当前位置:文档之家› KDP晶体单点金刚石切削加工表层力学性能的研究

KDP晶体单点金刚石切削加工表层力学性能的研究

 万方数据

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

晶体学基础与晶体结构习题与答案

晶体学基础与晶体结构习题与答案 1. 由标准的(001)极射赤面投影图指出在立方晶体中属于[110]晶带轴的晶带,除了已在图2-1中标出晶面外,在下列晶面中哪些属于[110]晶带?(1-12),(0-12),(-113),(1-32),(-221)。 图2-1 2. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。 3. 为什么密排六方结构不能称作为一种空间点阵? 4. 标出面心立方晶胞中(111)面上各点的坐标。 5. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],[311];b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。 6. 在体心立方晶系中画出{111}晶面族的所有晶面。 7. 在立方晶系中画出以[001]为晶带轴的所有晶面。 8. 已知纯钛有两种同素异构体,密排六方结构的低温稳定的α-Ti和体心立方结构的高温稳定的β-Ti,其同素异构转变温度为882.5℃,使计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.29506nm,cα20℃=0.46788nm,aα900℃=0.33065nm)。 9. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并指出面间距最大的面。 10.平面A在极射赤平面投影图中为通过NS及核电0°N,20°E的大圆,平面B的极点在30°N,50°W处,a)求极射投影图上两极点A、B间的夹角;b)求出A绕B顺时针转过40°的位置。 11. a)说明在fcc的(001)标准极射赤面投影图的外圆上,赤道线上和0°经线上的极点的指数各有何特点,b)在上述极图上标出(-110),(011),(112)极点。 12. 图2-2为α-Fe的x射线衍射谱,所用x光波长λ=0.1542nm,试计算每个峰线所对应晶面间距,并确定其晶格常数。 图2-2 13. 采用Cu kα(λ=0.15418nm)测得Cr的x射线衍射谱为首的三条2θ=44.4°,64.6°和81.8°,若(bcc)Cr的晶格常数a=0.28845nm,试求对应这些谱线的密勒指数。

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

二晶体结构缺陷

1、说明下列符号的含义: V Na,V Na’,V Cl?,.(V Na’V Cl?),CaK?,CaCa,Cai?? 2、写出下列缺陷反应式: (1)NaCl溶入CaCl2中形成空位型固溶体; (2)CaCl2溶人NaC1中形成空位型固溶体; (3)NaCl形成肖脱基缺陷; (4)AgI形成弗仑克尔缺陷(Ag+进入间隙)。 3、MgO的密度是3.58克/厘米3,其晶格参数是0.42nm,计算单位晶胞MgO的肖脱基缺陷数。 4、(a)MgO晶体中,肖脱基缺陷的生成能为6eV,计算在25℃和1600℃时热缺陷的浓度。 (b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。 5、MgO晶体的肖特基缺陷生成能为84kJ/mol,计算该晶体在1000K和1500K的缺陷浓度。 6、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。 7、非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,非化学计量化合物Fe1-X O及Zn1+X O的密度将发生怎么样的变化?增大还是减小?为什么? 8、对于刃位错和螺位错,区别其位错线方向、柏氏矢量和位错运动方向的特点。 9、图2.1是晶体二维图形,内含有一个正刃位错和一个负刃位错。 (a)围绕两个位错柏格斯回路,最后得柏格斯矢量若干? (b)围绕每个位错分别作柏氏回路,其结果又怎样? 10、有两个相同符号的刃位错,在同一滑移面上相遇,它们将是排斥还是吸引? 11、晶界对位错的运动将发生怎么样的影响?能预计吗? 12、晶界有小角度晶界与大角度晶界之分,大角度晶界能用位错的阵列来描述吗? 13、试述影响置换型固溶体的固溶度的条件。

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

较石墨和金刚石的晶体结构

较石墨和金刚石的晶体结构、结合键和性能。 答:金刚石晶体结构为带四面体间隙的FCC,碳原子位于FCC点阵的结合点和四个不 相邻的四面体间隙位置,碳原子之间都由共价键结合,因此金刚石硬度高,结构致密。石墨晶体结构为简单六方点阵,碳原子位于点阵结点上,同层之间由共价键结合,邻层之间由范德华力结合,因此石墨组织稀松,有一定的导电性,常用作润滑剂。 1. 单晶体:如果一个物体就是一个完整的晶体,这样的晶体~单晶体. 水晶、雪花、食盐小颗粒、单晶硅、晶须 2 多晶体:如果整个物体是由许多杂乱无章地排列着的小晶体组成的,这样的物体~多晶体,其中的小晶体叫做晶粒,其边界称为晶界,多晶体有一定的熔点。各向同性 金属及合金等. 3 非晶体:没有规则的几何形状,原子在三维空间内不规则排列。长程无序,各向同性。常见的非晶体有:玻璃、蜂蜡、松香、沥青、橡胶等. 扩散定理 单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比。 为扩散通量,表示扩散物质通过单位截面的流量,dC/dx为沿x方向的浓度梯度;D为原子的扩散系数。负号表示扩散由高浓度向低浓度方向进行。 层错能 金属结构在堆垛时,没有严格的按照堆垛顺序,形成堆垛层错。层错是一种晶格缺陷,它破坏了晶体的周期完整性,引起能量升高,通常把单位面积层错所增加的能量称为层错能。 层错能出现时仅表现在改变了原子的次近邻关系,几乎不产生点阵畸变。所以,层错能相对于晶界能而言是比较小的。层错能越小的金属,则层错出现的几率越大。

在层错能较高的金属如铝及铝合金、纯铁、铁素体钢(bcc)等热加工时,易发生动态回复,因为这些金属中易发生位错的交滑移及攀移。而奥氏体钢(fcc)、镁及其合金等由于层错能低,不发生位错的交滑移,所以动态再结晶成为动态软化的主要方式。 面心立方的密排面 晶体中原子的堆垛方面心立方晶格的金属: 铝(Al)、铜(Cu)、镍(Ni)、金(Au)、银(Ag)、γ- 铁( γ-Fe, 912℃~1394℃) 式n面心立方:密排面为{111} A BCABCABC…… 点阵常数与原子半径R的关系 晶胞棱边的长度称为点阵常数或晶格常数。对立方晶系,a=b=c,点阵常数用a表示即可; 对六方晶系,a1=a2=a3?c,需要用a和c两个点阵常数来表示晶胞的大小。 1.面心立方: –最密排方向<110> –即面对角线方向原子半径为

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

金刚石的消光规律--晶体结构题目例

金刚石的消光规律--晶体结构题目例

(4)金刚石的消光规律计算举例: 金刚石结构中C 的原子坐标: (000)(1/2 1/2 0)(1/2 0 1/2)(0 1/2 1/2) (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4) F hkl =∑f j e 2πi(hxj+kyj+lzj) =fe 2πi(0)+fe 2πi(h/2+k/2)+fe 2πi(h/2+l/2)+fe 2πi(k/2+l/2) +fe 2πi(h/4+k/4+l/4) +fe 2πi(3h/4+3k/4+l/4) +fe 2πi(3h/4+k/4+3l/4) +fe 2π i(h/4+3k/4+3l/4) 前四项为面心格子的结构因子,用F F 表示,后四项可提出公因子e πi/2(h+k+l) 。得: F hkl =F F +fe πi/2(h+k+l) (1+e πi (h+k) +e πi (h+l) +e πi (k+l) ) = F F +F F e πi/2(h+k+l) =F F (1+ e πi/2(h+k+l) ) (1) 由面心格子可知,h 、k 、l 奇偶混杂时,F F =0,F=0; (2) h 、k 、l 全为奇数,且h+k+l=2n+1时, 1+ e πi/2(h+k+l) =1+cosπ/2(h+k+l)+i sinπ/2(h+k+l)

=1+cosπ/2(2n+1)+i sinπ/2(2n+1) =1+(-1)n i F=4f(1±i) F 2 =16f 2 (1+1)=32f (3) h 、k 、l 全为偶数,且h+k+l=4n 时 F=4f(1+e 2niπ) = 4f(1+1) = 8f (4) h 、k 、l 全为偶数,且h+k+l≠4n,即h+k+l=2(2n+1)时 F=4f(1+e (2n+1)iπ )=4f(1-1)=0 对于金刚石 各原子的分数坐标为 )(,0,00,)(,021,21,),(,21,021, ),,(,2 1210 )(41,41,41,)(41,43,43,)(43,43,41, )(4 3 ,41,43 由结构因子得 ) ()()(0[F l k i l h i k h i hkl e e e e f ++++++=πππ

半导体晶体缺陷

半导体晶体缺陷 创建时间:2008-08-02 半导体晶体缺陷(crystal defect of semiconductor) 半导体晶体中偏离完整结构的区域称为晶体缺陷。按其延展的尺度可分为点缺陷、线缺陷、面缺陷和体缺陷,这4类缺陷都属于结构缺陷。根据缺陷产生的原因可分为原生缺陷和二次缺陷。从化学的观点看,晶体中的杂质也是缺陷,杂质还可与上述结构缺陷相互作用形成复杂的缺陷。一般情况下,晶体缺陷是指结构缺陷。 点缺陷(零维缺陷)主要是空位、间隙原子、反位缺陷和点缺陷复合缺陷。 空位格点上的原子离开平衡位置,在晶格中形成的空格点称为空位。离位原子如转移到晶体表面,在晶格内部所形成的空位,称肖特基空位;原子转移到晶格的间隙位置所形成的空位称弗兰克尔空位。 间隙原子位于格点之间间隙位置的原子。当其为晶体基质原子时称为自间隙原子,化合物半导体MX晶体中的白间隙原子有Mi、Xi两种。 反位缺陷化合物半导体晶体MX中,X占M位,或M占X位所形成的缺陷,记作M X ,X M 。 点缺陷的复合各种点缺陷常可形成更复杂的缺陷,空位或间隙原子常可聚集成团,这些团又可崩塌成位错环等。例如硅单晶中有:双空位、F中心(空位-束缚电子复合体),E中心(空位-P原子对),SiO 2团(空位-氧复合体),雾缺陷(点缺陷-金属杂质复合体)。 硅单晶中主要点缺陷有空位、自间隙原子、间隙氧、替位碳、替位硼、替位铜,间隙铜等。 化合物如GaAs单晶中点缺陷有镓空位(v Ga )、砷空位(V As )、间隙镓(G ai ),间隙砷(A Si )、镓占砷位(As Ga )、 砷占镓位(Ga As )等,这些缺陷与缺陷、缺陷与杂质之间发生相互作用可形成各种复合体。 GaAs中的深能级。砷占镓位一镓空位复合体(As Ga v Ga )、镓占砷位一镓空位复合体(Ga As v Ga )在GaAs中形 成所谓A能级(0.40eV)和B能级(0.71eV)分别称作HB 2、HB 5 ,它们与EL 2 是三个GaAs中较重要的深能级, 这些深能级与某类缺陷或缺陷之间反应产物有关,EL 2是反位缺陷AsGa或其复合体As Ga v Ga V As 所形成,为非 掺杂半绝缘GaAs单晶和GaAs VPE材料中的一个主要深能级,能级位置是导带下0.82eV(也可能由一族深能级所构成),其浓度为1016cm-3数量级,与材料的化学配比和掺杂浓度有关。 线缺陷(一维缺陷)半导体晶体中的线缺陷主要是位错。晶体生长过程中由于热应力(或其他外力)作用,使晶体中某一部分(沿滑移面)发生滑移,已滑移区与未滑移区的分界线叫位错线,简称为位错。以位错线与其柏格斯矢量的相对取向来区分位错的类型,两者相互垂直叫刃型位错,两者平行的叫螺型位错,否则叫混合位错。混合位错中较常见的有60℃位错,30℃位错。 滑移了一个原子间距所形成的位错又叫全位错,否则叫不全位错。 由于形成直线位错所需能量较高,因此晶体中的位错大都是位错环;位错环又分棱柱位错环和切变位错环两种。

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

较石墨和金刚石的晶体结构

较石墨和金刚石的晶体 结构 Revised as of 23 November 2020

较石墨和金刚石的晶体结构、结合键和性能。 答:金刚石晶体结构为带四面体间隙的FCC,碳原子位于FCC点阵的结合点和四个不 相邻的四面体间隙位置,碳原子之间都由共价键结合,因此金刚石硬度高,结构致密。石墨晶体结构为简单六方点阵,碳原子位于点阵结点上,同层之间由共价键结合,邻层之间由范德华力结合,因此石墨组织稀松,有一定的导电性,常用作润滑剂。 1. 单晶体:如果一个物体就是一个完整的晶体,这样的晶体~单晶体. 水晶、雪花、食盐小颗粒、单晶硅、晶须 2 多晶体:如果整个物体是由许多杂乱无章地排列着的小晶体组成的,这样的物体~多晶体,其中的小晶体叫做晶粒,其边界称为晶界,多晶体有一定的熔点。各向同性 金属及合金等. 3 非晶体:没有规则的几何形状,原子在三维空间内不规则排列。长程无序,各向同性。 常见的非晶体有:玻璃、蜂蜡、松香、沥青、橡胶等. 扩散定理 单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比。

为扩散通量,表示扩散物质通过单位截面的流量,dC/dx为沿x方向的浓度梯度;D为原子的扩散系数。负号表示扩散由高浓度向低浓度方向进行。 层错能 金属结构在堆垛时,没有严格的按照堆垛顺序,形成堆垛层错。层错是一种晶格缺陷,它破坏了晶体的周期完整性,引起能量升高,通常把单位面积层错所增加的能量称为层错能。 层错能出现时仅表现在改变了原子的次近邻关系,几乎不产生点阵畸变。所以,层错能相对于晶界能而言是比较小的。层错能越小的金属,则层错出现的几率越大。 在层错能较高的金属如铝及铝合金、纯铁、铁素体钢(bcc)等热加工时,易发生动态回复,因为这些金属中易发生位错的交滑移及攀移。而奥氏体钢(fcc)、镁及其合金等由于层错能低,不发生位错的交滑移,所以动态再结晶成为动态软化的主要方式。 面心立方的密排面 晶体中原子的堆垛方面心立方晶格的金属: 铝(Al)、铜(Cu)、镍(Ni)、金(Au)、银(Ag)、γ- 铁( γ-Fe, 912℃~1394℃)

金刚石的消光规律 晶体结构题目例

(4)金刚石的消光规律计算举例: 金刚石结构中C 的原子坐标: (000)(1/2 1/2 0)(1/2 0 1/2)(0 1/2 1/2) (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4) F hkl =∑f j e 2πi(hxj+kyj+lzj) =fe 2πi(0)+fe 2πi(h/2+k/2)+fe 2πi(h/2+l/2)+fe 2πi(k/2+l/2) +fe 2πi(h/4+k/4+l/4)+fe 2πi(3h/4+3k/4+l/4)+fe 2πi(3h/4+k/4+3l/4)+fe 2πi(h/4+3k/4+3l/4) 前四项为面心格子的结构因子,用F F 表示,后四项可提出公因子e πi/2(h+k+l)。得: F hkl =F F +fe πi/2(h+k+l)(1+e πi (h+k) +e πi (h+l)+e πi (k+l)) = F F +F F e πi/2(h+k+l)=F F (1+ e πi/2(h+k+l)) (1) 由面心格子可知,h 、k 、l 奇偶混杂时,F F =0,F=0; (2) h 、k 、l 全为奇数,且h+k+l=2n+1时, 1+ e πi/2(h+k+l)=1+cos π/2(h+k+l)+i sin π/2(h+k+l) =1+cos π/2(2n+1)+i sin π/2(2n+1) =1+(-1)n i F=4f(1±i) F 2=16f 2(1+1)=32f (3) h 、k 、l 全为偶数,且h+k+l=4n 时 F=4f(1+e 2ni π) = 4f(1+1) = 8f (4) h 、k 、l 全为偶数,且h+k+l≠4n,即h+k+l=2(2n+1)时 F=4f(1+e (2n+1)i π)=4f(1-1)=0 对于金刚石 各原子的分数坐标为 )(,0,00, )(,021,21,),(,21,021, ),,(,21210 )(41,41,41,)(41,43,43,)(43,43,41,)(4 3,41,43 由结构因子得 )()()(0[F l k i l h i k h i hkl e e e e f ++++++=πππ ])33(2)33(2)33(2)(2l k h i l k h i l k h i l k h i e e e e ++++++++++++ππ π π =)()()(1[l k i l h i k h i e e e f ++++++πππ

半导体结晶学-典型晶体结构及电子材料-06

第五章 典型半导体材料及电子材料晶体 结构特点及有关性质 5.1 典型半导体材料晶体结构类型 5.2 半导体材料晶体结构与性能 5.3 电子材料中其他几种典型晶体结构 5.4 固溶体晶体结构 5.5 液晶的结构及特征 5.6 纳米晶体的结构及特征 2013-12-81

5.1.1 金刚石型结构 硅 Si:核外电子数14,电子排布式方式为 1s2 2s22p6 3s23P2 锗Ge:核外电子数32,电子排布式方式为 1s2 2s22p6 3s23p63d104s24p2 在Si原子与Si原子,Ge原子与Ge原子相互作用构成Si、Ge晶体时,由于每个原子核对其外层电子都有较强的吸引力。又是同一种原子相互作用,因此原子之间将选择共价键方式结合。 电负性:X Si= X Ge=1.8,⊿X = 0, ∴形成非极性共价键 2013-12-83

为了形成具有8个外层电子的稳定结构,必然趋于与邻近的四个原子形成四个共价键。由杂化理论可知,一个s轨道和三个p轨道杂化,结果产生四个等同的sp3杂化轨道,电子云的方向刚好指向以原子核为中心的正四面体的四个顶角,四个键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11所示。 图5.1.1 SP3杂化轨道方向 2013-12-84

每个原子都按此正四面体键,彼此以共价键结合在一起,便形成如图5.1.2和图5.1.3所示的三维空间规则排列结构—金刚石性结构。金刚石型结构的晶体具有Oh群的高度对称性。(对称中心在哪里? 答案 ) 2013-12-85

5.1.2 闪锌矿结构 化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以GaAs为例介绍其结构特点。 Ga 的原子序数 31,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33,核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 电负性:X Ga =1.6,X As=2.0,电负性差⊿X=0.4 <1.5。 ∴形成共价键(极性共价键) 。 2013-12-86

几种常见晶体结构的特点分析

几种常见晶体结构的特点分析 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个-Cl ,每 个-Cl 紧邻6个+Na (上、下、左、右、前、后),这6个离子构 成一个正八面体。设紧邻的Na +与Cl -间的距离为a ,每个Na +与12 个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。 由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1121=? +,晶体中Na +数与Cl -数之比为1:1,则此晶胞中含有4个NaCl 结构单元。 2. 氯化铯晶体 每个Cs +紧邻8个Cl -,每个Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻的Cs +与Cs +间的距离为 a 2 3,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812164112818=+?+?+?,-Cl 在晶胞内其数目为8,晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。 3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的 CO 2分子数为4216818=?+?。 4. 金刚石晶体(晶体硅同)

每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=? ,拥有的C-C 键数为1616=?,则C 原子数与C-C 键数之比为2:11:2 1=。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的最小环为十二元环,其中有6个Si 原子和6个O 原子,含有12个Si-O 键;每个Si 原子被12个十二元环共有,每个O 原子被6个十二元环共有,每个Si-O 键被6个十二元环共有;每个十二元环所拥有的Si 原子数为211216=?,拥有的O 原子数为16 16=?,拥有的Si-O 键数为26 112=?,则Si 原子数与O 原子数之比为1:2。 6. 石墨晶体 在石墨晶体中,层与层之间是以分子间作用力结合,同层之间是C 原子与C 原子以共价键结合成的平面网状结构,故石墨为混合型晶体或过渡型晶体。在同层结构中,每个C 原子与3个C 原子紧邻成C-C 键,键角为?120,其中最小的环为六元环,每个C 原子被3个六元环共有,每个C-C 键被2个六元环共有;每个六元环拥有的C 原子数为2316=?,拥有的C-C 键数为32 16=?,则C 原子数与C-C 键数之比为2:3。

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之 一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个-Cl ,每个-Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +与Cl -间的距离为a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+?,-Cl 数为44 1121=?+,晶体中Na +数与Cl -数之比为1:1,则此晶胞中含有4个NaCl 结构单元。 2. 氯化铯晶体 每个Cs +紧邻8个Cl -,每个Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,-Cl 在晶胞内其数目为8,晶体中的+Cs 数与-Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 16818=?+?。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=? ,拥有的C-C 键数为1616=?,则C 原子数与C-C 键数之比为2:11:2 1=。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的最小环为十二元环,其中有6个Si 原子和6个O 原子,含有12个Si-O 键;每个Si 原子被12个十二元环共有,每个O 原子被6个十二元环共有,每个Si-O 键被6个十二元环共有;每个十二元环所拥有的Si 原子数为211216=?,拥有的O 原子数为16 16=?,拥有的Si-O 键数为26 112=?,则Si 原子数与O 原子数之比为1:2。

金刚石和石墨的晶体结构

书山有路勤为径,学海无涯苦作舟 金刚石和石墨的晶体结构 金刚石和石墨的晶体结构之一1.金刚石的晶体结构金刚石是典型的原子晶体,在这种晶体中的基本结构微粒是碳原子。每个碳原子都以sp3 杂化轨道与四个碳原子形成共价单键,键长为15.5nm,键角为109°28′,构成正四面体。每个碳原子位于正四面体的中心,周围四个碳原子位于四个顶点上,在空间构成连续的、坚固的骨架结构。因此,可以把整个晶体看成为一个巨大的分子。由于C—C 键的键能大(为347kJ/mol),价电子都参与了共价键的形成,使晶体中没有自由电子,所以金刚石是自然界中最坚硬的固体,熔点高达3550 ℃,并且不导电。2.石墨的晶体结构石墨晶体是属于混合键型的晶体。石墨中的碳原子用sp2 杂化轨道与相邻的三个碳原子以σ键结合,形成正六角形蜂巢状的平面层状结构,而每个碳原子还有一个2p 轨道,其中有一个2p 电子。这些p 轨道又都互相平行,并垂直于碳原子sp2 杂化轨道构成的平面,形成了大π键。因而这些π电子可以在整个碳原子平面上活动,类似金属键的性质。而平面结构的层与层之间则依靠分子间力(范德华力)结合起来;形成石墨晶体。石墨有金属光泽,在层平面方向有很好的导电性质。由于层间的分子间作用力弱,因此石墨晶体的层与层间容易滑动,工业上用石墨作固体润滑剂。 金刚石和石墨的晶体结构之二世界上金刚石的主要产地在非洲,近年来我国也发现了有工业开采价值的金刚石矿。金刚石也可以人工合成,它是以石墨为原料,用FeS 作溶剂,在高温高压的条件下制成的。人造金刚石在某些性能方面还胜过天然金刚石(如耐用性),在石油和地质钻探工作中已广泛采用以 金刚石制成的钻具。金刚石是物质中硬度最大的,比重平均为3.5,室温下对所有化学试剂都显惰性,在空气和氧中加热到800℃左右能燃烧生成二氧化碳,它的熔点(3570℃)是所有元素中最高的。金刚石是典型的原子晶体,

相关主题
文本预览
相关文档 最新文档