当前位置:文档之家› 汽车悬挂优劣分析

汽车悬挂优劣分析

汽车悬挂优劣分析
汽车悬挂优劣分析

汽车悬挂优劣分析

————————————————————————————————作者:————————————————————————————————日期:

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式

汽车

麦弗逊式独立悬架

多连杆式独立悬架

双叉臂式独立悬架(双连杆式,双摇臂式,双A臂式)

双横臂式悬架

拖曳臂式悬挂

扭力梁式悬挂

大多车型的前悬都为麦弗逊形式,虽然麦弗逊式悬挂技术含量并不高,但其是一种经久耐用的独立悬架,具有很强的道路适应能力。

多连杆式独立悬架的整体效果相对更优秀,由于成本较高,四轮多连杆的车屈指可数,大多数出于成本考虑用了前麦弗逊式悬挂。

麦弗逊式悬挂是当今世界用的最广泛的轿车前悬挂之一。麦弗逊式悬挂由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。主要结构简单的来说就是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并可以用减震器的行程长短及松紧,来设定悬挂的软硬及性能。?麦弗逊式悬挂结构简单,所以它轻量、响应速度快。并且在一个下摇臂和支柱的

几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,虽然麦弗逊式悬架并不是技术含量很高的悬架结构,但麦弗逊式悬挂在行车舒适性上的表现还是令人满意,不过由于其构造为直筒式,对左右方向的冲击缺乏阻挡力,抗刹车点头作用较差,悬挂刚度较弱,稳定性差,转弯侧倾明显。?需要特别说明的是作为超级跑车的保时捷911也采用了麦弗逊式前悬挂,这足以证明这款悬挂具有广泛的适应性。

连杆支柱式悬架则是由麦弗逊式悬挂而衍生出来的悬挂,一般出现在后悬架中,它的下部不再是A臂,而是两根平行连杆和一根纵向拉杆。由于麦弗逊式悬挂先天性的侧向支撑不足,由此很多厂家通过各种调整和变化以加强其侧向支撑的能力。

连杆支柱式独立悬挂其实是麦弗逊式的一个变种,结构特性与麦弗逊是完全相同的。这种悬挂与前面所说的标准多连杆最大的差别在于,车轮上端不再有连杆作为支撑,无法与标准多连杆式相提并论。这种结构也无法实现多连杆式悬挂那么精准的定位和调校,因此它与标准多连杆式是无法相提并论的。从悬挂的价值来说,连杆支柱式与多连杆式是不可比的,过去大部分厂商都将其直接称作多连杆式,后来可能是因为消费者认知的提高,逐步取消了这种称呼,有的改名为二连杆式,有的则直接就叫麦弗逊式。

连杆支柱式其实应用很广,必然有自己的优势,成本低、结构简单、重量轻、占用空间小、舒适性较好等,这恰好是很多普通家用车所追求的,因此它在很多追求舒适性的车型上得到了广泛应用。赛拉图,别克凯越,海马3采用了连杆支柱悬挂。

多连杆独立悬挂,可分为多连杆前悬挂和多连杆后悬挂系统。其中前悬挂一般为3连杆或4连杆式独立悬挂;后悬挂则一般为4连杆或5连杆式后悬挂系统,其中5连杆式后悬挂应用

较为广泛。

多连杆悬挂能实现主销后倾角的最佳位置,大幅度减少来自路面的前后方向力,从而改善加速和制动时的平顺性和舒适性,同时也保证了直线行驶的稳定性,因为由螺旋弹簧拉伸或压缩导致的车轮横向偏移量很小,不易造成非直线行驶?多连杆悬挂在收缩时能自动调整外倾角,前束角以及使后轮获得一定的转向角度。通过对连接运动点的约束角度设计使得悬挂在压缩时能主动调整车轮定位(这个设计自由度非常大),能完全针对车型做匹配和调校以最大限度的发挥轮胎抓地力从而提高整车的操控极限。?多连杆悬挂结构想对复杂,材料成本、研发实验成本以及制造成本远高于其它类型的的悬挂、而且其占用空间大,中小型车出于成本和空间考虑极少使用这种悬挂。?但多连杆式悬挂舒适性能是所有悬挂中最好的,操控性能也和双叉臂式悬挂难分伯仲,高档轿车由于空间充裕、且注重舒适性能何操控稳定性,所以大多使用多连杆悬,可以说多连杆悬挂是高档轿车的绝佳搭档。

国内前后悬挂均采用多连杆的车型有:北京奔驰E级、华晨宝马3系及5系、一汽奥迪A4及A6L;帕萨特领驭则采用了多连杆前悬挂。

采用多连杆后悬挂的车型,如长安福特福克斯、一汽大众老速腾、广州本田雅阁、上海通用君越、一汽丰田锐志等。

多连杆悬挂又分为5连杆后悬挂和4连杆前悬挂系统,顾名思义,该系统包含5条连杆,分别为控制臂、后置定位臂、上臂、下臂和前置定位臂,其中控制臂可以调整后轮前束。5连杆悬挂的优点是构造简单、重量轻,减少悬挂占用的空间,能实现主销后倾角的最佳位置,大幅减少来自路面的前后方向力从而改善加速和制动时的平顺性与舒适,同时也保证了直线行驶的稳定性。

多连杆悬挂能提供给车辆更好的操控性和舒适性,但其制造成本较高,不适合任何级别任何价位的车型。为此,需要控制成本的车型便会采用非独立悬挂的形式,不同于之前提起的麦弗逊、双叉臂与多连杆,非独立悬挂的左右两个车轮通过一支车轴连接,不能单独上下跳动,这样的悬挂形式会一定程度影响舒适与操控性,因为左右轮在弹跳时会相互牵连,造成自由度小。

麦弗逊是世界汽车工业里程碑似的人物,他研制的减震弹簧+减震臂+下托架形式的汽车悬架系统是当今应用最广、最经济、最实用的悬架形式,故用其名字来命名。后者与其相比当然在舒适、稳定、减震效果上要好于前者,但是维修复杂,维修费用高导致不如前者普及。只知其一不知其二,网行家里手勿笑,敬请批评指正。

双叉臂式悬挂又称双A臂式独立悬挂(Double wish bone),双叉臂式悬挂又叫做两连杆式悬挂(双连杆式悬挂,双摇臂式悬挂)。相比麦弗逊式悬挂,双叉臂多了一个上摇臂,不仅需要占用较大的空间,而且其定位参数较难确定,因此小型轿车的前桥出于空间和成本考

虑一般不会采用此种悬挂。但其具有侧倾小,可调参数多、轮胎接地面积大、抓地性能优异,因此绝大部分纯正血统的跑车和追求性能的SUV的前悬挂均选用双叉臂式悬挂,可以说双叉臂式悬挂是为运动而生的悬挂。法拉利、玛莎拉蒂等超级跑车以及F1方程式赛车均采用了双叉臂式前悬挂。一汽丰田皇冠和锐志也都采用了双叉臂式前悬挂。国内采用双叉臂式前悬挂的轿车主要有一汽丰田皇冠和一汽丰田锐志,奥迪的豪华SUV Q7、大众途锐,以及咱自己的江铃陆风x8等车型。

??

?

双横臂式独立悬架的减震器没有横向载荷,而且上端高度较低,有利于降低车头的高度,改进车身造型。因此,这种悬架具有很好的操纵稳定性和舒适性,是比较高级的悬架。但是双横臂式独立悬架也有的一些缺点,比如结构复杂,成本高,占用的空间较大等。广本雅阁的前悬挂就是双横臂悬挂。奥德赛的四轮全部采用这种悬挂。

另外需要说明的是,双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂

式简单些可以称之为简化版的双叉臂式悬挂。同双叉臂式悬挂一样双横臂式悬挂的横向刚度也较大,一般也采用上下不等长摇臂设置。

后悬采用双横臂式悬挂的思域具有不错的运动性,中型轿车本田雅阁和马自达6都采用了双横臂式前悬挂。

双横臂式悬挂设计偏向运动性,其性能优于麦弗逊式悬挂、但比起真正的双叉臂式悬挂以及多连杆前悬挂要稍差一些。国内采用双横臂式前悬挂的主要有:广州本田雅阁、一汽轿车马自达6以及北京奔驰-戴克的克莱斯勒300C。而采用双横臂式后悬挂的有东风本田思域。大众豪华SUV途锐前后悬均采用了双叉臂式独立悬挂。据说,双AB杆悬挂算是双叉臂式悬挂的一种。

思域所使用的双横臂式后悬挂也是独立式悬挂的一种,相比上面的多连杆,它是利用两根不等长的横臂在汽车横向平面内摆动,由于有两根很粗的横臂作用在后轮的横向方向,所以能够承受很大的横向力,拥有横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰的优点,对于不少车迷来说,手动挡思域是个有乐趣的选择。

斜置单臂式独立悬架,这种悬架是单横臂和单纵臂独立悬架的折衷方案。其摆臂绕与汽车纵轴线具有一定交角的轴线摆动,选择合适的交角可以满足汽车操纵稳定性要求。这种悬架适于做后悬架。

拖曳臂式悬挂,是单纵臂扭杆梁式悬挂的俗称,是专为后轮设计的悬挂,不同厂家对这种悬挂的称谓不同:如:纵臂扭转梁独立悬挂,纵臂扭转梁非独立悬挂,H型纵向摆臂悬挂等等。归根结底他们都是同一种悬挂结构——拖曳臂式悬挂,只是调教稍有不同。

目前广泛采用的非独立悬挂分为拖曳臂式悬挂与扭力梁式悬挂,拖曳臂式悬架以可上下摆动的拖臂实现车轮与车身的连接,然后以液压减震器和螺旋弹簧作为减震部件,起到支撑作用。扭力梁式半独立悬架是通过一个平衡杆来使车轮产生倾斜,保持车辆的平稳,它将车轮装在一根整体车轴的两端,这样当一边车轮运转跳动时,就会影响另一侧车轮也作出相应的跳动,使整个车身振动。

非独立悬挂,其中最有名,使用最广泛的当然就是扭力梁式半独立悬挂。其实扭力梁也是分为三六九等的,而科鲁兹的扭力梁毫无疑问在紧凑型车中是相当出色的,弹簧也都是为运动而生。PSA集团一直在它的紧凑型车上坚持使用这种成熟的悬挂形式,并凭借这套系统驰骋WRC战场,可以说他们已经深谙此道,虽然是半独立结构,但已经相当优秀。

思铂睿(Honda 北美讴歌TSX)的悬挂使用了双叉臂结构带横向稳定杆的前悬挂,后悬挂为多连杆结构,简单点说就是四轮独立悬挂。虽标榜前后均带有横向稳定杆,但最大的优势则是来自——能通过避震筒内的油压阻尼变化调整车身支撑力的双模减震系统。只要

稍微快速地驾驶一下思铂睿,车身平稳的动态、和在高速并线时悬挂系统提供的支撑力,都能明显地分别出与雅阁偏向舒适取向的的悬挂特性。这也是有别于雅阁的另一个不同。

东风本田思铂睿其实就是欧版雅阁,所以它的悬挂结构和8代雅阁几乎没有区别,这套悬挂系统的潜力不错,只要调教适当就能获得优秀的操控性。作为一款运动车型,它的悬挂感觉要比雅阁稍微硬朗,只是不那么激进,还是照顾到一定的舒适性;不过在20万元出头的B 级家用车里,思铂睿的操控性能已然非常优秀,得益于功底不错的悬挂系统,它的极限比一般家用车都来得晚。

?

思铂睿的后悬挂可以分成两部分,上半部用的是双摇臂的上臂,下半部用的是三根连杆。行驶中主要的力都卸给了上面的摇臂,下面的三根连杆是起到稳定性的辅助作用。这是思铂睿的后悬挂和老款雅阁不一样的地方(八代雅阁后悬挂结构改成和思铂睿一样),六、七代雅阁后悬挂则是真真正正的五根连杆,无半点虚假。虽然到现在为止东本、广本仍然管他们都叫五连杆(厂家应该是认为上面一半的A臂可以视为两根粗连杆,所以加上下面的三根连杆组成五连杆)。至于这个改进是进步还是退步我一时真的不好确定因为对这种设计有两种说

法:1、思铂睿、雅阁八代的后悬挂是对思域后悬挂的改版,因为思域后悬挂是标准的双摇臂,本田是把思域后悬挂的下摇臂更换成了三根连杆装在了思铂睿和雅阁八代上。这样做的理由是降低成本,老款雅阁的后悬挂是5根独立连杆,可能工艺要求较高导致成本高。2、思铂睿、雅阁八代的后悬挂改进是为了提升系统刚性,提升操控性。

?

??负责的说,思铂睿这个后悬挂设计是同级别里最巧妙的,制造成本估计也是最高的。但是操控性这个东西不是简单的悬挂结构就能决定的,比如前悬挂雅阁八代/思铂睿都是双摇臂,同级别只有锐志是这样的设计,但你觉得锐志的操控性很好么?同理,宝马三系/奔驰C 级前悬挂都是支柱式,但他们的操控性特别是车头的指向性又非常之好。还有极端的例子是奔驰新E级,前悬挂从双摇臂降级到支柱式,但到现在为止好像没有什么人能量化出来新E

级操控是否真的比老款退步。这个例子就更证明悬挂结构对操控性的影响并不是直接的。所以用哪种结构只能说是厂家的偏好,或者说厂家是否愿意下血本给旗下车型打造一副操控性好的底子,剩下的事就全靠市场决定了。

CR-V因为四驱系统不够强大而被人诟病,但谁也不能否认它还是非常成功的。它和思域采用相同的平台,所以悬挂类型也是一样的双横臂式独立悬挂。这样的悬挂在紧凑型SUV 中不在少数,其在舒适和操控性上优于扭力梁,略逊于多连杆。在SUV车型中,它的舒适性要比纯正越野车的整体桥式有明显优势,所以主流的城市型SUV包括RAV4、CR-V、森林人使用的都是这种后悬挂类型。

?

汉兰达使用的底盘与老凯美瑞相同,而老凯美瑞的双连杆后悬在中型车中有点拿不出手。毫无疑问,与凯美瑞一般粗细的连杆根本不能指望它来抵御越野时强大的侧向冲击力,一次弹跳甚至都有可能让它的双连杆彻底变形,更不要说别的高难度越野动作了。但这样的

悬挂在市区里行走的时候很轻盈,悬挂的感觉很软很舒适,由此也可以看出汉兰达的定位是以舒适为主的城市SUV。

奇骏的后悬挂形式为带横向稳定杆的复合式多连杆悬挂,紧凑型SUV中,使用多连杆独立悬挂的并不多,这种悬挂类型的好处就像在紧凑型轿车上一样,能够实现更加准确的定位,操控性会更好一些。但在SUV上,这样的悬挂除了定位好的优点之外,可能在强度上还不如双横臂结构,越野时抗冲击的能力略差一些,不过在奇骏能够实现手动锁止的四驱系统帮助下,其越野能力不容小觑。

?途观来自于大众的PQ35平台,而国产的老速腾和明锐也都来自于该平台,所以途观的后悬挂自然就是和两款轿车一样的多连杆类型。和奇骏一样,这样的后悬挂类型充分照顾到了乘客的舒适性和城市性能,但因为抗冲击能力有限,所以并非完全为越野而生。途观的中央差速器为多片离合式,其后轮悬挂类型、中央差速器类型都和奇骏十分接近,两款车理论上有相近的越野和公路表现。

?哈弗的后悬类型为四连杆螺旋弹簧非独立悬挂,别看哈弗便宜,但是论越野的话,那些20多万的车跟它比起来,有点小巫见大巫。原因就在于它是非承载式车身,抗形变和抗冲击的能力比承载式车身强太多了;不过话说回来,非承载式车身的后轮悬挂一般都是非独立悬挂,而且都是整体桥式设计,在越野时能够承受数倍于独立式悬挂的冲击力,但它的舒适性上肯定比独立悬挂要差一些。

?

盘式刹车

常见汽车悬架解析

汽车常见悬架 一、汽车悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间的一起传力连接装置的总称。其功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。 二、悬挂系统的基本构成 汽车的悬架机构各有不同,但一般都由弹性元件、减振器、导向机构等三部分组成,分别起缓冲、减振和受力传递的作用。弹性元件即弹簧,承受垂直载荷,缓和及抑制不平路面对车体的冲击。减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。此外,还铺设了缓冲块和横向稳定器。 三、汽车悬挂的分类 悬架按导向机构的基本形式分,有两大类,分别是独立悬挂和非独立悬挂。 1、非独立悬挂 非独立悬架其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 非独立悬架的结构,特别是导向机构的结构,随所采用的弹性元件不同而有所差异,而且有时差别很大。采用螺旋弹簧、气体弹簧时,需要有较为复杂的导向机构;而采用钢板弹簧时,由于钢板弹簧本身可兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化。因此,在非独立悬架中大多数采用钢板弹簧作为弹性元件。它中部用U型螺栓将钢板弹簧固定在车桥上。悬架前端为固定铰链,也叫死吊耳。它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起,前端卷耳孔中为减少摩损装有衬套。后端卷耳通过钢板弹簧吊

汽车悬挂系统结构原图解

汽车悬挂系统结构原理图解 系统结构, 汽车, 原理, 图解, 悬挂 汽车悬挂系统结构原理图解教程 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之 一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬

架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对 车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之 一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与

悬架的种类和优缺点(内容清晰)

悬架的概念和分类 悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称。 悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。 典型的汽车悬架结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬架多具有螺旋弹簧和减振器结构,但不同类型的悬架的导向机构差异却很大,这也是悬架性能差异的核心构件。 根据结构不同可分为非独立悬架和独立悬架两种。 独立悬架 独立悬架系统是每一侧的车轮都是单独地通过弹性悬架系统悬架在车架或车身下面的。 优点: 1.质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力; 2.可用刚度小的较软弹簧,改善汽车的舒适性; 3.可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性; 4.左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。 缺点: 1.独立悬架系统存在着结构复杂维修不便的缺点 2.成本高 3.因为结构复杂,会侵占一些车内乘坐空间。 现代轿车大都是采用独立式悬架系统,按其结构形式的不同,独立悬架系统又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬架系统等。 1,、单横臂式 横臂式悬架指车轮在汽车横向平面内摆动的独立悬挂系统,一般和断开式车桥配合使用。按横臂数量又可分为单横臂式悬架和双横臂式悬架。 单横臂式具有结构简单,侧倾中心高,有较强的抗侧倾能力的优点,缺点是轮距变化大,轮胎磨损加剧。

2、双横臂式 按上下横臂是否等长又可分为等长双横臂式和不等长双横臂式。 等长双横臂式悬架在车轮上下跳动时,能保持主销倾角不变,但轮距变化大,造成轮胎磨损严重。 不等长双横臂的横向刚度大,只要适当选择、优化上下横臂的长度,并通过合理的布置、就可以使轮距及前轮定位参数变化均在可接受的限定范围内,保证汽车具有良好的行驶稳定性。双横臂的上下臂不能起到纵向导向作用,还需要另加拉杆导向。 这种结构较双叉臂更简单的双横臂悬挂性能介于麦弗逊悬挂和双叉臂悬挂之间,拥有不错的运动性能。 3、双叉臂式 用A字或者V字形结构替代双横臂式的单臂。 优点:横向刚度大有较好的方向稳定性、抗侧倾性能优异、抓地性能好、路感清晰; 缺点:制造成本高、悬架定位参数设定复杂。缺点是响应速度较其他形式悬架要缓慢,横向安装空间大。

立定跳远的运动生物力学分析

立定跳远的运动生物力学分析立定跳远成绩通常被作为评定学生身体素质好坏的一个重要指标,同时它也 经常作为运动员选材的一个重要依据。运动生物力学是一门理论与实践密切结合 的应用科学,?它直接为增强人民体质和提高运动技术水平服务。以运动力学原理来分析立定跳远各个阶段的动作技术,找出提高立定跳远技术的途径,寻求最佳立定跳远技术,以帮助提高立定跳远的成绩。换句话说,就是从这个角度来分析立定跳远应该怎么跳,为什么要这么做,如何提高立定跳成绩。立定跳远属于抛射点与落地点在同一水平面上的抛射运动,?根据远度公式得知,影响抛射远度的主要因素是腾起初速度,又根据动量定理,?要求练习者在预蹲后应立即摆臂,蹬地跳起,蹬地应快猛干脆利落。因此,在进行完整连贯地练习立定跳远时应注意以下一些动作技术方面的问题。 动作各阶段分析 1、预蹲预摆阶段。双腿预蹲与双臂预摆是同时进行且运动方向完全相反。当双腿下蹲时,双臂由前下方经体侧向后上方摆动,上体稍前倾。这个阶段应注意四个问题。 (1)下蹲的程度,是微蹲、半蹲或是全蹲应明确。立定跳远时下蹲程度要求是微蹲,这时,人体的肌肉初长度被拉长达到了最适宜的程度。若是半蹲或全蹲就不符合人体肌肉的工作特点,变成了有意识地放慢下蹲的速度而延长力的作用时间,这样会降低肌肉的收缩力量,不利于形成强大的肌肉收缩力即爆发力。 (2)预蹲摆后能不能停顿。立定跳远动作要求是不能停顿的,当预蹲预摆后应接着迅速完成蹲地动作的,其主要原因是:停顿是把连贯的动作变成静力性动作,而静力性动作较连贯性动作易使肌体产生疲劳。。 (3)摆臂的程度。预蹲时双臂后摆应做到自然,不能强扭使摆幅加大,蹬地时双臂前摆应尽力前上方摆起,以最大程度地提高身体重心。 (4)明确预蹲摆的次数是不是越多越有利于起跳。立定跳远要求只预蹲摆一至二次,并不需要进行多次的重复。多次的重复预蹲预摆不利于充分利用肌肉的弹性,同时由于肌肉松驰现象的存在,不利于肌肉产生最大收缩强力。 2蹬地结束后人体腾空到最高点阶段。预蹲结束应立即摆臂与蹬地跳起,蹬直双腿,上体尽量前送,人体在达到最高点时成一斜线,这时候整个人体也应该是遵循角动量守恒定律的。 3人体从最高点到安全落地阶段。人体蹬离地面后,由于上体尽量前倾,在最高点时,是成一条斜线根据角动量守恒定律,当人体在腾空后,在不改变外力矩作用时,身体某一环节若以一定大小的动力矩绕转轴向某一方向产生转动,必然导致身体其他环节以等量大小的动力矩绕转轴向相反方向发生转动。这时,若不急剧挥臂,向前屈体并做收腹举腿,必然导致人体按原来斜线状态落地。为保证安全落地,必定要使下肢向反方向发生转动,并且小腿前伸着地,保证了上肢上体与下肢转动的动量矩矢量和为零,才能顺利地落地。 为了提高立定跳远的成绩,在进行动作练习时还应注意以下一些训练方法的问题: 1从抛射原理的射程公式中我们可得知:初速度与远度是成正比的,初速度是影响远度的主要因素。因此,在训练中必须着重提高初速度以提高远度。由于

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

运动生物力学

运动生物力学 运动生物力学:是生物力学的一个重要分支,是研究体育运动中人体机械规律的科学。 运动生物力学的主要任务:提高运动能力,预防运动损伤 运动生物力学的研究方法分为测量方法和分析方法,其中测量方法可以分为运动学测量、动力学测量、人体测量、肌电图测量 运动学测量的参数:(角)位移、(角)速度、(角)加速度 动力学测量的参数:主要界定在力的测量方面。 人体测量是用来测量人体环节的长度、围度及,(质量、转动惯量等) 肌电图测量是用来测量肌肉收缩时的神经支配特性。 动作结构:运动时所组成的各动作间相互联系、相互作用的方法或顺序 动作结构的特征主要表现在运动学和动力学,运动学特征指完成动作时的时间、空间和时空方面表现出来的形式或外貌上的特征;动力学的特征指决定动作形式的各种力(力矩)相互作用的形式和特点,包括力、惯性和能量特征。 运动学特征:时间特征、空间特征和时空特征 时间特征反映的是人体运动动作和时间的关系:半蹲起立和深蹲起立 空间特征是指人体完成运动动作时人体各环节随时间变化所产生的空间位置 改变状况:下肢和躯干等空间移动轨迹 时空特征指人体完成运动动作时人体位置变化的快慢情况。 动力学特征包括,力的特征、能量特征和惯性特征 能量特征:人体运动时完成的功、能和功率方面的表现形式。 惯性特征:人体运动中人的整体、环节以及运动器械的质量、转动惯量对运动 动作所具有的影响。 动作系统:大量单一动作按一定规律组成为成套的动作技术,这些成套的动作技术叫做动作系统。 人体基本运动动作形式可主要归纳为推与拉动作、鞭打动作、缓冲和蹬伸动作及扭转、摆动和相向运动等动作形式 上肢基本运动动作形式——推(铅球)、拉(单双杠)、鞭打(标枪)★人体基本运动下肢基本运动动作形式——缓冲、蹬伸、鞭打 动作形式全身基本运动动作形式——摆动、躯干扭转、相向运动 人体的运动是由运动器系的机能特征所决定的,即以关节为支点,以骨为杠杆,在肌肉力的牵拉下绕支点转动,各肢体环节运动的不同组合使人完成千变万化的动作。 生物运动链根据其结构特点可以分为开放链和闭合链。见书P28-图2-15 生物运动链中的杠杆同机械杠杆一样也分为平衡杠杆、省力杠杆和速度杠杆 人体中的三类骨杠杆:见书P30-图2-16 ★人体惯性参数是指人体整体及环节质量、质心位置、转动惯量和转动半径 人体简化模型:质点模型、刚体和多刚体模型

详解汽车悬挂系统资料讲解

详解汽车悬挂系统

结构稳定优势突出详解多连杆独立悬挂 曾几何时,结构复杂、成本高昂的多连杆式独立悬架还只应用于豪华轿车,而随着近些年汽车制造技术的不断提升,零部件单位生产成本逐步降低,这种悬挂已广泛应用于中级车型和一些强调操控性的紧凑车型上,相比传统麦弗逊式和拖拽臂式,其结构上的优势是显而易见的。

追根溯源一下,最早应用多连杆悬挂的应该是这款1979年下线的奔驰S-Class W126车型 没有像麦弗逊,整体桥等结构渊源的发展历史。多连杆结构的盛行只是近这二、三十年的事,追溯一下,最早使用这种悬挂形式的量产车的是奔驰的S-Class W126车系,但在当时,这种悬挂形式还处于萌芽阶段,结构相对简单,因此很多人会认为它是“双叉臂结构”的变种,因为它的外观结构甚至特性与双叉臂系统非常相近,但后来推出的多连杆形式不断地出现四连杆,甚至五连杆,人们才发现这种结构具有很高的可塑性和延展性,而结构也越来越复杂。 ■多连杆悬挂的工作结果是由各个连杆共同作用的组合而成

顾名思义,多连杆式悬挂就是指由三根或三根以上连杆拉杆构成的悬挂结构,以提供多个方向的控制力,使车轮具有更加可靠的行驶轨迹。常见的有三连杆、四连杆、五连杆等。但由于三连杆结构已不能满足人们对于底盘操控性能的更高追求。因此结构更为精确、定位更加准确的四连杆式和五连杆式悬架才能称得上是真正的多连杆式,这两种悬架结构通常应用于前轮和后轮。

在结构上以常见的五连杆式后悬挂为例,其五根连杆分别为:主控制臂、前置定位臂、后置定位臂、上臂和下臂。它们分别对各个方向产生作用力。比如,当车辆进行左转弯时,后车轮的位移方向正好与前转向轮相反,如果位移过大则会使车身失去稳定性,摇摆不定。此时,前后置定位臂的作用就开始显现,它们主要对后轮的前束角进行约束,使其在可控范围内;相反,由于后轮的前束角被约束在可控范围内,如果后轮外倾角过大则会使车辆的横向稳定性减低,所以在多连杆悬架中增加了对车轮上下进行约束的控制臂,一方面是更好的使车轮定位,另一方面则使悬架的可靠性和韧性进一步提高。

汽车悬挂分类及特点

1、悬挂的分类 (1)非独立式悬挂:两侧车轮安装于一根整体式车桥上,车桥通过悬挂与车架相连。这种悬挂结构简单,传力可靠,但两轮受冲击震动时互相影响。而且山于非悬挂质量较重,悬挂的缓冲性能较差,行驶时汽车振动,冲击较大。该悬挂一般多用于载重汽车、普通客车和一些其他车辆上。 (2)独立式悬挂:每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且山于非悬挂质量较经;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会便驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。 ①轿车、客车及载人车辆。可明显提高乘坐舒适性,并且在高速 行驶时提高汽车的行驶稳定性。 ②越野车辆、军用车辆和矿山车辆。在坏路和无路的情说下, 可保证全部车轮与地面的接触,提高汽车的行驶稳定性和附着性,发挥汽车的行驶速度。 2.弹性元件的种类 (1)钢板弹簧:由多片不等长和不等曲率汽车悬架那种比较好的钢板叠合而成。安装好后两端自然向上弯曲。钢板弹簧除具有缓冲作用外,还有一定的减震作用,纵向布置时还具有导向传力的作用,非独立悬挂大多釆用钢板弹簧做弹性元件,可省去导向装置和减震器,结构简单。 (2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。曲于没有减震和传力的功能,还必须设有专门的减震器和导向装置。 (3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减震作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。 (4)扭杆弹簧;将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 3、减震器

常见的悬挂系统

福特汽车常见的悬挂系统 通常我们选车时,汽车销售员总会向我们介绍说这车是什么发动机,什么变速箱,什么悬架等等。说起发动机大家都懂得许多,说起变速箱也无外乎是自动的,还是手动的,而说起悬架有时就有点让人发蒙。今天我们就来像大家介绍一下悬挂的知识,从而让大家更了解福特汽车的悬挂: 一、什么是汽车悬架 所谓悬架就是指连接车身(车架)和车轮(车轴)的弹性构件,这个构件虽为弹性结构,但它的刚度足以保证汽车的行驶舒适性和稳定性。在汽车行驶过程中,悬架既能抵消减弱路面不平带来的生硬冲击,又能确保车身的横向和纵向稳定性,使车辆在悬架设计的自由行程内时刻都可以保持一个较大范围的动态可控姿态。因此,悬架是关系到车辆操控性和舒适性的重要组成部件之一。 二、汽车悬架的分类 按照汽车悬架缓震的原理来说,现代汽车中的悬架有两种,一种是被动悬架,另一种是主动悬架。被动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。由于这种悬架能够自行产生作用力,因此称为主动悬架。主动悬架是由电脑控制的一种新型悬架,具有能够产生反作用力的动力源,主要用于高档轿车,这里不讨论。基本上除了特殊用途与豪华型产品外,我们面对的绝大部分车辆都是被动悬架,因此下面按结构上的分类对我们显得意义重大; 根据汽车导向机构不同悬架种类又可分为独立悬架,非独立悬架。如下图所示。(半独立悬架单独介绍)

a.独立悬架 b.非独立悬架 非独立悬架如上图(a)所示 其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 独立悬架如上图(b)所示 其特点是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。同时独立悬架非簧载质量小,可提高汽车车轮的附着性。 四、独立悬架特点和种类 每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较轻;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会使驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。 目前采用较多的有以下三种形式:(1)双横臂式,(2)麦弗逊式,(3)多杆式独立悬架 (1)双横臂式(双叉式)独立悬架(我们的小福就属于此列)

全面解析5种常见悬挂

全面解析5种常见悬挂麦弗逊式独立悬挂 随着汽车产销量的高速发展,国内汽车的保有量也达到了空前的规模,消费者在购车的时候也不再简单把汽车看成是面子工程,而是越来越关心其汽车的各项性能,尤其是汽车的操控性能受到了极大关注。 在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。 『悬挂在汽车底盘安放位置的示意图』 ● 悬挂的概念和分类 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有

螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性和舒适性均要明显好于选用非独立悬挂的汽车。

从运动生物力学原理谈运动损伤的发生原因及防治

·运动医学· 从运动生物力学原理谈运动损伤 的发生原因及防治 戈定(同济医科大学式汉‘30030) 摘要:运动损伤的发生原因多种多样,但从根本_卜讲.上要是由于运动训练及技术动作违背r 运 动解剖学、生理学及生物力学的科学原理所致。本文欲探讨此力一面生物力学的原因及防治方法。 关键词:运动生物力学,运动损伤,原因,防治 On the Causes of Exercises Injury and Prevention,Treatment from the Perspective of Sports E3iomechanics (*e Dcn} (Tuug.lt Me准备活动的不够充分;<3>场地、器材的小合理或突然变异的情况;机体机能状态低卜时的超负荷运动3}. 综卜所述,运动损伤以运动系统的创伤为主,多发生于从事运动训练及体育锻炼的人群之 中,尤以刚开始从事卜述活动的人为多数,发生的原因主要以技术动作的不合.理,场地器材的 不规范,以及超负荷大强度的运动训练所致。所谓技术动作不合理,实际_卜就是运动时的技术 动作不符合本人人体解剖结构及生理机能的客观条件要求,不符合运动生物力学的规律,这类 技术动作有些是竞技体育的客观要求,但大多数则是对卜述知识、概念的掌握不够,认识不足 所造成的,所以从人体解剖、生理学及运动生物力学的观点来看一,错误的动作技术既不利于人 体竟技水平、运动能力的提高,义是造成运动损伤的必然因素。本文研究的目的就在于提高人 们对此问题的认识,努力消灭造成运动损伤的必然因素,增加知识,提高预见度,尽[__L 避免运动

散打动作技术的运动生物力学分析

散打动作技术的运动生物力学分析 散打是一项用身体特定部位作为进攻或防守武器的搏击性运动。纵观其动作技术特点,散打中任一技术动作都是在肩、躯干、腰、髋、膝、裸各关节的充分配合下完成的,要求将各关节的分力聚集一点作用于目标。散打动作技术主要有拳法、腿法、摔法。拳法主要包括直拳、摆拳、勾拳、劈拳、扣拳、鞭拳、弹拳七种,是以直、摆、勾、为主体;腿法主要有前蹬腿、侧踹退、横鞭腿、后摆腿、下劈腿、扫腿六种,是以前蹬腿、鞭腿、侧踹腿为主体;散打中的摔法主要有夹摔、抱缠摔、接腿摔、等三种[1I。拳法的特点在于进攻路线短、冲力大、速度快、发力狠、动作突然、防不慎防、躲避困难、而且易于应用身体的力量。腿法的特点进攻路线长、打击力大、是远距离进攻最有效的武器。摔法的特点是速度快、发力突然,是贴身搏击的锐利武器。 1 对散打动作技术肌群工作特征分析 肌肉是人体运动的发动机,是产生力的器官。散打动作技术的肌群力学特征主要通过参与工作的肌肉作用类型、肌肉功率、肌肉功、肌肉的发力顺序四方面表现出来。 1.1 参与工作的肌群及其特点 散打中的每一动作技术都是全身性的运动,都要求身体各部位的肌群协调、充分的配合使机体能量经济化和动作效果最优化。从体育解刨学的角度上讲,其动作设计与人体的上肢、躯干、和下肢等关节的肌肉的工作特征紧密相连。下面以散打中最常用的右手掼拳为例、对参与掼拳动作关节的运动及肌肉工作的特点进行分析:右手掼拳的动作要求右腿轻微下潜继而快速蹬地并向内扣,髋关节伸展内旋,躯干向左回旋,同时肩胛骨前伸,肩关节前屈,肘关节伸的同时伴随前臂内旋,右拳向外、向前、向里横掼,力达拳面。做掼拳动作时,右腿轻微下潜右后快速蹬地并向内扣动作是由髁关和膝关节完成,参与的肌群为小腿三头肌、胫骨后肌、股四头肌等,是肌肉在近固定时做超等长收缩完成的。髋关节伸展内旋动作主要是臀大肌、大收肌、股二头肌、半肌腱和半膜肌、臀中肌和臀小肌前部及阔筋膜张肌等肌群在近固定时做向心工作完成的。躯干左回旋动作是由左侧腹内斜肌和右侧腹外斜肌在下固定时做向心工作完成。在手臂摆动过程中,上肢带的肩胛骨做前伸运动,主要是由前锯肌和胸小肌在近固定时做离心工作完成的;肩关节前屈主要是由胸大肌、三角肌前部肌纤维做等长工作完成;肘关节伸的同时伴随前臂内旋动作,肘关节伸主要是由肱三头肌和肘肌在近固定时做向心工作完成的;前臂内旋是旋前原肌、旋前方肌在近固定时做向心工作完成。 由以上分析得知,各关节肌肉的收缩形式有离心收缩、超等长收缩、等长收缩等收缩形式。在各种收缩形式中,产生肌力的大小顺序为:超等长收缩>离心收缩>等长收缩>向心收缩日。显而易见。超等长收缩产生的肌力最大。之所以这种收缩能产生更大的力量是由于肌肉弹性体产生的张力变化和肌牵张反射。 从运动生物力学的角度说,人体肌肉包括肌腱是一种黏弹性物质,其在收到迅速牵拉伸长时,能够产生强大的弹性回缩力,黏性物质如果缓慢被拉伸,或者拉伸后在停顿一段时间就会出现松弛现象,其弹性回缩力就会大大降低。所以在散打动作中,尽可能的使肌肉做超等长收缩,使其产生更大的肌力。如在直拳、掼拳、勾拳时,在启动阶段使蹬地腿有意识的小幅度下潜或身体小幅度的转动使肌肉先做离心收缩,继而快速蹬地、转髋、送肩使肌肉做向心收缩,从而增大肌力。在做鞭腿动作时同样使进攻腿下潜,继而快速蹬地,肌肉做超等长收缩,使进攻腿产生了更大的肌力,通过发作用力于地面,从而增加了进攻腿的启动速度。但应注意腿的下潜动作及蹬地发力到动作完成整个过程是快速、连贯一致的,否则会出现肌

汽车悬挂系统结构强度优化分析

汽车悬挂系统结构强度优化分析 发表时间:2018-12-29T10:17:08.600Z 来源:《防护工程》2018年第29期作者:袁世林 [导读] 汽车悬挂系统中钢板弹簧是其中最为重要的部件,钢板弹簧的宽度对于汽车悬挂系统的强度具有很大的影响 安徽江淮汽车集团股份有限公司安徽合肥 230601 摘要:汽车悬挂系统中钢板弹簧是其中最为重要的部件,钢板弹簧的宽度对于汽车悬挂系统的强度具有很大的影响,如果钢板弹簧宽度过大,那么汽车的舒适性会相应降低;反之,如果钢板弹簧的宽度过小,那么又会导致悬挂系统的刚度不够。传统的对于悬挂系统的优化方法多是静态分析忽略了钢板弹簧的动态。本篇文章针对某货车前悬挂的钢板弹簧为研究对象,应用有限元动态分析法对其进行分析。结果表明增加钢板弹簧的宽度会使得汽车行驶过程中的舒适性降低,通过对汽车悬挂系统进行改造来减少钢板弹簧承受的应力作用,从而提高汽车行驶的舒适性,延长钢板弹簧的使用寿命。 关键词:汽车悬挂系统;结构强度;优化分析 一、前言 汽车悬挂系统中钢板弹簧结构的设计对于汽车的行驶安全性和舒适性都有很大的影响。汽车在行驶过程中,由于地面平整度等多方面的因素,会使得悬挂系统中钢板弹簧引发震动而带动整车的震动,因此为了提高整车行驶的安全平稳性,有必要对悬挂系统的钢板弹簧进行优化设计,而钢板弹簧的模态分析则为其优化提供了参考依据。 对于钢板弹簧的优化设计中,遗传算法的权重系数变换法和混合法,以及拓扑优化方法都曾应用到其中,不过这些方法大多是进行多目标优化的方法而忽略了单一变量对于悬挂系统的影响。近些年来,钢板弹簧的优化方法也得到了进步,从以前的传统方法中只是针对钢板弹簧的静态特性进行分析而忽略动态特性,到如今将动态特性考虑在内。本篇文章利用有限元法对于钢板弹簧的刚度和应力进行研究,对三种不同宽度的钢板弹簧进行模态分析。 二、钢板弹簧结构建模 (一)钢板弹簧悬挂原理 汽车悬挂系统是连接车架和车轴的重要组件,悬挂系统能够传递车架和车轮之间的作用力,同时也能够有效的缓解汽车在行驶过程中由于路面凹凸不平产生的震动。由钢板弹簧组成的弹性元件的悬挂系统,由多片长度不同的钢板组合,当汽车在行驶过程中产生震动的情况下,路面对于汽车车轮的冲击会使得钢板弹簧产生震动,由于冲击荷载的存在,钢板弹簧在上下位移的过程中会产生变形,借此来缓解车身的震动。 (二)钢板弹簧宽度校验 本篇文章中选取钢板弹簧长度为1155毫米,宽度分别为40毫米、50毫米和64毫米,对这三种宽度的钢板弹簧进行分析。 (三)建立三维实体模型 利用Pro/E软件进行建模,针对三种不同宽度的钢板弹簧进行建模。钢板弹簧的卷耳和吊耳内装有橡胶衬套,橡胶衬套和转动轴之间具有一定的约束,可以将转动轴和卷耳、吊耳的连接看做一体。 三、钢板弹簧模态分析 汽车在行驶的过程中,钢板弹簧在地面的影响之下产生震动。如果弹簧的震动频率和地面激励想接近那么就会引发共振,产生共振的后果就是会导致钢板弹簧的寿命减少。为了避免路面和钢板弹簧产生共振,有必要对钢板弹簧进行模态分析来了解钢板弹簧的动态特性。本篇文章通过计算模态分析的方法来分析钢板弹簧的模态。将建立好的钢板弹簧三维几何模型导入有限元分析软件,设计好各项参数,然后对钢板弹簧进行网格划分。钢板弹簧的低阶模态结果能够对钢板弹簧的动态分析结果产生影响,要利用Block Lanczos模态提取法来对钢板弹簧的前五阶模态进行提取。最终根据对三种不同宽度的钢板弹簧的模态振型图进行分析可以得出结论,钢板弹簧的宽度越大,其固有频率会越高。轻型载货汽车路面凹凸不平而产生的激励不会高于20赫兹,车轮不平衡引发的震动频率不超过11赫兹;当载货汽车的车速在每小时八十公里以下的时候,由传动轴直线引发的震动频率要低于46赫兹。但是钢板弹簧的一阶固有频率已经高于这个频率值,所以通过增加钢板弹簧的宽度而提高弹簧的固有频率便没有任何实际的影响。而且钢板弹簧的宽度增加,随之而来的就是悬挂系统的重量也会增加,这对汽车的轻便化设计也是不利的影响。 四、改进汽车悬挂系统 钢板弹簧的中心孔是应力集中的地方,而且钢板弹簧发生的折断也大多位于这个部位。如果将钢板弹簧底部和后桥接触的地方增添一个高弹性的垫片,那么就能够有效的缓解由于集中应力而造成的钢板弹簧的折断。本篇文章中以40毫米宽度的钢板弹簧为例,增加5毫米的橡胶减震垫,之后再来分析橡胶垫对于钢板弹簧性能是否产生影响。橡胶垫的材料是聚丁二烯橡胶,该种材料的抗压性能和抗磨性能都较强。通过对添加橡胶垫前后钢板弹簧的变形进行分析得知,添加橡胶减震垫片之后,当钢板弹簧在应力的作用下产生变形时,橡胶减震垫发生最大变形量,而减震垫的最大变形量则有效的缓解了钢板弹簧的变形。 钢板弹簧的最大应力在板簧中心孔的两侧以及吊耳部位,而钢板弹簧发生折断者大多在这个部位。通过添加弹簧垫片能够有效的降低钢板弹簧的应力。所以添加橡胶减震垫片能够有效的减少钢板弹簧因为集中应力而造成的折断,而且相对于钢板弹簧来说,减震橡胶垫的弹性更大,能够抵抗由于路凹凸不平而对车身产生的冲击,从而提高汽车的舒适度。 五、结论 文章利用建模软件有限元分析,对于汽车钢板弹簧进行模态分析,以期能够为钢板弹簧的优化提供思路。文中分析了不同宽度的钢板弹簧,并且分别进行模态分析,结果表明:钢板弹簧的固有频率和自身的宽度相关,且钢板弹簧的宽度越宽,固有频率越大。并且固有频率的提高无法提升汽车的性能。钢板弹簧的宽度在40-50毫米之间时能够同时满足性能要求和较小形变的要求,保证钢板弹簧运行良好,而且宽度较小的钢板弹簧能够减轻汽车重量。 相比较于钢板弹簧来说,橡胶减震垫的塑性较好,并且具有良好的抗压能力和耐磨性能,即便是在变形之后也能很快的回复原状,能

汽车各类悬架系统图解说明

汽车各类悬架系统图解说明 独立悬架与非独立悬架示意图13-4所示 独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图4-57(b)所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧13-5

钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 扭杆的断面形式 断面常为圆形,少数是矩形或管形 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封 双向作用筒式减振器示意图p314 -4-51 横向稳定器的安装13-7copy.gif

关于两种常用公交车车门的力学分析

关于两种常用公交车车门的力学分析 车门是各种车的重要组成部分,同时也是车的各个部件中鱼人联系紧密的重要部分。在实现车的用途的过程中,车门的作用往往不可忽视。事实上,要实现门的作用功能,需正确选择合适的车门开闭结构,因而了解车门的开闭结构至关重要。 在此,我们介绍两种常用车门的开闭结构。 1,曲柄滑块开门机构 曲柄滑块车门开闭机构如图所示(门分左右两扇,下图为一边门的结构简图),杆件1为主动杆件,1向左运动的过程中,使2杆转动一定的角度拉动3杆的移动,其中3杆是门的一部分的简化,3杆转动即门转动,滑块4只能在门上方的滑槽内滑动,整个系统组成一个稳定的曲柄滑块机构,从而实现门稳定安全的启动。 已知:2杆长为L,3杆与4杆间夹角α,1杆以w逆时针转动。当2和3杆间夹角θ时,求4的速度V2。 运算过程如下图:(鼠标绘图无力。。。。)

这种属于内摆式车门,占地空间小,使乘客上下车没有逆向乘客出现,不会产生拥挤碰撞现象。 2,双曲柄车门开闭机构 此类车门启闭机构利用了反平行四边形双曲柄中两曲柄反向运动的特点。运动简图如图所示,杆AB与左边门固结,CD与右边门固结,主动曲柄AB转动时,通过连杆BC 带动从动曲柄CD朝着相反方向转动,门随即打开,并且此机构可以保证两扇门同时开启关闭。

模型图: 试说明车门同时开闭的条件。(绘图无力,自行想象。。。) 使车门同时打开,则AB杆与CD杆有同样的角速度 B点与C点速度一致。 作BC杆的速度瞬心P,为AB杆与CD杆的延长线交点。 使B点与C点速度一致,则必须PB=PC。 三角形PBC为等腰三角形。 所以,车门能同时开闭的条件是: 当车门关闭时,角ABC与角DCB的和为180度,且AB=DC。

汽车悬挂优劣分析

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式 汽车 麦弗逊式独立悬架 多连杆式独立悬架 双叉臂式独立悬架(双连杆式,双摇臂式,双A臂式) 双横臂式悬架 拖曳臂式悬挂 扭力梁式悬挂 大多车型的前悬都为麦弗逊形式,虽然麦弗逊式悬挂技术含量并不高,但其是一种经久耐用的独立悬架,具有很强的道路适应能力。 多连杆式独立悬架的整体效果相对更优秀,由于成本较高,四轮多连杆的车屈指可数,大多数出于成本考虑用了前麦弗逊式悬挂。 麦弗逊式悬挂是当今世界用的最广泛的轿车前悬挂之一。麦弗逊式悬挂由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。主要结构简单的来说就是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并可以用减震器的行程长短及松紧,来设定悬挂的软硬及性能。

麦弗逊式悬挂结构简单,所以它轻量、响应速度快。并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,虽然麦弗逊式悬架并不是技术含量很高的悬架结构,但麦弗逊式悬挂在行车舒适性上的表现还是令人满意,不过由于其构造为直筒式,对左右方向的冲击缺乏阻挡力,抗刹车点头作用较差,悬挂刚度较弱,稳定性差,转弯侧倾明显。 需要特别说明的是作为超级跑车的保时捷911也采用了麦弗逊式前悬挂,这足以证明这款悬挂具有广泛的适应性。 连杆支柱式悬架则是由麦弗逊式悬挂而衍生出来的悬挂,一般出现在后悬架中,它的下部不再是A臂,而是两根平行连杆和一根纵向拉杆。由于麦弗逊式悬挂先天性的侧向支撑不足,由此很多厂家通过各种调整和变化以加强其侧向支撑的能力。 连杆支柱式独立悬挂其实是麦弗逊式的一个变种,结构特性与麦弗逊是完全相同的。这种悬挂与前面所说的标准多连杆最大的差别在于,车轮上端不再有连杆作为支撑,无法与标准多连杆式相提并论。这种结构也无法实现多连杆式悬挂那么精准的定位和调校,因此它与标准多连杆式是无法相提并论的。从悬挂的价值来说,连杆支柱式与多连杆式是不可比的,过去大部分厂商都将其直接称作多连杆式,后来可能是因为消费者认知的提高,逐步取消了这种称呼,有的改名为二连杆式,有的则直接就叫麦弗逊式。 连杆支柱式其实应用很广,必然有自己的优势,成本低、结构简单、重量轻、占用空间小、舒适性较好等,这恰好是很多普通家用车所追求的,因此它在很多追求舒适性的车型上得到了广泛应用。赛拉图,别克凯越,海马3采用了连杆支柱悬挂。

汽车悬挂系统讲解

全面解释常见“悬挂系统”以及代表车型点评 2011年07月29日07:00 【搜狐汽车帮你选车】悬挂系统作为汽车中不可缺少的一部分且直接影响到了车辆的舒适性、操控性等。在本文章中我们将会为大家分析悬挂系统于车辆的作用以及主要构成部分。在各种常见的悬挂系统介绍中,我们还会为大家列列举出 各种常见悬挂系统的代表车型。 悬挂系统是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其功能是传递作用在车轮和车架之间的力和力矩,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车平顺行驶。悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。 悬挂系统的主要构成部分 弹簧

用来缓冲震动的装置。利用弹簧的变型来吸收能量。常见的弹簧型式为「圈形弹簧」,其它被使用在汽车上的弹簧还有「板片弹簧」和「扭力杆弹簧」二种。 减振器 是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的平顺性,增强车轮与地面的附着性能,减少汽车因惯性力引起的车身倾角变化,提高汽车的操纵性和稳定性。减振器内部藉由液体或气体产生压力来推动阀体,以吸收振动的能量,并且减缓震动的作用。采用气压方式的减振器,其价格一般都比采用油压方式者高。少部分高端的减振器会采取液、气压共享的设计。 防倾杆

将类似ㄇ字形的杆件的二端分别连结在左、右悬挂装置上面,当左、右侧的轮子分别上下移动时,会产生扭力并使杆件自体产生扭转,利用杆件受力所产生的反作用力去使车子的左、右二边维持相近的高度。 连杆 用来连结车轮与车身的杆子。连杆的形状可以是一支外形简单的圆杆,也可能是以钢板制成的一个结构体。 现有常用悬挂系统系统类型

相关主题
文本预览
相关文档 最新文档