性和聚合物中黏性熔体中带弹性的原因。(3)成型加工中如何降低橡胶的黏性和聚合物熔体的弹性? (1)橡胶的应力松弛和拉伸断裂后有永久变形都是黏弹性。挤出物长大效应和爬杆效应是弹黏性。 (2)橡胶分子链构象改变时需要克服摩擦力,所以带有黏性。聚合物分子链质心的迁移是通过链段的分段运动实现的,链段的运动会带来构象的变化,所以高分子带有弹性。 (3)降低橡胶黏性方法是适度交联。在成型加工中减少成型制品中的弹性成分的办法是:提高熔体温度,降低挤出速率,增加口模长径比,降低相对分子质量,特别是要减少相对分子质量分布中高相对分子质量尾端。 ⑤用松弛原理解释非晶态聚合物的力学三态行为。 聚合物在低温或快速形变时表现为弹性,松弛时间短,形变瞬时达到瞬时恢复,此时处于玻璃态。 聚合物在高温或缓慢形变时表现为黏性,松弛时间很长,形变随时间线性发展,此时处于黏流态。 聚合物在中等温度或中等速度形变时表现为黏弹性,松弛时间不长不短,形变跟得上外力,又不完全跟得上,此时处于橡胶态。 ⑥为什么说作用力的时间与松弛时间相当时,松弛现象才能被明显地观察到? 当作用力的时间比松弛时间短得多时,运动单元根本来不及运动,因此聚合物对外力作用的响应可能观察不到。当作用力的时间比松弛时间长得多时,运动单元来得及运动,也无所谓松弛。只有当作用力的时间与链段运动的松弛时间同数量级时,运动单元可以运动,又不能完全跟得上,分子链通过连段运动逐渐伸展,形变量比普弹性大得多,松弛现象才能被明显地观察到。 ⑦在纤维成型过程中,通过什么条件控制松弛时间,使结构稳定? 热定型,即在低于熔点的较高温度下短时间处理,使部分链段解取向,从而控制松弛时间。 *应用【14-8,14-9。11】,松弛时间τ=η/E ,RT E /-0e 1 ?==ντν(v 为松弛过程的频率) *熔融的聚合物黏流体有高弹效应,如挤出物胀大效应、爬杆效应和熔体破裂效应;高弹性硫化橡胶有蠕变、应力松弛的黏弹性;硬固的塑料没有黏弹性。 1.2 静态黏弹性 ①蠕变和应力松弛这两种静态黏弹现象与形变-温度曲线、应力-应变曲线有什么关系? 按外力σ、形变ε、温度T 和时间t 四个参变量关系不同,可以归纳为四种力学行为,它们是固定两

(完整版)高分子物理重要知识点

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

华南理工大学研究生录取分数线

华南理工大学2012年硕士研究生复试基本分数线 来源:考试大 2012年3月8日【考试大:中国教育考试第一门户】 华南理工大学2012年硕士研究生最低复试分数线 (一)参加全国统考及联考的考生 类型报考学科门类(专业)政治外语业务一业务二总分 学术型01哲学50 45 90 90 320 02经济学55 55 90 90 350 03法学(不含马克思主义理论)50 50 90 90 335 0305马克思主义理论50 45 90 90 320 04教育学(不含体育学)60 60 180 —315 0403体育学50 45 200 315 05文学60 60 90 90 355 07理学50 50 85 85 315 08工学50 50 85 85 330 12管理学55 55 90 90 350 13艺术学40 30 85 85 295 专业学位0251金融硕士55 55 90 90 350 0351法律硕士50 50 80 80 315 0551艺术硕士40 30 85 85 295 0552翻译硕士60 60 90 90 355 0851建筑学硕士50 50 90 90 330 0852工程硕士(不含软件工程)50 50 85 85 330 085212软件工程采用教育部一区工程硕士线 0953风景园林硕士50 50 90 90 330 1253会计硕士—50 105 —190 1251工商管理硕士 1252公共管理硕士 1256工程管理硕士 —50 105 —178 (二)参加全国统考、面向行业委托培养的考生 030105民商法学(知识产权方向):总分310,单科不限。 (三)参加单独考试的考生 08工学:总分290,单科不限; 12管理学:总分300,单科不限; (四)强军计划考生:总分240,单科不限。 (五)参加全国统考,满足以下条件之一,一门单科成绩低于所在类型要求5分以内者可参加复试: 1.数学一、二、三成绩在135分以上; 2.我校自命题专业科目成绩在135分以上,且在该科目排名前10%(或排名第一); 3.报考07理学、08工学,总分370分以上且业务课一、业务课二均在120分以上。 (六)参加全国统考,报考0301法学专业,成绩满足法律硕士(法学)要求,报考07理学、08工学专业,成绩满足软件硕士要求,可申请参加相关专业学位复试。

高分子物理考研复试题及答案

判断题 1 结晶性聚合物不一定总是形成结晶聚合物(√) 交联前的线性聚合物是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 5.不能通过改变高分子的构象提高高分子的等规度。(√) 高分子的等规度是由分子的化学结构决定的,要改变改变高分子的等规度必须改变高分子的构型。 06年判断题: 1.双酚A型聚碳酸酯是结晶性聚合物,所以一定形成结晶聚合物(×)原因:交联前的双酚A型聚碳酸酯聚合物是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力 需要结晶条件 8.尼龙1010,尼龙66,尼龙610这三种尼龙熔点最高的是尼龙66(√)氢键密度 1影响高分子柔顺性的因素有哪些?聚乙烯单个分子的柔顺性很好,为什么高聚物不能作为橡胶使用而作塑料用? 答: (1) 影响高分子的柔顺性有那些因素: ○1高分子主链结构中键长越长,键角越大或含有孤立双键,单键内旋转越容易,高分子的共轭双键,芳杂环,典型刚性键,高分子的柔顺性较差(体积)

○2侧基的极性越大,柔顺性越差,若含有氢键时,柔顺性更差,侧基的刚性越大,柔顺性越差,但沿主链刚性侧基密度增大,柔顺性更差(体积) ○3分子量越大分子链的柔顺性越好 ○4高分子发生交联,交联度不大时,对柔顺性影响不大,交联度太大时,分子链失去柔顺性 ○5高分子的聚集态结构决定高分子的柔顺性能否表现出来 ○6温度越高,外力越大,分子链的柔顺性越好;外力作用速度越大,分子链的柔顺性越难表现出来,加入溶剂,分子链的柔顺性较好,但还与外界条件有关 (2)对称,柔性越大,分子结构越规整,但同时结晶能力越强,高分子一旦结晶,链的柔顺性就表现不出来,聚合物呈现刚性,聚乙烯的分子链是柔顺的,但由于结构规整,很容易结晶,失去弹性,所以聚乙烯聚合物能够作塑料用不能作橡胶用。 2.作出下列高聚物的温度—形变曲线,标出各特征温度,并简要说明。 (1)自由基聚合 的聚苯乙烯:试样B的分子量适中,试样A的分子量较小。 (2)聚乙烯:试样A的分子量适中,试样B的分子量很大。 PS为非晶高聚物,分子量小的高弹平台很短或没有高弹态。PE 为结晶高聚物,分子量小的没有Tf,分子量大的有 3.分子结构,分子量和外力作用时间如何影响高聚物的粘流温度?答:能增大高分子相互作用能及增大高分子刚性的结构因素会使Tf

华南理工大学2000年攻读硕士学位研究生入学考试《物理化学》试题

华南理工大学2000年攻读硕士学位研究生入学考试《物理化学》试题

华南理工大学 2000年攻读硕士学位研究生入学考试《物理化学》试题 (适用专业:应化类材料物理与化学、化学工程、化学工艺、生物化工、工业催化、生物医学工程、应用化学、环境工程,未注明的为两类共用题) 1.苯的正常沸点为353K ,摩尔汽化焓为 30.77kJ ?mol -1 ,现将353K ,标准压力下的1摩尔液态苯向真空等温蒸发为同温同压的苯蒸汽(设为理想气体)。 A .计算该过程苯吸收的热量和做的功; B .求过程的 G 和 S ; C .求环境的熵变; D .可以使用何中判据判断过程的性质。(12分) 解:设计如下途径计算: A .因真空蒸发, p 环=0 真空等温蒸发 H 3、 S 3 (1) 苯 (l) 1 mol 苯 ( l ) 1 mol 苯 ( g ) 1 mol 苯 (g ) 1 mol (2)

?=-=∴0 dV p W 环 Q = U = H - (pV ) 压力变化不大时,压力对凝聚系统的焓、熵影响不大,所以 H 1=0、 S 1=0。 又理想气体恒温 H 3=0 ,所以 H = H 1+ H 2+ H 3= H 2= n ? vap H m 则 Q =n vap H m - p (V g -V l )= n vap H m - p V g ≈ n vap H m - nRT = 1×30770 J - 1mol ×8.3145 J ·K -1·mol -1 ×353K = 27835J B. S = S 1+ S 2+ S 3= S 2+ S 2= ( H 2/T )+ nR ln(p /p ) = (30770J/353K)+1×8.3145J ·K -1×ln(101.325kPa/100kPa) = 87.28J ·K -1 G = H - T S = 30770J - 353K ×87.28J ·K -1= -39.84J C. 环境熵变 :设系 T =环 T S 环= -Q 系/T 环= -27835J/353K =-78.85 J ·K -1 D . 可用熵判据判断过程的性质,此过程 S 隔= S 系+ S 环 = 87.28J ·K -1+(-78.85J ·K -1)= 8.43J ·K -1 > 0 故为不可逆过程。 2.已知288.15K 时纯水的饱和蒸汽压为1705Pa ,现将1mol NaOH 溶解在4.559mol 水中,

中科院高分子物理考研概念及要点、考点总结(强烈推荐)

第一章 高分子的链结构 1.1 高分子结构的特点和内容 高聚物结构的特点: 1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。 2. 一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。 3.晶态有序性较差,但非晶态却具有一定的有序性。 4.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.。 5. 凝聚态结构的复杂性: 结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。 1.2 高分子的近程结构 (,)(,)??????????????????????????????????????????????????????????? 结构单元的化学组成结构单元键接方式 结构单元空间立构近程结构支化高分子链结构交联结构单元键接序列高聚物结构高分子链尺寸分子量均方半径和均方末端距远程结构高分子链的形态构象柔性与刚性非晶态结构晶态结构高分子聚集态结构液晶结构 取向结构多相结构 链结构:指单个分子的结构和形态. 链段:指由高分子链中划出来的可以任意取向的最小链单元. 近程结构:指链结构单元的化学组成,键接方式,空间方式,空间立构,支化和交联,序列结构等问题. 共聚物:由两种以上单体所组成的聚合物. 有规立构聚合物:指其化学结构单元至少含有一个带有两个不同取代原子或基团的主链碳原子,并且沿整个分子链环绕这种碳原子是有规律的. 全同立构:高分子全部由一种旋光异构单元键接而成. 间同立构:由两种旋光异构单元交替键接. 无规立构:两种旋光异构单元完全无规则键接时. 等规度:高聚物中含有全同立构和间同立构的总的百分数. 临界聚合度:聚合物的分子量或聚合度一定要达到某一数值后,才能显示出适用的机械强度,这一数值称为~. 键接结构:是指结构单元在高分子链中的连接方式. 支化度:以支化点密度或相邻支化点之间的链的平均分子量来表示运货的程度. 交联结构:高分子链之间通过支链联结成一个三维空间网型大分子时即成为交联结构. 交联度:通常用相邻两个交联点之间的链的平均分子量Mc 来表示. 交联点密度:为交联的结构单元占总结构单元的分数,即每一结构单元的交联几率. 1.3 高分子的远程结构 构造: 是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等. 构象:由于单键内旋转而产生的分子在空间的不同形态称为~ 构型: 是指某一原子的取代基在空间的排列. 遥爪高分子:是端基具有特定反应性技的聚合物.

物化下学期试题及答案华南理工考研真题

物化下学期 一、选择题(共20题,每题1分。需简要说明选择的理由,否则不给分): 1.下列各系统中属于独立粒子系统的是: A. 绝对零度的晶体 B. 理想液体混合物 C. 纯气体 D. 理想气体的混合物 答案:()原因: 2. 双原子分子振动的零点能等于: A. kT B. (1/2)kT C. hv D. (1/2)hv 答案:()原因: 3. 一个体积为V,粒子质量为m 的离域子系统,其最低平动能级和其相邻 能级的间隔是: A. h2/ 8mV2/3 B. 3h2/ 8mV2/3 C. 5h2/ 8mV2/3 D. 8h2/ 8mV2/3 答案:()原因: 4. CO2分子的转动运动对内能的贡献是 A. U r=RT/2 B. U r=RT C. U r=3RT/2 D. U r=5RT /2 答案:()原因: 5. 独立子系统的分子全配分函数,可分解为彼此独立的各种运动形式的配分函数的乘积,各配分函数中与压力有关的是 A. 平动配分函数 B. 转动配分函数 C. 振动配分函数 D. 电子配分函数 答案:()原因: 6. 已知CO和N2的质量,转动特征温度皆基本相同,若电子均处于非简并的最低能级且振动对熵的贡献可忽略,则 A. S(CO)=S(N2) B. S(CO)S(N2) 答案:()原因: 7. 有两根半径相同的玻璃毛细管插入水中,水面上升高度为h,其中一根在 1/3 h 处使其弯曲向下,试问水在此毛细管端的行为是 A 水从毛细管端滴下; B 毛细管端水面呈凸形弯月面; C 毛细管端水面呈凹形弯月面; D 毛细管端水面呈水平面。 答案:()原因: 8. 讨论固体对气体的等温吸附的兰格缪尔(Langmuir)理论其最重要的基本假设为 A. 气体是处在低压下 B. 固体表面的不均匀性 C. 吸附是单分子层的 D. 吸附是多分子层的 答案:()原因:

高分子物理部分复习题.doc

高分子物理部分复习题 一、名词解释 构型、构象、柔顺性、内耗、等同周期、假塑性流体、 远程结构、近程结构、末端距、聚集态结构、液晶、 取向、嫡弹性、玻璃化转变温度、应力松弛、蠕变、杂链高分子、元素有 机高分子、键接结构、旋光异构、均相成核、异相成核、时温等效原理、粘流态、玻璃化转变温度、 二、填空题 1.聚合物的粘弹性体现在具有 _______ 、 ________ 、 ________ 三种力学松驰现象。 (3分) 2.___________________________ 分子间的范德华力包括________ 、和o (1.5分) 3.___________________________________________________ 作为橡胶、塑料和纤维使用的聚合物之间的主要区别是 ____________________________ o 4. ________ 材料一般需要较高程度的取向。 5.某聚合物试样中含两个组分,其相对分子质量分别1X10“ g/mol和 2X105g/mol,相应的质量分数(w)分别是0.2和0.8,其数均相对分子质量、重均相对分子质量和相对分子质量多分散系数分别是 _____________________ 、____________ 和 6.___________________________________________________ 高分子链的柔顺性越大,它在溶液中的构象数越 ________________________________ ,其均方 末端距越 _____________ O 7.__________________________________ 橡胶的高弹性的特点是:(1)弹性模量很 ______________________________________ ,而形变量很 _____ ; (2)形变需 要 _______ ; (3)形变时有________ 效应。 &制备高分子合金的方法有()和()o 9.随着聚合物结晶度的提高,其弹性模量_____________ ;随着结晶聚合物分子量 的增加,其熔点________________ ;随着聚合物交联程度的提高,其弹性模 量___________ O 10.PET的玻璃化转变温度是69°C,但用它制造的可乐瓶和矿泉水瓶在很低的温度下却还 有很高的抗冲击性能,主要是由于它在玻璃化转变温度以下还存在

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

华南理工大学电路与系统专业考研经验谈

我是2013届考生,现在已经满心喜悦的到我心目中理想的大学——华南理工大学电路与系统专业读研。在整个考研过程中,可谓有苦有乐、有酸有甜、感慨万千、感触颇深。为了感谢众多师姐师哥们的帮助,当然也要感谢文思华工考研网的老师的帮助,本人在此写下自己考研路上的心得体会,有利于即将面临考研的学弟学妹们参考采纳。一、作息时间我在考研之前常听人说:要考研就必须早晨5点半起,晚上十二点以后睡。你们听听,多恐怖啊!要杀人哪?虽然本人睡觉比一般人多点,但也不是随主观思想来否定这种说法,我是站在科学的立场上来说理的。大家都知道考研复习可不是平常的过家家,睁一只眼闭一只眼就搞定了的。复习是在精神饱满的前提下才可以达到perfect状态的。所以,我个人认为睡到感觉精神饱满时再起为妙,因为我当时每天都是睡到自然醒的。呵呵!二、考研辅导班随着考研大军数量的猛增,考研辅导班也可谓是五花八门,百家争鸣叫什么的都有。但我们怎么选择呢?有些同学也会问到:报考研班到底有没有用呢?依我看,用处肯定是有,但一定不要盲目崇拜。考研班的主要作用是给考生充当一个领路标。可以让你知道往什么方向努力,从什么角度思考,怎样去学习复习,也可以把各知识点串成一条主线让你有从下手。我认为这就已经足够了,达到报班的目的了。顺便说一下,我当时报的是文思华工考研网的VIP高辅计划班,数、英、政三科,对一个跨考的我而言,正如前面所说效果还是很明显的,帮我节约了很多时间,提高了我的效率。三、考研辅导书这可是考生花消的一个重头戏。有些考生买的书不少,看的不多,有什么用?白扔钱!浪费!所以买书也有技巧,不能看见什么就买什么。而是应该选择确实适合自己的书去买。比如针对自己的弱项,听周围的“战友”推进,还有辅导班的老师推荐。虽说大都以赢利为、目的的吧,但这些书毕竟是老师凭多年经验编写出来的。有一定的权威,值得一读!我当时专业课复习资料是用文思华工考研网的《华南理工大学信号与系统考研复习精编》的全套用书,这里面包含了历年真题,感觉不错!四、放松发泄考研复习过程中,难免会遇到心烦意乱,脑子不富裕,甚至抓狂的时候。怎么办?继续强压情绪学习?完了!要是继续学习那不但学不好,而且面临精神崩溃的危机!不是吓唬人的!实话!这时候可以选择几种方法调节:1、发愣。2、户外瞎溜达。3、找人胡侃。4、玩电脑游戏。因为在玩的同时还会欣赏音乐放松。复习郁闷了怎么办?发泄呗!有助于保持心情舒畅,有利于身心健康!发泄的方式有多种,大家自己选择吧!不过千万不要干违法的事情啊!推荐我当时的发泄方法。很绿色环保还健康:每次下了自习把水壶里的水全部洒向天空,尽全力向最高处抛!然后看到一大片地面下一场暴雨!爽啊!!不要在乎周围的人怎么评价你,总之自己心里爽快是最好的!哈哈……五、幸运女神有人说考研成功:七分在个人,三分靠运气。这话太真了!因为我在考研路上长途跋涉时遇见了“幸运女神”一位长的很漂亮,身材极好,而且她的笑容是如此阳光,能让人化解一切烦恼和忧郁!也许是天意,我们认识了!然后就不约而同的去一个自习室学习,有时和她搭话,她很爱笑。每次看到她阳光般的笑容就瞬间有了动力,感觉很好玩像童话一样。最神的要数考研的第一天晚上,那天考完政治和英语感觉很疲惫了,我躺在宿舍的床上饭也懒的吃,而且感觉考的不那么理想,心理很难受,更别说复习了。这时,我宿舍的几个哥们儿买饭回来了,一进门就告诉我那个女生去上自习了,让我赶快去找她。我一听赶快从床上蹦下来,收拾书包去自习室找她,因为很想和她说机几句话!结果真的就找到了她!我又恢复了精神,终于拿起书本能够看下去了。结果第二天考试一道专业课的工程数学题正是与我这天晚上看的题非常的类似!12大分呢!丢了这12分,我就不用说结果了吧!这不是我的幸运女神吗!不过可惜的是,考完研以后就再也没有见到过她了。唉!不管怎样,我从内心里感谢她祝她永远健康快乐吧!好了!写了这么多,希望能对即将考研的学弟学妹们有所启发!现在回忆起起来,这些难忘的经历真是一笔无形的财富啊!总之,考研是一场马拉松比赛,谁坚持到最后谁就会笑的最灿烂! 祝:所有考研的战友们考研成功!

2021年高分子物理考研题库

2021年高分子物理考研题库 2021年高分子物理考研题库【考研真题精选+章节题库】目录 第一部分考研真题精选 一、选择题 二、填空题 三、判断题 四、名词解释 五、问答题 六、计算题 第二部分章节题库 第1章绪论 第2章高分子的链结构 第3章高分子的溶液性质 第4章高分子的多组分体系 第5章聚合物的非晶态 第6章聚合物的结晶态 第7章聚合物的屈服和断裂 第8章聚合物的高弹性与黏弹性

第9章聚合物的其他性质 第10章聚合物的分析与研究方法 ? 试看部分内容 考研真题精选 一、选择题 1下列聚合物中,柔顺性从小到大次序正确的是()。[华南理工大学201 6研] A.聚丙烯>聚乙烯>聚丙烯腈 B.1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯 C.聚环氧戊烷>聚苯>聚苯醚 D.聚氯乙烯>聚偏二氯乙烯 【答案】B查看答案 【解析】A选项中聚丙烯的侧基导致其柔顺性小于聚乙烯,正确顺序为:聚乙烯>聚丙烯>聚丙烯腈;B选项中含有独立双键的分子链柔性大,所以正确; C选项中聚苯醚中的醚键使得分子链的旋转更容易,正确顺序为:聚环氧戊烷>聚苯醚>聚苯;D选项中聚偏二氯乙烯的对称结构使得内旋转简单,柔性更好,正确顺序为聚偏二氯乙烯>聚氯乙烯。

2如下()是高分子的自由旋转链的均方末端距的表达式,其中n是键的数目,1是每个键的长度,θ是键角的补角,?是内旋转的角度。[华南理工大学2008研] A.<h2>=n12 B.<h2>=n12(1+cosθ)/(1-cosθ) C.<h2>=n12[(1+cosθ)/(1-cosθ)]·[(1+cosθ)/(1-cosθ)]【答案】B查看答案 【解析】高分子的自由旋转链的均方末端距的表达式: 其中,θ为键角,因为题目要求θ是键角的补角,故将上式转化为<h2>=n12(1+cosθ)/(1-cosθ)。 3聚丙烯在以下什么溶剂中才能溶解?()[华南理工大学2012研] A.热的强极性溶剂 B.热的非极性溶剂 C.高沸点极性溶剂 D.能与之形成氢键的溶剂 【答案】B查看答案 【解析】对于极性聚合物在极性溶剂中,由于高分子与溶剂分子的强烈相互作用,溶解时放热(△H M<0),使体系的自由能降低(△G M<0),所以溶

华南理工大学《物理化学》考研试题及参考答案

华南理工大学 2002年攻读硕士学位研究生入学考试试卷 (请在答题纸上做答,试后本卷与答题纸一同交回) 科目名称:物理化学(含物理化学实验) 适用专业:化学工程、化学工艺、工业催化、环境工程 1. 在绝热的条件下,将0.4mol某理想气体从200kPa压缩到1000kPa时,温度从300K 上升到900K,求该过程的W、△H、△S、△U、△G,判断过程的性质并指出判据,已知:该理想气体在300K和200kPa时的摩尔熵为S m=205J·K-1·mol-1,定压摩尔热容为C p,m =3.5R(12分) 解:分析过程:(p1=200kPa,V1,T1=300K) →(p2=1000kPa,, V2, T2=900K) 绝热Q=0 理想气体△U = nC V,m△T = n(C p,m-R)△T △H = nC p,m△T 故W =△U -Q 过程熵 △S = nC p,m ln(T2/ T1)+nR ln(p1/ p2) △G =△(H-TS) =△H-(T2S2-T1S1) =△H-(T2△S-S1△T) 过程绝热,所以只能用△S判断过程的方向。 注意:本题非恒外压,功一般由热力学第一定律式计算W =△U -Q。 2. 298K时,反应N2O4(g)=2NO2(g) 的平衡常数Kθ=0.155,标准摩尔焓为57.24kJ·mol-1(假定温度对反应焓的影响可以忽略不计)。(共10分) 求(1) 373K时反应的平衡常数Kθ。 (2) 298K,总压为pθ时N2O4的离解度。 (3) 298K,总压为pθ,离解前N2O4和N2(惰性气体)物质的量为1:1时N2O4的离解度。 解:本题主要利用等压方程求不同温度下的平衡常数,以及与组成关系。 (1) 等压方程:ln(K2θ/ K1θ)= (T2-T1)?r H mθ/R(T2T1) (2)N2O4(g) =2NO2(g) t=0 1mol 0 mol t=∞时n 1-x2x n总=1+x 分压(1-x) pθ/( 1+x) 2x pθ/( 1+x) K1θ=[2x/( 1+x)]2/[(1-x)/( 1+x)] =4x2/(1-x2) 可求出x= (3)N2O4(g) =2NO2(g) N2 t=0 1mol 1mol t=∞时n1-x2x1mol n总=2+x 分压(1-x) pθ/( 2+x) 2x pθ/( 2+x) K1θ=[2x/( 2+x)]2/[(1-x)/( 2+x)] =4x2/(2-x-x2) 可求出x=

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

相关主题
文本预览
相关文档 最新文档